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Abstract: In recent years, facilitated by rapid technological advances, we are becoming more 

adept at probing the molecular processes, which take place in the nucleus, that are crucial for 

the hierarchical regulation and organization of chromatin architecture. With an unprecedented 

level of resolution, a detailed atlas of chromosomal structures (histone displacement, variants, 

modifications, chromosome territories, and DNA looping) and mechanisms underlying their 

establishment, provides invaluable insight into physiological as well as pathological phenomena. 

In this review, we will focus on prostate cancer, a prevalent malignancy in men worldwide, and 

for which a curative treatment strategy is yet to be attained. We aim to catalog the most frequently 

observed oncogenic alterations associated with chromatin conformation, while emphasizing the 

TMPRSS2-ERG fusion, which is found in more than one-half of prostate cancer patients and 

its functions in compromising the chromatin landscape in prostate cancer.
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Introduction to chromatin organization  
and three-dimensional topology
The nucleus is a fascinating organelle within a cellular entity, not only due to the fact 

that it contains the entire genetic blueprint required for a cell to survive and propagate, 

but – more importantly – how it is capable of organizing this vast sea of information in 

an efficient and effective manner. It has been known that the human genome consists 

of more than 3 billion base pairs, and in fact the total deoxyribonucleic acid (DNA) in 

a diploid human cell would sum up to approximately 2 m in length when completely 

stretched.1 Moreover, the extent of compaction for metaphase chromosome is estimated 

to be between 10,000- and 20,000-fold.2

To achieve this high level of proficiency and accuracy, the nucleus employs multiple 

levels of packaging methods to generate what is known as the higher-order structure of 

chromatin, which is composed of a combination of DNA and proteins that intertwine 

together to separate genes into regulatory hubs and to form a three-dimensional (3D) 

topology best suited for a cell’s functions.

About 40 years ago, the use of electron microscopy enabled identification of the 

classical beads-on-a-string type of structure of DNA, which has been generally accepted 

as the basic level of chromatin organization.3–6 Further demonstrated by biochemical 

and X-ray diffraction studies,5,7 the chromatin has been described to be formed by 

repeating units of nucleosomes, octameric structures consisting of four different his-

tone proteins (two each of H2A, H2B, H3, and H4), which are wound by an estimated 

number of 147 base pairs of DNA, giving rise to 1.7 superhelical turns.7,8
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The advent of fluorescence in situ hybridization (FISH) 

technology has provided evidence for the nonrandom spatial 

organization of the genome, allowing visualization of position 

and interaction of chromosomes, chromatin domains, as well 

as individual genes. It was revealed that gene density is one 

of the indicators of nuclear positional organization, which 

is present generally in a radial pattern where gene-dense 

chromosomal regions prefer to congregate in the nuclear 

interior, while gene-poor regions are located around the 

nuclear periphery.9 It has been observed that chromosomes 

are segregated into subnuclear compartments, known as chro-

mosome territories,10 where the edge of the nucleus is host to 

mainly repressed genes packed into heterochromatin form,11,12 

and the nuclear interior is concentrated in early replicating 

DNA and frequently transcribed genes.13,14 In addition, FISH 

experiments have also demonstrated that during differentia-

tion, specific loci can reposition either toward or away from 

the nuclear periphery, which is concordant with repression or 

activation of those nearby genes.15 More recently, a series of 

chromosome conformation capture (3C)-based approaches, 

which can achieve a high-resolution interrogation of the chro-

matin landscape, further confirmed that intrachromosomal 

associations in metazoan genome can serve to concentrate and 

segregate active gene-rich and gene-poor domains.16

It is known that – indeed – there are topologically 

associated domains (TADs) that are pervasive throughout 

the genome and function to compartmentalize the genome 

into local and distinct regions, therefore modulating gene 

expression.17

Role of chromatin organization  
in gene transcription
The structure of chromatin has been well-known to associate 

with the status of gene transcription. As early as the 1980s, 

scientists were able to demonstrate that the mere presence 

of nucleosomes can inhibit initiation by ribonucleic acid 

polymerase II (RNAPII) and thus stall transcription.18 The 

mechanisms for regulation of the chromatin structure with 

respect to gene transcription are diverse, and may involve 

histone displacement, histone variant incorporation, post-

translational modifications, chromosome territories, and 

DNA looping (Figure 1).19 Each of these mechanisms has 

its unique influence on chromatin conformation, which in 

turn dictates gene transcription status.

