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Abstract: Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic 

syndrome. It affects 20%–30% of the US population, and it is increasing worldwide. Recently, the 

role of lipid-rich maternal gestational nutrition in spurring the development of NAFLD among 

offspring has been indicated. Fetal predisposition to NAFLD involves numerous physiological 

reroutings that are initiated by increased delivery of nonesterified fatty acids to the fetal liver. 

Hampered β-oxidation, uncontrolled oxidative stress, increased triacylglycerol synthesis, and 

the endoplasmic reticulum unfolded protein response are all implicated in sculpting a hepatic 

phenotype with a propensity to develop NAFLD in the postnatal state. This review suggests a 

mechanism that integrates outcomes reported by a variety of studies conducted in an analysis 

of fetal hepatic metabolic capacity amid the maternal consumption of a high-fat diet. Potential 

preventive measures and therapies for use both as part of prenatal nutrition and for those at risk 

for the development of NAFLD are also discussed.
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Introduction
Over the last few decades, metabolic syndrome has become a pervasive epidemic in the 

Western hemisphere, and perhaps surprisingly, this growth is not restricted to developed 

countries.1 Metabolic syndrome consists of a collection of risk factors for cardiovas-

cular disease, encompassing such conditions as obesity, diabetes, and hypertension.1 

Epidemiologists are now witnessing a worldwide spread of metabolic syndrome due 

to the industrialization of developing countries in conjunction with the globalization 

of Western dietary preferences.1 In the US, the National Health and Nutrition Exami-

nation Survey compiled during the years of 2003–2006 showed that 34% of adults 

over the age of 20 years met the criteria for metabolic syndrome, which is based on 

the clinical evaluation of abdominal obesity, plasma triglycerides, blood pressure, and 

fasting blood glucose levels.2 Recently, nonalcoholic fatty liver disease (NAFLD) has 

been adopted as the hepatic manifestation of metabolic syndrome,3 and it is clinically 

defined by triacylglycerol (TAG) storage exceeding 5% of the total liver mass.4

NAFLD affects an estimated 20%–30% of the US population, and 20% of those 

affected will eventually develop nonalcoholic steatohepatitis (NASH). Once an indi-

vidual has NASH, fibrosis is visible in the liver tissue, and the continued presence of 

stressors may elicit the later emergence of cirrhosis or hepatocellular carcinoma.3,5 

Although the etiology of NAFLD is poorly understood, a “two-hit hypothesis” was 

proposed in 1998 by Day and James6 to describe the development of NAFLD and its 

progression to NASH. According to this hypothesis, the first “hit” consists of hepatic 
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insulin resistance or impaired β-oxidation of fatty acids, both 

of which contribute to hepatic lipid accumulation. The second 

“hit” consists of inflammation or oxidative stress, which may 

aggravate the existing steatosis and drive progression into 

NASH.6,7 Recently, it has been proposed that the first “hit” 

can occur in utero due to a maternal diet that is high in fat. 

Indeed, the offspring of such a condition have been shown to 

have a three-fold increase in hepatic TAG shortly after birth.4,8 

This predisposes the offspring to the adult development of 

NAFLD, as only a second “hit” would be needed to spur the 

development of steatohepatitis.

The current literature regarding the contribution of 

prenatal nutrition to the development of NAFLD reveals 

several distinct phenotypic alterations. This review seeks 

to connect these seemingly disconnected outcomes into a 

plausible sequence of events. The underlying questions that 

this review addresses are: 1) in which ways does a lipid-rich 

nutritional environment furnished by the mother interact with 

the biochemical changes occurring within a developing fetus; 

and 2) how may these interactions result in changes in gene 

expression that contribute to an adult phenotype amenable 

to TAG accumulation in the liver? As NAFLD continues to 

extend its reach worldwide, seeking answers to these ques-

tions is essential.

Physiological background
In maternal circulation, plasma concentrations of nones-

terified fatty acids (NEFAs) bound to albumin and TAG 

contained within chylomicrons gradually elevate throughout 

gestation.9 Placental uptake of NEFAs occurs either by dif-

fusion or through a variety of fatty acid transport proteins. 

For chylomicrons, the placenta expresses lipoprotein lipase, 

which cleaves the contained TAG molecules into three NEFAs 

and a glycerol molecule.9 The NEFAs are then free to diffuse 

or be transported via a fatty acid transport protein into fetal 

circulation.

