
© 2014 Mielke et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0)  
License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further 

permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on 
how to request permission may be found at: http://www.dovepress.com/permissions.php

Clinical Epidemiology 2014:6 37–48

Clinical Epidemiology Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
37

R e v i e w

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/CLEP.S37929

Clinical epidemiology of Alzheimer’s disease: 
assessing sex and gender differences

Michelle M Mielke1,2

Prashanthi Vemuri3

Walter A Rocca1,2

1Department of Health Sciences 
Research, 2Department of Neurology, 
3Department of Radiology, Mayo 
Clinic, Rochester, MN, USA

Correspondence: Michelle M Mielke 
Department of Health Sciences Research, 
Mayo Clinic, 200 First Street SW, 
Rochester, MN, USA 55905 
Tel +1 507 284 5545 
Fax +1 507 284 1516 
Email mielke.michelle@mayo.edu

Abstract: With the aging of the population, the burden of Alzheimer’s disease (AD) is rapidly 

expanding. More than 5 million people in the US alone are affected with AD and this number 

is expected to triple by 2050. While men may have a higher risk of mild cognitive impairment 

(MCI), an intermediate stage between normal aging and dementia, women are disproportionally 

affected with AD. One explanation is that men may die of competing causes of death earlier 

in life, so that only the most resilient men may survive to older ages. However, many other 

factors should also be considered to explain the sex differences. In this review, we discuss 

the differences observed in men versus women in the incidence and prevalence of MCI and 

AD, in the structure and function of the brain, and in the sex-specific and gender-specific risk 

and protective factors for AD. In medical research, sex refers to biological differences such as 

chromosomal differences (eg, XX versus XY chromosomes), gonadal differences, or hormonal 

differences. In contrast, gender refers to psychosocial and cultural differences between men 

and women (eg, access to education and occupation). Both factors play an important role in the 

development and progression of diseases, including AD. Understanding both sex- and gender-

specific risk and protective factors for AD is critical for developing individualized interventions 

for the prevention and treatment of AD.
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Introduction
Alzheimer’s disease (AD) is the most prevalent type of dementia, comprising about 

60%–70% of all dementia cases.1 Beta-amyloid plaques, neurofibrillary tangles, and 

neurodegeneration are the hallmark pathologic characteristics of AD. Clinically, AD is a 

progressive disorder characterized by loss of memory and overall cognitive functioning 

and by behavioral symptoms such as apathy, depression, and anxiety; vocabulary and 

crystallized abilities are preserved. The burden of AD is high, with more than 5 million 

people currently affected in the US alone. Presently, one in nine people aged 65 and 

older has AD and more than one in three people aged 85 and older are affected.2 With 

the increasing age of the population, it is estimated that 14–16 million Americans will 

be diagnosed with the disease by 2050 unless new treatments to prevent or delay the 

onset of AD are identified.3,4 Women are disproportionally affected by AD; they are 

more likely to become caregivers to AD patients, and are also more likely to develop 

AD.2 In contrast, some studies suggest that men are at greater risk of developing mild 

cognitive impairment (MCI), a state between the normal cognitive changes associated 

with aging and early dementia.5,6 Sex-related differences in the rate of progression 

after a diagnosis of AD and in the response to treatments have also been reported. 
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In the present review, we will first summarize sex differences 

in cognitive aging, in the prevalence and incidence of MCI 

and AD, and in the rate of progression after an AD diagnosis. 

We will then discuss sex-specific differences in the neuroim-

aging measures used to study AD. Lastly, we will review 

potential reasons for the described differences between men 

and women considering factors both related to biology (sex) 

and to society and culture (gender).7–9

Sex versus gender
An Institute of Medicine report published in 2001 concluded 

that “being male or female is an important fundamental vari-

able that should be considered when designing and analyzing 

basic and clinical research.”7 In medical research, sex refers 

to biological differences such as chromosomal (eg, XX ver-

sus XY chromosomes), gonadal, or hormonal differences. 

In contrast, gender refers to psychosocial and cultural dif-

ferences between men and women (eg, access to education 

and occupation).10 Both factors play an important role in the 

development and progression of diseases, including AD.8,9 

In this review, potential sex and gender differences that may 

influence the difference in prevalence and incidence rates of 

MCI and AD among men and women will be discussed.