While packaging of the DNA into nucleosomes can 

inhibit transcription in vitro, this stereochemical constraint 

may be relieved by structural changes in nucleosomes.18 

Histones have been observed to exhibit high turnover prop-

erties from the core nucleosome. It is reported that histone 

dimers of H2A and H2B are relatively more susceptible to 

displacement when compared to H3 and H4.20 Results from 

biochemical and genetic studies consistently reinforce the 

notion that histone eviction from the nucleosome typically 

occurs at promoters during gene activation, and such pro-

cess may be mediated by events including but not limited to 

adenosine triphosphate (ATP)-dependent chromatin remodel-

ing, as well as histone chaperones.21

For instance, chromatin remodeling complexes, such as 

switch/sucrose nonfermentable (SWI/SNF)22–24 and chroma-

tin structure remodeling (RSC) complex,25,26 and addition-

ally active RNAP II27 can all take part in evicting H2A and 

H2B to assist nucleosome unraveling. Thus, in a stepwise 

manner, these chromatin remodeling complexes can mediate 

repositioning28 or ejection29 of nucleosomes at promoters to 

initiate transcription activation. Moreover, histone chaperone 

proteins (Asf1,30,31 Nap1,32 and nucleophosmin33), which act 

by sequestering the evicted histones to prevent their rein-

corporation into the nucleosome, are also an indispensable 

component for proper histone displacement and ultimately 

gene transcription.

In addition to the physical exchange of histone proteins, 

the incorporation of variant histones can also lead to modifi-

cations in chromatin structure and transcriptional regulation. 

Unlike canonical core histones, generally these unconven-

tional histone proteins are distinguished by the fact that they 

are expressed outside of the S phase and their deposition into 

the nucleosome is deemed DNA replication-independent.34

As a result of changes in their amino acid sequence, vari-

ant forms of histones could acquire divergent biophysical 

properties predisposing them to localize in specific regions 

of the genome. One prominent histone variant is H2A.Z, 

which is an alternative form of H2A, and differs from its 

counterpart in that its N-terminal tail sequence and several 

key internal residues, which can effectively alter its ability 

to interact with H2B as well as the H3/H4 tetramer that 

eventually manifests in reduced nucleosome stability.35,36 

The deposition of H2A.Z is reportedly carried out by ATP-

dependent histone exchange reactions through SWR1,37 or 

by the aforementioned chaperone protein Nap1.38 Another 

well-studied histone variant is H3.3, and in spite of the fact 

that it only differs in four amino acids from its canonical 

form H3, H3.3 has its distinct deposition pattern where it is 

preferentially enriched in transcriptionally active chromatin 

and regulatory sites.39,40
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On the other hand, certain variants, such as macroH2A 

(mH2A), have the ability to repress gene transcription by 

remodeling the chromatin to impede RNAPII binding. The 

name mH2A is derived from the structural feature of this 

histone variant, which contains a large nonhistone region 

(NHR), known as the macro domain, on its N-terminus.41 As a 

consequence, the NHR of mH2A alters nucleosome structure 

and interferes with the transcription machinery.42

Furthermore, a significant category of mechanisms 

contributing to chromatin organization is posttranslational 

modifications (PTMs) on histone proteins. There has been 

extensive research conducted to compile and characterize 

existing histone modifications, depicting a close relation-

ship between histone PTMs and chromatin structure. Some 

of the most widely studied histone PTMs include acetyla-

tion, methylation, phosphorylation, ubiquitination, and 

sumoylation. They covalently modify the N-terminal and/

or the C-terminal histone tails, while affecting the globular 

domains at a lesser extent.43

These various forms of histone marks generate a code 

that can be interpreted by specialized proteins to regulate 

gene expression or to mediate DNA repair.44 Modifications 

that reflect in active transcription have been elucidated and 

include acetylation of H3 and H4, and di- or trimethylation 

of H3 at lysine position 4 (H3K4me2 or me3). In contrast, 

modifications that instigate inactivation of transcription 

include methylation at H3K9 and H3K27.19

In eukaryotes, individual chromosomes can occupy 

spatially defined territories in the interphase nucleus, and 

repositioning of these genomic regions has an impact on 

the regulation of gene expression. FISH analysis has shown 

that chromosome territories adjoin at their borders to create 

boundaries between chromatin domains. More recently, it 

is demonstrated that TADs are enclosed by sharp boundaries 
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Figure 1 Different chromatin remodeling regulates gene transcription.
Note: Various architectures of the chromatin, histone displacement, DNA looping, histone variants, histone modification, and chromosome territories, regulate gene 
transcription.
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enriched for the insulator-binding protein CTCF, as well as 

the heterochromatin mark H3K9me3.17 Since boundaries 

of these topological domains display properties of classical 

insulator and barrier features, it is therefore suggested that 

TADs may be linked to transcriptional control.