Upon reaching the developing liver, NEFAs diffuse into 

hepatocytes and they are rapidly converted into fatty acyl-

coenzyme A (CoA).10 Primarily, fatty acyl-CoAs enter the 

mitochondria for β-oxidation. This is mediated by the rate-

limiting enzyme, carnitine palmitoyltransferase 1 (CPT1), 

which exchanges the bound CoA for carnitine – yielding 

acyl-carnitine – which can then pass through the outer 

mitochondrial membrane.11 Remaining NEFAs that do not 

undergo β-oxidation will be stored by esterification at the 

endoplasmic reticulum (ER) as TAG.12 TAG may be exported 

within very low-density lipoproteins (VLDL), or TAG may 

be stored within the hepatocyte cytosol in lipid droplets.13,14 

A lipid droplet is an organelle that functions to store TAG 

within a phospholipid membrane comprised chiefly of 

phosphatidylcholine (PC). Since NEFA accumulation is 

toxic to hepatocytes,15 VLDL secretion and lipid droplet 

formation can be regarded as protective measures against 

hepatotoxicity.16

If the liver as a whole attains more fatty acids than it 

eliminates via β-oxidation or VLDL secretion, TAG accu-

mulates in lipid droplets,10 and this represents the defining 

characteristic of NAFLD. In a model of lipid-rich prenatal 

nutrition, the generalized pathway followed by NEFAs, as 

described above, is perturbed in a manner that affects the 

offspring’s physiology into adulthood, and induces a lifelong 

predisposition for NAFLD.

Methods
Many of the studies reviewed here used mice as their model 

organism and the researchers apportioned a maternal pre-

natal diet to one group of dams with a higher composition 

of dietary lipids than that received by the control group. 

Although not uniform amongst all studies, control groups 

were fed a commercial “standard chow” diet containing 

macronutrients distributed aptly for the nutritional needs of 

mice. Increased consumption of dietary lipids is a frequent 

nutritional misallocation in the common Western diet; hence, 

what can be learned from these studies has the potential to 

be readily implemented and appreciated.

However, a significant and inherent limitation of this 

research is that increasing the quantity of one macronutrient 

requires decreasing that of another. If the total percentage 

of lipids increases, then the percentage of other nutrients 

falls relative to the total - it is difficult to know whether the 

experimental results can be attributed to an increase of one or 

a decrease in another, or the combination. Additionally, it is 

unlikely that an average “unbalanced” Western diet errs only 

in its total composition of lipids. Although the implications 

of a maternal high-fat (HF) diet explored in this review may 

apply to those mothers who, for example, additionally have a 

vitamin deficiency, whether there exists synergism or antago-

nism between certain dietary imbalances has yet to be explored 

thoroughly, especially in the context of prenatal nutrition.

Disruptions resulting  
from elevated β-oxidation
In a study by Bruce et al,17 the hepatic metabolic capacities of 

four groups of mice that received either a HF or control (C) 

prenatal and postnatal diet were analyzed. The groups were 

designated as C/C, C/HF, HF/C, and HF/HF, in reference to 
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their prenatal/postnatal nutrition.17 This study revealed that 