Sex differences in cognitive aging, 
in the prevalence and incidence 
of MCI and AD, and in the rate of 
progression after a diagnosis of AD
Cognitive aging
The shrinking of the brain and expansion of the ventricles is 

part of the natural maturational process of the brain during 

normal aging. Longitudinal studies that have used “normal” 

cognitive status as an inclusion criterion have found that 

even “normal” aging may contribute to subtle declines in 

cognitive functioning.11,12 There are significant sex differ-

ences in the normal aging process.13 The most consistent 

cross-sectional difference at all ages is that women perform 

better on verbal memory tasks and men perform better on 

visuospatial tasks.14–16 However, longitudinal studies have 

shown inconsistent sex differences, either reporting steeper 

annual rates of cognitive decline in men,17 women,14 or no 

sex differences.18 One of the major factors causing these 

inconsistent findings may be the cognitive reserve profiles 

(discussed later) of specific cohorts (eg, the Lothian Birth 

cohorts of 1921 and 1936).19

The trajectory of cognitive decline due to ongoing 

pathological insults to the brain (“pathological aging”) has 

been shown to deviate from the normal aging process. There 

is significant accelerated decline in cognitive functioning 

and brain volume loss years before the onset of MCI or 

dementia.20–23 However, there have been no systematic studies 

of sex differences in the cognitive decline prior to onset of 

clinical symptoms (ie, preclinical stages of the disease).

MCI
MCI is considered an intermediate state between the cog-

nitive changes associated with aging and mild dementia, 

particularly of the Alzheimer type.24–26 Indeed, the risk 

of dementia is higher in persons with MCI compared to 

cognitively normal individuals.27–30 The prevalence of MCI 

in persons older than 65 years of age ranges from 10% 

to 20%, depending on the population studied and on the 

diagnostic criteria utilized.6,27,28,31–34 Some studies suggest a 

higher prevalence of MCI in men,6,35,36 while others suggest 

either a higher prevalence in women33,37 or no sex differ-

ence.38–40 The incidence rate of MCI has been estimated to 

be about 1%–4% per year in cognitively normal individuals 

aged 65 and older.27,40–42 Some studies examining the inci-

dence of MCI also report that there may be sex differences, 

but reports vary based on the study design, diagnostic cri-

teria, and age distribution of the sample. In general, women 

have a higher incidence of MCI at older ages. Men consis-

tently have a higher incidence of the non-amnestic type of 

MCI.42,43 Amnestic MCI is defined as cognitive impairment 

that includes the memory domain whereas non-amnestic 

MCI refers to impairment in other domains (eg, executive 

functioning, visuospatial, language), but no impairment in 

memory. While amnestic MCI is considered prodromal for 

AD, non-amnestic MCI is considered prodromal for non-AD 

dementias, such as vascular dementia.25

AD
The prevalence of AD is significantly higher in women com-

pared to men. Recent estimates suggest that almost two-thirds 

of the individuals diagnosed with AD are women.3 A reason 

for the higher prevalence among women may be that they 

live longer, on average, than men.44,45 By contrast, incidence 

studies examining sex differences in AD are equivocal. The 

majority of studies conducted in the US have not observed 

sex differences in the rates of developing AD.46–52 In contrast 

to these studies, the Cache County Study (Cache County, 

UT, USA), did report a higher incidence of AD in men 

than women until age 78, after which women had a higher 

incidence than men.53 Similarly, the Mayo Clinic Study of 

Aging recently reported that the rate of progression from 
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MCI to AD was similar in men and women aged 70–79, but 

higher in women than men after age 80.54 Consistent with 

these last two studies, most studies from European55–59 and 

Asian60,61 populations have also observed a higher incidence 

in women after the age of 80–85 years.