Concordantly, another study reported that the positions 

of TADs align with repressive epigenetic marks, as well as 

lamina-associated domains, and disrupting a TAD boundary 

can lead to the long-range deregulation in gene expression 

during X-chromosome inactivation.45 Therefore, the evidence 

is convincing that TADs indeed play a role in shaping tran-

scriptional landscapes by clearly defining which sequences 

belong to the same regulatory network.

Last, as DNA is packaged inside the nucleus, long-range 

chromatin interactions inevitably occur and – as a result – 

form loop structures, a majority of which take place between 

cis-regulatory elements and promoters. It is reported that the 

dynamic alterations of chromatin looping can either activate 

or suppress gene expression by facilitating the interactions 

between enhancers or silencers and their target genes.

One study revealed that only approximately 7% of loop-

ing is bridging its nearest gene, reflecting that this chromatin 

structure is not restrained by genomic proximity and is capable 

of engaging promoters with distal sites to form complex net-

works.46 At the same time, these long-range interactions are 

not inhibited by CTCF and cohesin occupancy,46 which argues 

against previous notions that CTCF’s binding to insulator 

sequences may prevent promoter-enhancer interactions.

Moreover, evidence suggests that the enhancer-promoter 

loop interactions are formed, in a cell type-specific manner, 

prior to the binding of transcription factors, indicating 

their critical role in laying the groundwork for transcrip-

tional control during lineage specification.47 Furthermore, 

in terms of thermodynamic properties of DNA looping, 

it is understood that this mechanism of bringing together 

multiple components into one functional unit serves to 

simultaneously increase specificity and affinity and reduce 

transcriptional noise.48

Role of chromatin  
conformation in cancer
Due to the crucial role chromatin structure has on determin-

ing gene transcription, it is intuitive that chromatin conforma-

tion could be manipulated during oncogenic transformation 

of cancerous cells. It has been demonstrated that under the 

employment of tumor cells, these chromatin organization 

machineries become deregulated, disrupting the 3D archi-

tecture and undermining the genomic integrity. One of the 

most recurring phenomena that is associated with cancer 

development is chromosomal translocations.49 In the past 

several decades, a copious number of translocation events 

have been identified to play pivotal roles in development 

of a wide range of hematological malignancies as well as 

solid tumors, which have in turn been utilized as valuable 

diagnostic and prognostic markers.

Aside from chromosomal translocations, a myriad of 

events have been implicated in cancer, most of which are 

deviations from the physiological occurrences of chromatin 

organization discussed previously. Here, we will catalog the 

most significant aberrations pertinent to chromatin topology 

that contribute to cancer development, with a particular 

emphasis on prostate cancer (Figure 2).

The Philadelphia chromosome is recognized as one the 

most prominent cancer-associated cytogenetic abnormality 

that was first reported by Nowell and Hungerford in 1960.50 It 

is a highly frequent oncogenic event found in more than 90% 

of chronic myelogenous leukemia. The translocation is char-

acterized by a reciprocal interchange between chromosome 9 

and chromosome 22, which inopportunely generates a BCR-

ABL tyrosine kinase gene fusion product.51 As a result of 

juxtaposing the breakpoint cluster region (BCR) promoter 

with the coding region of the ABL gene, the hyperactive BCR-

ABL fusion protein confers myeloproliferative properties 

and leads to leukemogenesis.52 Clinical successes obtained 

through pharmacological therapies directly inhibiting the 

activity of BCR-ABL (eg, imatinib mesylate) have provided 

a promising paradigm in which chromosomal organization 

could be a critical target for cancer development and, cer-

tainly, cancer treatment.