levels of CPT1, which is the enzyme that mediates the transfer 

of fatty acyl-CoA through the outer mitochondrial membrane 

in the initiation of β-oxidation,11 did not differ among HF/C, 

C/HF, and HF/HF mice, although all three of these groups 

had marginally elevated CPT1 compared to the C/C group.17 

This suggests that in the presence of increased cytosolic fatty 

acids, there is an upper limit to the amount of CPT1 that can 

be produced to accommodate the influx; CPT1 is the rate-

limiting enzyme in this process.11

The increase in NEFAs in fetal circulation, which is a 

result of the quantity of maternal dietary lipids, was met 

with a corresponding slight escalation in fetal β-oxidation, as 

described by Byrne et al.18 Strikingly, this study determined 

that at 15 weeks of age, the HF/C and HF/HF groups exhibited 

a 3.7- and 3.2-fold respective decrease in electron transport 

chain (ETC) complex I activity compared to the C/C group, 

and the C/HF group did not vary significantly from the C/C 

group in this regard.18

Complex I of the ETC is notorious for the leakage of 

reactive oxygen species (ROS) (Figure 1).19 Byrne et  al18 

hypothesize that increased ROS leakage from complex I, which 

directly results from the increased rates of fetal β-oxidation, 

causes mitochondrial deoxyribonucleic acid (mtDNA) dam-

age. This could potentially reduce the postnatal mitochondrial 

capacity for β-oxidation, as mtDNA lacks the shielding histone 

structure that nuclear deoxyribonucleic acid (DNA) is afford-

ed.18 Albeit reasonable, this explanation neglects to consider 

the C/HF group’s unaffected complex I activity – if higher 

β-oxidation is the initiating event that results in downstream 

damage, as the authors assert, it remains unexplained why the 

C/HF group did not display decreased ETC complex I activity 

comparable to that of the HF/C and HF/HF groups.

Cytotoxic damage produced by sufficient ROS is often 

referred to as oxidative stress. In several models of oxidative 

stress, it has been demonstrated that a cell may selectively 

shunt metabolites from the methionine cycle (Figure 2), down 

the transsulfuration pathway at the expense of s-adenosyl-

methionine in order to increase the synthesis of glutathione 

(GSH), a scavenger of ROS, in an effort to combat oxidative 

stress.20,21 Independently, Bravo et  al22 showed that in rats 

fed a HF diet, expression of the enzymes cystathionine 

β-synthase (CBS) and cystathionine γ-lyase, which par-

ticipate in the transsulfuration pathway, were significantly 

downregulated.22 CBS is a necessary enzyme that is involved 

in the redirection of homocysteine from the methionine cycle 

toward GSH synthesis, which occurs in the first step of the 

transsulfuration pathway.21 In conjunction with pressure to 

generate GSH to neutralize ROS, homocysteine levels are 

elevated (Figure 2).

Increased homocysteine levels lead to the downregulation 

of many antioxidant enzymes,23 including GSH peroxidase 1, 

by directly interfering with translation.24 In 2011, Zhang 

et al25 determined that offspring of mice fed a HF diet dur-

ing gestation had decreased expression of the antioxidant 

enzymes GSH peroxidase 1, superoxide dismutase 1, and 

paraoxonases 1, 2, and 3. Although this group did not sug-

gest a reason for this downregulation, they did expound 

upon the consequences of the resultant lowered threshold 

for oxidative stress in the absence of adequate endogenous 

defenses. It is possible that mild hyperhomocysteinemia, 

due to the downregulation of CBS and the diversion of 

methionine cycle metabolites down the transsulfuration 

pathway, is responsible for the downregulation of antioxidant 

enzymes, as noted by Zhang et al.25 In the study by Byrne18 

discussed earlier, the mice fed a C diet in utero and a HF 

diet postnatally (C/HF) did not display altered ETC complex 

I activity, and it is possible that this is because their levels 

of ROS-neutralizing antioxidant enzymes were not down-

regulated during development and, consequently, mtDNA 

damage did not occur.

Disruptions resulting  
from triacylglycerol storage
In hepatocytes, NEFAs that are not accommodated by CPT1 

will be esterified to form TAG, which may be packaged into 

a VLDL particle and exported, or they may be stored within 

the cytosol of the hepatocyte in a lipid droplet.13,14 The stor-

age of TAG within a hepatocyte may be precipitated by four 

independent factors: 1) increased NEFAs in hepatocytes due 

to increased delivery of NEFAs or de novo lipogenesis; 2) 

increased rates of TAG synthesis; 3) reduced levels of VLDL 

export; or 4) decreased capacity for β-oxidation.11 Given that 

TAG accumulation exceeding 5% of the total liver weight is 

the defining criterion for the presence of NAFLD set forth by 

the American Association for the Study of Liver Diseases,4 

presented here is a potential mechanism that connects excess 

hepatocyte cytosolic NEFAs with the derailing of lipid syn-

thesis regulation by the ER, resulting in the accumulation of 

TAG within lipid droplets.

The ER produces acyl-CoA synthetase, which activates 

NEFAs in the cytosol by converting NEFAs into fatty acyl-

CoAs to allow for entrance into the ER, where the fatty 

acyl-CoAs will serve as substrates for lipid synthesis.12 

Furthermore, due to the increased delivery of cytoplasmic 

NEFAs that results from a maternal lipid-rich diet, some of 
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the TAG will be stored in lipid droplets adjacent to the ER.14 

For reasons incompletely understood, sustained increases in 

cytosolic NEFA concentration – and especially increases in 

saturated NEFAs – beget ER stress and, subsequently, the 

induction of the unfolded protein response (UPR) in both 

mice and in the yeast, Saccharomyces cerevisiae.26 The exist-

ing discussion of NEFA-induced ER stress in the literature 

often elects to cover the downstream effects of ER stress, 

rather than investigate the mechanism responsible for its 

appearance; here, both will be addressed.