The reasons for these disparities across studies and geo-

graphic regions are not clear. Discrepancies could be due to 

the use of different diagnostic criteria for AD versus other 

forms of dementia, such as vascular dementia or Lewy body 

dementia. The differences may also be due to small sample 

sizes at the upper range of the age distribution, resulting in 

unstable estimates. Finally, some differences across Europe, 

Asia, and North America may be due to social, cultural, and 

historical events. For example, the impact of World War II 

and the following Cold War era have been very different 

across continents. Some of these historical events may 

have affected men and women differently. Notably, a meta-

analysis of 13 studies of populations in the US, Europe, and 

Asia did show that women were at a significantly greater risk 

of developing AD, but not other dementias.62 Interestingly, 

women also have a faster rate of cognitive and functional 

decline after a diagnosis of AD.63,64

Sex differences in neuroimaging 
measures of brain reserve:  
structure and function
The concept of brain reserve posits that subjects with higher 

reserve have a greater capacity to cope with pathological 

insults than those with low reserve, and that these individual 

differences in reserve mechanisms help explain why cogni-

tive decline may be initiated at different times in relation to 

the onset of pathology for each individual. Specifically, the 

concept of brain reserve stemmed from the observation by 

Katzman et al that subjects with larger brains have greater 

capacity to withstand more pathology at the same level of 

cognitive performance.65 Cognitive reserve is discussed later 

in the review.

Structure
The most striking difference between the brain anatomy of 

men and women is the larger head size and cerebral brain 

volume in men (∼10%).66 Therefore, one would expect men 

to be able to withstand more pathology compared to women. 

This hypothesis was supported by an autopsy study that found 

that women had significantly higher odds of a clinical diagno-

sis of AD at the same level of pathology.67 While overall larger 

head sizes may suggest larger brain reserve in men, studies 

have consistently shown faster age-associated brain volume 

decline in men compared to women in cognitively normal 

individuals.68–71 However, in patients with MCI and AD, 

brain volumes have been found to decline faster in women 

than men, supporting the evidence of faster progression of 

women from MCI to AD.72 Thus, even after considering dif-

ference in head size, sexual dimorphism in the brain anatomy 

exists.66,73–75 For example, women typically have a higher 

percentage of grey matter in several brain regions, whereas 

men have a higher percentage of white matter.76 While many 

of these differences are likely due to sex chromosomes and 

sex hormones,77–79 the exact mechanism through which sex 

hormones influence brain structures is still poorly understood. 

Notably, one major flaw of the studies examining changes 

in brain structure with age has been the modeling of brain 

volume loss over the life span without taking into account 

hormonal changes in men and women over time.

Function
Functional imaging measures such as 18F-fluorodeoxyglucose 

positron emission tomography (FDG-PET) for measuring 

metabolism and resting state functional magnetic resonance 

imaging for measuring brain connectivity have shown sig-

nificant differences between men and women.76,80 Typically, 

cerebral blood flow and connectivity have been found to 

be higher in women in the parietal association cortices and 

higher for men in the visual and motor cortices,81,82 provid-

ing evidence for brain function and behavior differences 

between the sexes. Several imaging studies have shown that 

sex differences in the brain circuitry contribute to significant 

performance differences on specific cognitive tasks; for 

example, men perform better on visually oriented tasks. In 

the context of cerebral metabolic deficits associated with 

cognitive impairment in dementia, two studies have shown 

that men have more pronounced cerebral metabolic deficits 

compared to women at the same level of cognitive impair-

ment, suggesting that the greater brain reserve in men may 

be helping them withstand more pathology than women at 

the same level of dementia severity.83,84 Given the current 

hypothesis that regions of high connectivity in the brain har-

bor amyloid deposition,85 there is clearly a need to investigate 

sex differences in the pathological cascade of AD.

Biological explanations  
for the sex differences
Genetics
While many studies have examined and reported the 

relationship (or lack of) between numerous genes and 

single-nucleotide polymorphisms (SNPs) and risk of AD, 
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few studies have specifically examined whether the relation-

ships vary by sex. One reason for this is the high number of 

individuals needed for genetic analyses, and lack of power 

to examine sex differences, particularly for genome-wide 

association studies. As a result, studies adjust for sex rather 

than stratify by sex, or examine interactions with sex.79 The 

identification of the different genetic processes that may 

affect the risk of MCI and AD in men and women is impera-

tive for individualized preventive and treatment plans.