It was not until recently, however, that chromosomal trans-

locations have been identified in solid tumors. In 2005, Tomlins 

et al made the breakthrough discovery of the fusion of the 

TMPRSS2 and ERG genes in prostate cancer.53 According to 

their study, a striking proportion of 50% of prostate cancers 

were found to contain a merged product of the 5′ untranslated 

region of TMPRSS2 (21q22), an androgen-regulated gene, and 

the protein-coding sequences of ERG (21q22), an erythroblast 

transformation-specific (ETS) transcription factor (Figure 2). 

The TMPRSS2-ERG rearrangement has been confirmed to 

be present in 36%–78% of prostate cancers.54 In addition, 

other members of the ETS family, including ETV1 (7p21), 

ETV4 (17q21), and ETV5 (3q28), were also uncovered as 

fusion partners with TMPRSS2 in prostate cancer, but they 

were detected in lower frequency.55 Unlike the BCR-ABL 

translocation, the fusion between TMPRSS2 and ETS genes 

does not generate a chimeric protein, but instead it promotes 
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the overexpression of oncogenic factors directed by a corrupted 

promoter element. While solely TMPRSS2 has been identified 

as a fusion partner of ERG, other 5′ partners of ETS genes have 

also been observed. These include androgen-induced genes 

SLC45A3, KLK2, CANT1, and NDRG1, and an endogenous 

retroviral element HERV-K_22q11.23, which are functionally 

comparable to TMPRSS2, as well as androgen-repressed gene 

C15orf21.56–58

It was also reported that rearrangements in the rapidly 

accelerated fibrosarcoma (RAF) pathway also occur in 

advanced prostate cancer (SLC45A3-BRAF, ESRP1-RAF1), 

which can be targeted by RAF kinase inhibitors.59 Moreover, 

a recent study was able to identify a median of 90 rearrange-

ments in seven prostate cancer tumor samples.60 Examples 

of disrupted genes due to rearrangement include CADM2, 

which is a cell adhesion molecule, and phosphatase and tensin 

homolog (PTEN ), a well-established tumor suppressor, as 

well as a PTEN-interacting protein, MAGI2. These findings 

depict a convoluted network of genomic rearrangements and 

chromatin conformation, which synergistically confer dereg-

ulated gene expressions and contribute to tumorigenesis.

In addition to chromosomal translocations, modifications 

to histone could also place a huge impact on the 3D structure 

of chromatin and has been widely implicated in cancer. In 

prostate cancer, H3K4 methylation and H3K27 methylation 

are among the most extensively investigated histone PTMs; 

while the former is generally associated with activation of 

proto-oncogenes, the latter is associated with silencing of 

tumor suppressors. The repressive epigenetic PTM, H3K27 

trimethylation (H3K27me3), has been found to be signifi-

cantly enriched in promoters of numerous tumor suppressor 

genes (eg, ADRB2,61 SLIT2,62 DAB2IP,63,64 etc), in metastatic 

prostate cancer. Meanwhile, H3K9me1 and me2, generally 

accompanied by heterochromatin assembly,65 are also impli-

cated in prostate cancer. Demethylation of H3K9 has been 

reported to reflect in derepression of AR-regulated genes.66

AR KLK3

PRC2

M
LL

DNMT

CBP/p300

SLIT2

SNF5

SWI/S
NF

SChLAP1

H3K27me

H3K4me

ERGTMPRSS2

LSD1

HDAC

Acetylation

H3K9me

Figure 2 Chromatin organization aberrations in prostate cancer.
Note: Chromatin organizations are altered in prostate cancer through DNA looping, histone PTMs, ncRNAs, and chromosomal translocations, which differentially regulate 
gene expression.
Abbreviations: DNMT, DNA methyltransferase; PTMs, posttranslational modifications; RNA, ribonucleic acid; ncRNA, noncoding RNA; PRC2, polycomb repressive 
complex 2; HDAC, histone deacetylase; SWI/SNF, switch/sucrose nonfermentable; MLL, mixed-lineage leukemia; AR, androgen receptor; LSD1, lysine-specific demethylase 1.
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H3K4 mono- and dimethylation (H3K4me1, H3K4me2) 

have been thought of as markers for enhancer sites in 

directing the androgen receptor (AR) transcriptional 

program, by facilitating AR binding directly or indirectly 

through the recruitment of coactivators, such as FOXA1, 

GATA2, and MED1.67 Moreover, an endeavor combin-

ing high-resolution nucleosome positioning with histone 

marks mapping showed strong evidence that H3K4me2-

containing nucleosomes spaced 250–450 bp (base pair) 