Triacylglycerol Lipolysis

Synthesis

Fatty acid synthesis
β-oxidation

Phospholipids

Fatty acyl-CoA

Acetyl-CoA

TCA cycle

NADH

ROS

ROS

ROS

ROS

FADH2

Electron
transport chain

ATP synthesis

TAG synthesis

Figure 1 Generalized pathway of lipid metabolism. 
Notes: Cytoplasmic nonesterified fatty acids are rapidly converted to fatty acyl-CoA, which may proceed to undergo β-oxidation or serve as a substrate for either TAG 
or phospholipid synthesis. Following β-oxidation, acetyl-CoA enters the tricarboxylic acid cycle; the produced NADH and FADH2 participate in the ETC. Complex I of the 
ETC leaks injurious ROS. 
Abbreviations: TAG, triacylglycerol; CoA, coenzyme A; TCA, tricarboxylic acid; NADH, nicotinamide adenine dinucleotide; FADH2, flavin adenine dinucleotide; ROS, 
reactive oxygen species; ATP, adenosine triphosphatase; ETC, electron transport chain.
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When TAG is synthesized for storage in a lipid droplet, 

this presents to the hepatocyte the additional challenge of 

producing PC for the lipid droplet membrane.27 While the 

ER membrane contains a specific ratio of PC and phosphati-

dylethanolamine (PE), the preferential phospholipid coat 

for lipid droplets is PC; due to its properties as a surfactant, 

PC maintains the integrity and prevents the coalescence 

of adjacent lipid droplets. When PC is replaced with PE, 

neighboring lipid droplets rapidly merge.28 Fu et al27 assert 

that in order to produce PC, the genes Pemt and Pcyt1a are 

activated. Pemt is a s-adenosylmethionine-dependent meth-

yltransferase that converts existing PE into PC by way of 

sequential methylation, and it is only significantly expressed 

in the liver.27 Pcyt1a encodes the more ubiquitous synthesizer 

of PC, CTP:phosphocholine cytidylyltransferase.29

Membrane composition is a determinant of many bio-

physical properties of a cell or an organelle,30 and upon 

producing PC for lipid droplets, the specific PC/PE ratio in 

the ER membrane is threatened and may rise.15,28 Although 

the mechanism is incompletely understood, an elevated PC/

PE ratio in the ER membrane causes spontaneous dysfunction 

of sarco/ER calcium adenosine triphosphatase (SERCA), and 

returning the ratio to its initial state improves SERCA func-

tion.31 SERCA maintains a significant calcium gradient; the 

concentration of calcium within the ER is nearly 10,000 times 

greater than in the cytoplasm.15 Proper SERCA function is 

crucial not only for maintaining low cytosolic calcium for 

the purpose of signaling events that may include a controlled 

release of calcium, but it is also important because many of 

the chaperone proteins in the ER lumen – such as binding 

immunoglobulin protein (also known as GRP78), calreticulin, 

and calnexin – are calcium-dependent.32,33 Impaired SERCA 

function thus impedes the ability of calcium-dependent chap-

erones to properly fold proteins.34,35 Additionally, the increase 

in cytosolic calcium concentration further aggravates mito-

chondria and contributes to additional oxidative stress.32

The accumulation of unfolded or misfolded proteins in the 

ER lumen defines ER stress and activates the UPR, a series 

of intracellular signaling events that function to restore ER 

homeostasis.36 These events culminate in reducing the ability 

of proteins to enter the ER for posttranslational modifications, 

upregulation of chaperone proteins and, if homeostasis can-

not be restored, apoptosis.15 ER stress and the UPR have two 

implications that directly contribute to the predisposition of 

offspring to NAFLD:

1.	 Upon induction of the UPR, activating transcription factor-6 

(ATF6) – one of the proteins that participates in UPR intra-

cellular signal transduction – is activated by intramembrane 

proteolysis. ATF6 shares its proteolytic machinery with 

sterol response element binding protein 1c (SREBP-1c),36 

so upon cleavage of ATF6, SREBP-1c is also cleaved and 

is able to translocate to the nucleus.37 SREBP-1c is a tran-

scriptional activator for the lipogenic proteins, acetyl-CoA 

carboxylase (ACC) and glucokinase.10

2.	 ER stress also activates the c-Jun N-terminus kinase (JNK) 

pathway, which leads to the phosphorylation of certain ser-

ine residues in insulin receptor substrate-1 (IRS-1). Given 

that the docking of IRS-1, the subsequent tyrosine phospho-

rylation, and the release of IRS-1 is a necessary occurrence 

in successful insulin signaling, serine phosphorylation of 

IRS-1 blocks signal transduction and contributes to hepatic 

insulin resistance.38,39 Hepatic insulin resistance has been 

independently demonstrated to overactivate SREBP-1c.40

SREBP-1c activates the transcription of ACC and 

glucokinase, which both contribute to postnatal fatty 

acid synthesis.10,37,40 However, the presence of both ACC 

Methionine

s-adenosylmethionine

s-adenosylhomocysteine

Adenosine

Homocysteine

Serine

Cystathionine

CystathionaseA-ketobutyrate

Cysteine

Glycine

Glutathione

Glutathione synthetase

Glutamine γ-glutamylcysteine ligase

γ-glutamylcysteine

Cystathionine β-synthase

Figure 2 The methionine cycle and transsulfuration pathway.
Notes: Glutathione synthesis begins with the conversion of homocysteine into 
cystathionine, which is dependent on the presence of both serine and cystathionine 
β-synthase. As the expression of cystathionine β-synthase is downregulated in 
response to a high-fat diet, unconverted homocysteine may accumulate. Adapted 
from Free Radical Biology and Medicine, 43(7), Hitchler MJ, Domann FE, An 
epigenetic perspective on the free radical theory of development, 1023–1036, 
Copyright 2007, with permission from Elsevier.20
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and glucokinase are complicated in a HF intrauterine 

environment. ACC converts acetyl-CoA into malonyl-CoA 

which, in addition to playing a key role in de novo lipogenesis, 

is a potent inhibitor of CPT1 and thus decreases the rate of 

β-oxidation (Figure 3).10 Additionally, it has been shown that 

the fetal liver is more sensitive than the liver of a newborn to 

the inhibitory effects of malonyl-CoA.9 In fact, in a maternal 

HF diet experiment performed by Ashino et al,4 82-day-old 

offspring of dams who consumed a diet deriving 45% of its 

caloric value from nondescript fats had higher levels of acti-

vated ACC than did offspring of mice fed a control diet, which 

indicates that the elevation of ACC persists in the postnatal 

state. Since Nagle et  al11 included decreased β-oxidation 

as one of the four factors that directly contributes to TAG 

accumulation in the liver, it is probable that malonyl-CoA 

contributes to the predisposition of offspring to NAFLD.

Glucokinase participates in the first step of fatty acid 

synthesis by phosphorylating glucose, resulting in glucose-

6-phosphate.41 Trophoblasts ordinarily express numerous 

glucose transporters from maternal to fetal circulation, such 

that glucose is readily available for the fetus.9 Additionally, it 

has been demonstrated in a rodent model that the placentas of 

mothers who consume a HF diet express a five-fold increase 

in glucose transporter-1, which facilitates the diffusion of 

glucose into the fetal circulation.42 The increased expression of 

glucokinase in conjunction with an elevated influx of glucose 

may additionally contribute to de novo lipogenesis.

As NEFAs are produced by the de novo lipogenesis, in 

which both malonyl-CoA and glucokinase participate, and 

since ER stress was initiated with excessive NEFAs entering the 

ER for lipid synthesis, this process can be perceived as cyclic. 