The ε4 allele of the apolipoprotein ε (APOE) gene is the 

strongest known genetic risk factor for late-onset AD.86,87 

Compared to non-carriers, heterozygous carriers of one ε4 

allele are 3–4 times more likely to develop AD, whereas the 

risk for homozygous carriers is even higher.87,88 The APOE ε4 

allele is specifically associated with an earlier age of onset of 

AD.89 The majority of studies, including a large meta-analysis 

of 8,607 controls and 5,930 AD cases,90 have reported that the 

effects of the ε4 genotype are more pronounced in women 

than in men.90 Three studies reported that women with one 

ε4 allele had about a four-fold risk of AD, whereas men with 

one ε4 allele showed little increased risk.90–92 The APOE ε4 

allele also has a greater deleterious effect on hippocampal 

pathology, functional connectivity changes in the default 

mode network, cortical thickness, and memory performance 

in women compared with men at different stages of AD.93–95 

Additionally, a large autopsy study found that amyloid plaque 

and neurofibrillary tangle pathology was greatest among 

women who were ε4 carriers.96

Other genes and SNPs have also been shown to increase 

risk and progression of AD in one sex, but not the other. 

A large study consisting of 16 research centers worldwide 

(including 4,711 patients and 4,537 controls) reported that the 

Met66 allele of Brain Derived Neurotrophic Factor (BDNF) 

gene, which reduces the transport of BDNF, is associated 

with an increased risk of AD in women (odds ratio =1.14, 

95% confidence interval 1.05–1.24, P=0.002), but not in 

men.97 This finding is biologically plausible since estrogen 

plays an important role in the expression of BDNF.98 Post-

menopausal women with the MET66 allele would therefore 

have both reduced transport and expression of BDNF, thus 

causing an increased risk of AD.

SNPs found to pose a risk of AD among men, but not 

women, include a SNP (rs688) of the low-density lipopro-

tein receptor and functional apolipoprotein E receptor,99 the 

rs17571 SNP of the lysosomal protease cathepsin D,100 SOS2 

(involved in signal transduction pathways, including insulin 

signaling), and PCK1 (catalyzes the first step in hepatic 

gluconeogenesis).101 Interestingly, a few SNPs have also 

been found to have an opposite predictive value for women 

compared with men. A diabetes-related gene, the G allele of 

NSP65 of the peroxisome proliferators-activated receptors 

gamma was associated with a significantly increased odds 

of AD in men, but a reduced odds in women.101 In contrast, 

the 219K allele of the ATP Binding Cassette Transporter 1 

(ABCA1) gene had a 1.75-fold increased risk of developing 

AD in women, but was found to be protective in men.102

The biological explanations for these sex differences 

are not fully understood, in part because the physiological 

effects of many of the genetic polymorphisms have not been 

completely determined. Most studies finding sex differences 

link the association to sex hormone levels. For example, some 

of the physiological benefits of estrogen have been linked to 

ABCA1-mediated pathways.103 However, there could also be 

gene–gene interactions (epistasis) of genes on an autosomal 

chromosome with genes on chromosome X or Y. With the 

continued observation of sex differences in the risk of AD 

for identified SNPs, better understanding of the resulting 

physiological changes that contribute to the sex difference 

is needed.

Hormones
Gonadal hormones act as critical neurotrophic factors in 

the perinatal period and throughout the lifespan. Both hor-

mones and genetic differences (ie, X and Y chromosomes)79 

contribute to the physiological mechanisms underlying 

sexual dimorphism of the brain, including neurogenesis, 

axon guidance, synaptogenesis, and neurovascular develop-

ment.104 Following menopause, women experience relatively 

rapid loss of the ovarian sex hormones 17 beta-estradiol and 

progesterone. A bilateral oophorectomy prior to menopause 

causes an abrupt deficiency of estrogen, progesterone, tes-

tosterone, and a disruption of the hypothalamic–pituitary–

ovarian axis.105,106 Men also experience significant declines 

in testosterone levels with age, but these declines are more 

gradual. Bioavailable testosterone declines 2%–3% per year 

after the age of 30.107 Because testosterone can be metabolized 

to estrogen, men do not have the severe estrogen loss, even 

in late-life, that is experienced by women after menopause or 

abruptly after a bilateral oophorectomy prior to menopause.