apart can flank binding sites of AR prior to its ligand-

mediated activation, while the binding site is occluded by 

a well-positioned nucleosome. Following AR activation, 

nucleosomes with altered H3K4me2 marks become desta-

bilized at AR binding sites and are comparably more stable 

at the two flanking loci.68

In addition, the study revealed that the labile H2A.Z vari-

ant was more likely to be present in the central nucleosome 

relative to the flanking nucleosomes, which further contributes 

to reduced stability of the nucleosome occupied at the AR 

binding site. Also, it has been shown that androgen treatment 

can increase the level of H2A.Z and that the incorporation 

of H2A.Z in enhancer and proximal promoter sites of the 

AR-induced gene prostate-specific antigen (PSA; or KLK3) 

can poise the gene for activation by AR.69

Established and maintained by protein–protein interac-

tion between transcription factors bound at enhancers and at 

promoters,70 DNA looping and chromatin compartmentaliza-

tion are essential processes governing gene transcription; 

hence, they are a frequent target for disruption during cancer 

development. In the case of prostate cancer, AR-mediated 

chromatin looping has been a longtime research interest in 

the field, and extensive efforts have been devoted to elucidate 

the process of how AR signaling may lead to changes in 

chromatin conformation during prostate tumorigenesis. Stud-

ies using chromatin immunoprecipitation (ChIP) techniques 

showed a striking feature of AR genome-wide binding pattern 

that, approximately 86%–95% of AR localization occurs in 

nonpromoter regions.67,71

This evidence strongly indicates that AR, as a tran-

scription factor, is able to direct its specific transcriptional 

program from a distance – sometimes, even hundreds of 

kilobases –away from its target gene. Therefore, it is plau-

sible to presume that a looping model is the mechanism by 

which AR can regulate its targets from afar. In fact, this 

model has been proven to be true through 3C-based assays, 

which demonstrated that distal AR enhancer regions form 

long-range physical contacts with transcription start sites of 

AR-regulated genes, such as PSA and TMPRSS2,72,73 as well 

as UBE2C, which is a critical enzyme involved in promoting 

growth of castration-resistant prostate cancer.67,74

Oncogene-mediated alterations  
in chromatin conformation
Oncogenes have long been implicated in cancer through 

chromatin alterations, and one route they take is histone 

modification. It was discovered in 2002 that EZH2, the 

enzymatic component of the polycomb repressive complex 2 

(PRC2), was among the most upregulated genes in prostate 

cancer.75 The tumorigenic role of EZH2 has been well-

documented, and it involves epigenetic silencing of tumor 

suppressors and developmental regulators to maintain a 

dedifferentiated state for cancer cells.76 EZH2 catalyzes trim-

ethylation of H3K27, creating repressive chromatin structures 

over long genomic distances.77,78 It also recruits several other 

players, such as PRC1, DNA methyltransferase (DNMT), and 

histone deacetylase (HDAC) (Figure 2), which are concor-

dantly upregulated in prostate cancer.79–81 It has been revealed 

that 50% of hypermethylated genes in prostate cancer display 

preestablished EZH2-mediated H3K27me3 marks, which then 

leads to de novo DNA methylation.82 Therefore, EZH2 acts 

in concert with additional epigenetic enzymes to implement 

chromatin compaction in a cooperative manner.

Furthermore, methylation at H3K9 has also shown to 

be deregulated in prostate cancer, through perturbed activi-

ties of lysine-specific demethylase 1 (LSD1) (Figure 2).66 

However, the functions of LSD1 in prostate cancer appear 

to multifaceted, since it is capable to demethylate not only 

H3K9, but also H3K4. Since H3K4me1 and me2 are essen-

tial marks on AR enhancer sites, erasing these modifica-

tions consequently result in gene repression.83 Moreover, 

an exome-sequencing study recently revealed that several 

members of the mixed-lineage leukemia (MLL) complex 

(MLL, MLL2, and ASH2L), which acts as H3K4-specific 

methyltransferase, can physically interact with AR and are 

significantly mutated in prostate cancer84 (Figure 2). From a 

translational standpoint, pharmacological targeting of these 

histone-modifying enzymes has been envisaged and shown 

clinical triumph.85

While histone modifications are carried out by specific 

enzymes, the molecular process underlying the formation 

of chromatin looping may be effected through a network of 

coregulators (eg, MED12, SRC-1, p300/CBP, BRG1, etc) that 

are collectively responsible for sustaining the loop structure.1 

Additionally, the GATA, OCT, PAX, NKX, and LEF fam-

ily proteins have been observed to have sequence motifs 

near nuclear hormone receptors, including AR and estrogen 
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receptor (ER).86 Disruption of chromosomal structures, there-