Certainly, the NEFAs produced by de novo lipogenesis could 

Synthesis of PC
for lipid droplets

NEFA delivery to 
fetal hepatic ER

Fetal
downregulation

of CBS

Homocysteine
levels elevate

Shunting of
metabolites

toward transsulfination
pathway to

produce GSH Downregulation
of antioxidant

enzymes

Oxidative stress

Increased
production of

ROS

Fetal hepatic
β-oxidation of
fatty acyl-CoA

Malonyl-CoA and
glucokinase drive

fatty acid
synthesis

SREBP-1c
cleaved, JNK

activation

ER stress,
induction of

UPR

Deficient
calcium
retention

SERCA
dysfunction

ER PC:PE ratio
increases

Maternal high-fat
gestational diet

Figure 3 Sequence of physiological changes resulting from a maternal lipid-rich diet. 
Notes: The left cycle demonstrates how NEFA activation and packaging by the ER results in ER stress, which then spurs the activation of fatty acid synthesis – as part of 
de novo lipogenesis – and synthesized fatty acids may be taken up again by the ER for TAG synthesis. Cytosolic calcium agitates mitochondria and contributes to additional 
oxidative stress, in addition to the stress that results from β-oxidation, visible on the right.32

Abbreviations: PC, phosphatidylcholine; CBS, cystathionine β-synthase; ER, endoplasmic reticulum; PE, phosphatidylethanolamine; NEFA, nonesterified fatty acid; 
SERCA, sarco/endoplasmic reticulum calcium adenosine triphosphatase; GSH, glutathione; UPR, unfolded protein response; CoA, coenzyme A; SREBP-1c, sterol regulatory 
element-binding protein 1c; JNK, Janus kinase; ROS, reactive oxygen species; TAG, triacylglycerol.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Hepatic Medicine: Evidence and Research 2014:6 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

21

Lipid-rich diet and NAFLD

instead undergo β-oxidation, but as their synthesis requires 

nicotinamide adenine dinucleotide phosphate,9 this would 

be more energetically expensive than to reserve β-oxidation 

for exogenous, maternally-derived NEFAs. Additionally, the 

inhibition of β-oxidation by malonyl-CoA, and the potential 

mtDNA damage caused by rampant ROS, both encourage the 

continuation of NEFAs in the cycle.

Management of NAFLD: prenatal 
and postnatal, present and future
Given the multifaceted nature of TAG accumulation borne 

in utero, it may seem likely that many opportunities exist for 

therapeutic interjection. Presently, omega-3 polyunsaturated 

fatty acids (n-3 PUFAs) and genistein have evidence to support 

their intake as part of preventative maternal prenatal nutrition. 

Novak et al43 performed a study whereby two groups of dams 

were fed the same total amount of dietary fat, but the composi-

tion of dietary fats differed between the groups. Each received 

different fats but both had the same total amount of dietary fat. 

On postnatal day 3, the offspring of the group that received 

adequate n-3 PUFAs displayed higher levels of proteins that 

were integral to mitochondrial β-oxidation, including CPT1, 

and they downregulated genes associated with fatty acid syn-

thesis, compared to the group that received inadequate n-3 

PUFAs.43 It appears that supplementation of n-3 PUFAs as part 

of proper prenatal nutrition, which is reflective of this finding, 

may be a possible preventative route for NAFLD. However, in 

conflict with this proposition is evidence proposed by Dennery 

in 2010,44 who claimed that maternal PUFA supplementation 

causes oocyte mitochondria to increase their ROS production, 

which leads to impaired embryonic development. In adults with 

NAFLD, supplementation with docosahexaenoic acid, an n-3 

PUFA, has been shown to reduce the rates of de novo lipogen-

esis via the negative regulation of SREBP-1c transcription.45 

Perhaps a conciliatory solution lies in the timing of n-3 PUFA 

supplementation; questions with such therapeutic potential 

warrant additional investigation.

Genistein, a soy isoflavone found in soybeans, has received 

more consistent favorable literature reviews than n-3 PUFAs. 

When provided concurrently with a maternal HF diet and 

comprising 0.2% (by weight) of total maternal nutrition, the 

offspring displayed significantly less hepatic TAG accumula-

tion and elevated levels of GSH when compared to offspring 

that solely received a maternal HF diet.46 As GSH produc-

tion is regulated in response to ROS levels, it is possible that 

genistein supplementation ameliorated these defenses and 

prevented the downstream hepatotoxic effects of uncontrolled 

ROS. Additionally, in an adult HF feeding study conducted by 

Ji et al,47 genistein supplementation embodied the qualities of 

an anti-inflammatory compound and appreciably decreased 

the serum levels of the cytokines, tumor necrosis factor-alpha 

and interleukin 6. As inflammation provides the “second hit” 

that drives the transition from NAFLD into NASH, the anti-

inflammatory effects of genistein may prevent or attenuate 

the development of NASH. Ji et al47 also noted that genistein 

is a tyrosine kinase inhibitor, and they implicated this char-

acteristic as the cause of the marked inhibition of the JNK 

pathway observed in response to genistein supplementation. 