Animal and cellular models have consistently shown the 

neuroprotective effects of estrogen which include: improving 

synapse formation on hippocampal dendritic spines,108,109 

maintaining hippocampal function during aging;110 improving 

cerebral blood flow and glucose metabolism,111 increasing 

choline acetyltransferase activity in the basal forebrain and 

hippocampus (choline acetyltransferase is involved in the 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Epidemiology 2014:6 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

41

Sex and gender in Alzheimer’s disease

synthesis of acetylcholine, a neurotransmitter reduced in 

AD and implicated in memory function),112,113 reducing the 

aggregation of amyloid-beta and associated neurotoxicity,114,115 

and preventing mitochondrial damage.116 Despite the apparent 

benefits in animal and cellular models, the impact of estro-

gen loss (due to natural menopause or surgically induced) 

and of hormone replacement therapy (HRT), on the risk of 

AD in women remains controversial. To date, observational 

studies generally report reduced risks of AD in women who 

initiate HRT within a short period (typically ,3 years) 

after natural menopause and after oophorectomy performed 

prior to menopause.105,117–122 For example, the Mayo Clinic 

Cohort Study of Oophorectomy and Aging showed an almost 

doubled risk of dementia in women who underwent bilateral 

oophorectomy before menopause.123 However, women who 

initiated HRT after the bilateral oophorectomy, and continued 

utilizing HRT at least until the age of natural menopause 

(approximately 51 years), did not experience an increased 

risk of AD.123 In contrast to these studies showing a beneficial 

effect of estrogen use, the Women’s Health Initiative Memory 

Study (WHIMS),124 a large randomized clinical trial of HRT, 

reported a two-fold increased risk of dementia in women 

randomized to HRT after age 65 years. One explanation for 

the differences between observational studies and clinical 

trials is that observational findings could be the result of 

confounding. Women who use HRT typically have a higher 

socioeconomic status, higher education, and/or better health 

and therefore may be at lower risk of AD. However, another 

possibility is the timing of the estrogen therapy.106,125

Observational studies show that the use of HRT, when 

initiated around the time of menopause but not years after, 

reduces the risk of AD.105,117–122 In the Cache County Study, 

women who initiated HRT within 5 years of menopause had 

a 30% lower risk of AD compared to women who reported 

no use of HRT. However, women who began hormone 

therapy more than 5 years after menopause did not have a 

lowered risk. In fact, those who started hormone use when 

they were 65 years or older had almost a two-fold increased 

risk.122 Similarly, in both the Multi-Institutional Research on 

Alzheimer Genetic Epidemiology (MIRAGE) study and in 

the Northern California Kaiser Permanente study, initiation 

of HRT in mid-life was associated with reduced risk of AD, 

whereas initiation of HRT several years after menopause was 

associated with an increased risk.120,121

In light of the observational results suggesting that the ini-

tiation of estrogen in the immediate years after menopause is 

protective, whereas later administration increases AD risk, the 

WHIMS124 trial results are not surprising. WHIMS subjects 

were aged 65–79 years old at baseline. Thus, HRT was initi-

ated 10–20 years after the onset of natural menopause.

There are two ongoing hypotheses for the lack of ben-

efit, or even detrimental effects, when estrogen is initiated 

years after menopause or bilateral oophorectomy. The first, 

“window of opportunity,” hypothesis is based on the mecha-

nistic findings that long-term estrogen depletion (LTED) can 

cause decreased levels of estrogen receptor (ER)-alpha, in the 

CA1 region of the hippocampus, a highly responsive region 

to estrogen therapy, resulting in cognitive enhancement 

and neuroprotection.126 Therefore, the initiation of estrogen 

after LTED, when ER-alpha receptors are already down-

regulated, does not result in the neuroprotective benefits of 

estrogen. The second, “healthy cell bias of estrogen benefit,” 

hypothesis suggests that estrogen only yields neuroprotec-

tive benefits when applied to healthy neurons.127 Neurons 

with damaged mitochondria, a feature of aging, will not 

benefit, and estrogen may even be detrimental under these 

conditions. It is likely that both hypotheses contribute to dif-

ferential benefits of estrogen when initiated peri-menopausal 

compared to after LTED.