fore, can significantly impair proper gene transcription. A cen-

tral protein in AR/ER signaling, the pioneer factor forkhead 

box A1 (FOXA1), has been regarded as a key mediator of AR/

ER transcription regulation through chromatin remodeling 

and recruitment of AR/ER to target sites.87

The fact that FOXA1 is overexpressed and mutated in 

hormone-dependent cancers, prostate cancer, and breast can-

cer, is in concordance with its predominant role in directing 

AR/ER signaling to drive cancer development.88,89 In addi-

tion, knowledge about the multiprotein Mediator complex, 

which is well-known for its role in bridging enhancer and 

promoter into close proximity,90 has also contributed to our 

understanding about chromosome looping involving AR, 

wherein the silencing of a Mediator subunit MED1 can 

significantly impair AR transactivation.91

Moreover, in the past decade, the AR signaling path-

way has also been shown to play essential roles in altering 

chromatin conformation, primarily due to its involvement 

in a majority of chromosomal translocations identified in 

prostate cancer. Through FISH analyses, it was discovered 

that androgen stimulation can induce the spatial proximity 

between TMPRSS2 and ERG, thus highly augmenting the 

probability of forming a fusion product when under the 

stress of DNA double-strand breaks.92 Further evidence 

demonstrated that AR binding at specific intronic loci near 

break sites in TMPRSS2, ERG, and ETV1 could result in rapid 

formation of intra- and interchromosomal interactions that 

in turn generate enough spatial proximity to predispose the 

genes for translocation.

In addition, the ensuing modifications of chromatin archi-

tecture sensitize these regions to genotoxic stress, making the 

translocation loci particularly susceptible to double-stranded 

breaks. The liganded AR, upon binding to DNA, can recruit 

enzymes – including activation-induced cytidine deaminase 

(AID) and LINE-1 repeat-encoded ORF2 endonuclease, as 

well as topoisomerase II beta (TOP2B) to create double-

stranded breaks at break sites, which then become ligated 

through nonhomologous end joining.93,94

Aside from proteins playing an oncogenic function, there 

has been emerging evidence that long noncoding RNAs 

(lncRNAs; .200 nt)95 may also adversely affect chromatin 

structures. For instance, it is recently reported that HOTAIR, a 

2.2 kb lncRNA residing in the HOXC locus, serves as a crucial 

interface between DNA and the chromatin-modifying com-

plex PRC2. As a result, in breast cancer, an overexpression of 

HOTAIR is causally linked to alterations in the chromatin state 

reimposed by PRC2 occupancy, consequently permitting a 

gene expression program that is conducive to cell motility and 

invasion by silencing key metastasis suppressor genes.96

Another prominent member of the lncRNAs that is 

recently implicated in cancer is SChLAP1, which was identi-

fied as an overexpressed gene in prostate tumor samples.97 

Similar to HOTAIR, SChLAP1, in context of prostate cancer, 

can promote cancer invasion and metastasis. The molecular 

mechanisms underlying SChLAP1’s oncogenic function were 

also connected to a chromatin modifying complex, namely 

SWI/SNF (Figure 2). Through antagonizing the genomic 

binding of SWI/SNF, SChLAP1 significantly impairs the 

transcriptional program directed by SWI/SNF that, as alluded 

to previously, is a complex that utilizes ATP to mobilize 

nucleosomes and remodel chromatin.97

Numerous links have been established between SWI/

SNF and carcinogenesis;98 however, the latest discovery of 

SChLAP1, in addition to HOTAIR, sheds new light on the 

mechanistic basis of how deregulation of lncRNAs may result 

in defective chromatin organization, which ultimately con-

tributes to oncogenesis. Furthermore, a recent study reports 

that two lncRNAs overexpressed in prostate cancer, PCGEM1 

and PRNCR1 (PCAT8), can bind with AR and facilitate the 

enhancer-promoter loop formation required for AR transcrip-

tional regulation. It was demonstrated that these lncRNAs 

can promote AR activation in a hormone-independent 

environment, providing novel mechanistic insight into the 

pathogenesis of castration-resistant prostate cancer.99

Therefore, taken together, these lines of encouraging 

evidence keep propelling scientists forward to continuously 

uncover novel mechanisms associated with deregulation of 

chromosomal organization – to provide beneficial insight into 

strategies for diagnosing as well as treating cancer.