Activation of the JNK pathway is implicated in the develop-

ment of hepatic insulin resistance and subsequent overactiva-

tion of SREBP-1c.39,40 Preventing these outcomes in utero by 

supplementing the prenatal diet with genistein may improve 

the offspring’s hepatic phenotype. It is also encouraging that 

these improvements in inflammation occurred in the postnatal 

environment, as they represent a potential degree of revers-

ibility for those born at risk for the development of NAFLD.

Certainly with the number of factors that contribute to the 

development of NAFLD, additional therapeutic avenues for 

preventing TAG accumulation have yet to be discovered. An 

experimental approach of conjugating the lipophilic cation, 

triphenylphosphonium, to an antioxidant such as vitamin E or 

ubiquinone has been shown to permit the delivery of the antioxi-

dant moiety through the mitochondrial membrane.48,49 When this 

approach was described by Murphy and Smith in 2007,48 it was 

their intention to employ the lipophilicity of triphenylphospho-

nium to ensure diffusion of the antioxidant into the mitochondria, 

where ROS neutralization is most useful in relegating oxidative 

stress. Recently, Finichiu et al49 confirmed that this form of anti-

oxidant delivery does indeed reach mitochondria in the tissues 

with high levels of oxidative stress. Although this mechanism 

has only been investigated in general models of oxidative stress, 

given the role of ROS in the development of NAFLD, future 

advances may render this an applicable method of antioxidant 

delivery for those affected by NAFLD.

There is a need for a clearly defined, ideal prenatal diet 

that considers the negative implications of the HF diet dis-

cussed here, and there is also the need for a diet for those 

affected by NAFLD. The American Dietetic Association 

does not currently suggest a recommended daily allowance 

of fats for pregnant women.50 Current research is exploring 

many different diet and exercise regimes for those living 

with NAFLD, with mixed results.51,52 Future work needs to 

ascertain the maximum daily allowance for dietary fats when 

undesirable outcomes for the fetus arise. This will allow for 

the development of dietary guidelines that could easily be 

followed by expecting mothers.
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The diagnostic approach to NAFLD in childhood has 

recently been developed by the European Society of Paediatric 

Gastroenterology, Hepatology, and Nutrition committee.53 

The gold standard for the detection of NAFLD is through liver 

biopsy, but this should only be performed after less invasive 

procedures to rule out other conditions. Testing for appropri-

ate biomarkers and imaging by magnetic resonance imaging 

or ultrasound are noninvasive and fairly reliable diagnostic 

tools for adults and older children, and these methods may 

also be developed for infants.

Conclusion
Education aimed at promoting a balanced prenatal diet 

may be an effective intervention in convincing expecting 

mothers to consider nutrition as equally important to the 

health of a fetus as abstaining from tobacco use and alcohol 

consumption. Previous efforts to educate women on the harm-

ful consequences of these activities during pregnancy have 

been met with success.9 A voluntary decrease in smoking and 

drinking alcohol by pregnant women was demonstrated fol-

lowing these efforts, which was indicative of a willingness by 

women to modify their lifestyle for the benefit of their babies.9 

As the metabolic syndrome has garnered significant attention 

from public health organizations in Western countries, the 

recent acceptance of NAFLD as the hepatic manifestation of 

metabolic syndrome will likely spur its inclusion in future 

public health educational efforts.

Of adults who present with NAFLD, most display sig-

nificant mtDNA abnormalities and mutations, and it has 

been estimated that about 26% of hepatic TAG in NAFLD 

patients is derived from de novo lipogenesis.10,21 In the context 

of elevated maternal dietary lipids, it is clear that both de 

novo lipogenesis and esterification of delivered NEFAs are 

encouraged in the fetus via multiple mechanisms discussed 

herein: damaged mtDNA and associated reduced capacity for 

β-oxidation; the inhibition of CPT1 by malonyl-CoA; and 

the inadvertent activation of SREBP-1c during the unfolded 

protein response. The resultant phenotype of the offspring 

whose mothers consumed a lipid-rich diet during pregnancy 

shares many commonalities with that of adult NAFLD, and 

as illustrated in this review, it predisposes offspring for the 

later development of NAFLD.
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