ERG overexpression  
and chromatin conformation
ERG is overexpressed in prostate cancer due to AR-mediated 

changes in chromosome rearrangement. As a consequence, 

ERG overexpression, in turn, can also lead to chromatin 

structure alterations, which further contribute to prostate 

cancer development in a feed-forward vicious cycle. The 

function of ERG involves physical interaction with a number 

of cofactors as well as transcription factors, including AR – 

ultimately leading to a transcriptional program favoring the 

dedifferentiation, invasion, and neoplastic transformation of 

prostate epithelial cells.100

To characterize the molecular crosstalk between ERG and 

AR, studies showed that ERG can effectively attenuate AR 

signaling by the direct transcriptional repression of AR, and 
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additionally ERG occupancy at AR target genes correlates 

with negative regulation, which is potentiated by ERG-

induced EZH2 activity.76,101 It is becoming increasingly clear 

that ERG complexes with other molecules to coordinately 

organize chromatin structure. Several interacting partners 

of ERG have been identified in recent years, including 

EZH271,102 and HDAC1,103 which – along with ERG – form 

a repressor coregulatory network that is important for medi-

ating androgen response in prostate cancer.101 This notion 

is further supported by the fact that ERG overexpression 

also dictates changes in the genomewide DNA methyla-

tion landscape,104 reflecting a complex regulatory program 

directed by ERG to impose structural alterations in the overall 

3D chromatin topology.

Employing a combination of advanced technologies, 

including Hi-C, ChIP-seq, and RNA-seq, and integrative 

bioinformatic analyses, Rickman et al100,105 showed that an 

overexpression of ERG could induce dramatic changes in 

3D chromatin topology, corresponding to the changes in 

the expression of a group of genes implicated in aggressive 

prostate cancer. Since ERG binding strongly associated 

with hotspots of differential chromatin interactions, an 

upregulation of ERG when fused to TMPRSS2 upon andro-

gen stimulation consequently leads to altered regulation of 

transcription events.

Among these ERG-regulated genes are genes associ-

ated with invasion and migration (eg, FYN, PLAU, MMP3, 

MMP9, LEF1, and miR200c) and urogenital development 

(eg, HOXA, B, C gene cluster members, PYGO1, and 

NKX3.1).100,106–108

Concluding remarks and 
therapeutic implications
Over the past several decades, we have witnessed a plethora 

of pioneering studies that established the essential role of 

chromatin conformation during normal biological processes 

and oncogenic cellular transformations.

Through investigations of molecular mechanisms gov-

erning the alterations in chromatin architecture, researchers 

have been able to strategically design therapeutic agents 

which, by abolishing the enzymatic activity of certain 

chromatin-modifying proteins, to achieve the correct 3D 

chromatin topology. Several drugs were recently approved 

by the FDA due to their improved efficacy in prolonging 

survival and reduced toxicity compared to conventional 

chemotherapy. Some prominent examples include DNA 

methylation inhibitor azacitidine (Vidaza®) and decitabine 

(Dacogen®) and HDAC inhibitors vorinostat (Zolinza®) 

and romidepsin (Istodax®), which were FDA-approved 

successively in the last 10 years, for the treatment of 

myelodysplastic syndrome and cutaneous T-cell lymphoma, 

respectively.109

Currently, clinical trials are being conducted to examine 

the pharmacological efficacy of DNMT and HDAC inhibi-

tors in prostate cancer, as adjuvant therapies to complement 

androgen deprivation.110 In addition, a wide range of chemical 

inhibitors targeting enzymes, such as EZH2 (eg, DZNep111 

and GSK126112) and LSD1 (eg, TCP113 and ORY-100185), 

have demonstrated promising potential in various in vitro 

and in vivo studies for multiple cancer types.85

These molecules hold hopeful prospective for treatment 

of prostate cancer, in which oncogenic contributors to chro-

mosomal abnormalities are abundant. It is anticipated that 

future pharmaceutical therapies aimed to restore the physi-

ological activity level of key chromatin modulators would 

provide desirable curative effects.
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