Social explanation  
for the gender differences
In addition to several biological explanations for the 

observed sex differences in the prevalence and incidence of 

MCI and dementia, the effects of sociocultural aspects, ie, 

gender differences, should also be studied. Gender refers to 

the cultural and psychosocial factors that impact our identity 

and modify our risk of disease via health perception, risk 

behavior, social and work-related stressors, personal and 

societal perceptions of men’s and women’s role, patient–

doctor relationships, and adherence to therapy.10,128 Specific 

factors related to gender identity that may contribute to the 

risk of AD include education, occupation, diet and exercise, 

and smoking and drinking behaviors. Gender is also strongly 

linked with the concept of cognitive reserve such that a 

higher education/occupation and greater engagement in 

cognitive activities provides higher reserve against disease 

and results in varying cognitive aging trajectories among 

individuals.128,129 In this section, we discuss gender-related 

risk and protective factors for AD. All of these factors can 

be tied to the concept of cognitive reserve as proposed by 

Stern.130 This theory posits that subjects with higher cogni-

tive reserve (eg, higher education, better diet, or less stress) 

may have a greater capacity to cope with pathological insults 

to the brain, or that it may take longer for them to reach 

the threshold of dementia detection. Thus, individuals with 
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high cognitive reserve would be less likely to display the 

cognitive symptoms associated with dementia compared 

to individuals with the same pathology and low cognitive 

reserve.131,132

Intellectual lifestyle: education, 
occupation, and cognitive activity
Low education and low occupational history (eg, unskilled 

versus skilled worker) have repeatedly been associated with 

either a higher prevalence133–137 or incidence of AD.138–141 

Cognitive activities have been shown to reduce the risk of 

dementia in the elderly.142,143 Intellectual lifestyle (educa-

tion, occupation, and current cognitive activity) explains 

more than 10% of the variance in an individual’s cognitive 

performance.131 Innate cognitive ability is also important, 

and can lead to higher education and better occupation. 

Indeed, low childhood mental ability and IQ is associated 

with lower cognitive ability in late-life,144 with an increased 

risk of dementia,145 and with increased mortality.146

Recent Pittsburgh compound B positron emission tomo

graphy (PiB-PET) and FDG-PET imaging studies have also 

shown that subjects with higher education or occupational 

engagement have more pathological changes when compared 

to subjects with lower education at the same level of cogni-

tive performance (ie, they have greater brain reserve).147–150 

The mechanism by which low education and occupation 

are thought to increase risk of AD is by lowering cognitive 

reserve. A longitudinal study that followed 9,000 people 

semi-annually for 15 years found that the main effect of 

education was to increase the baseline cognitive performance 

of individuals.151 Thus, subjects with higher education take 

longer to reach the dementia threshold. Sex differences in 

cognitive reserve and risk factors will further bias studies by 

causing different thresholds for detection of disease.

In the past century men have had more opportunities for 

higher education and higher occupational attainment than 

women. This is particularly true for individuals aged 70 

and older who are now at greatest risk of developing AD, 

suggesting a higher education/occupation related reserve in 

men. In contrast, women generally engage in more cogni-

tive activities such as reading books, arts and crafts, group, 

and social activities. While these cognitive activities impact 

reserve, the effect is much less than the impact of education 

and occupation.131

Indeed, differential age, period, and cohort effects in edu-

cational and occupational attainment may play particularly 

important roles for late-life cognitive trajectories and risk of 

AD. The Seattle Longitudinal Study showed that individuals 

born in later (1914–1948) versus early (1886–1913) cohorts 

have better cognitive performance at the age of 70 years, 

and also slower rates of cognitive decline.152,153 Notably, 

the differences between the younger and older cohorts in 

cognitive gains were much greater for women than men. 

This research highlights the importance of gender-specific 

societal changes in intellectual lifestyle over time by cohort 

and specific historical periods (eg, during versus after World 

War II), and its subsequent impact on cognitive aging trajec-

tories and risk of AD.

At the most recent census, the educational attainment 

in the US was higher in women than men,154 and there also 

has been a dramatic shift in occupational engagement due to 

changing gender roles. For example, men and women have 

experienced different access to education and occupation in 

North America compared to Europe and Asia in the early 

part of this century. These gender-related differences may 

explain the observed geographic differences in the prevalence 

and incidence of AD that are described above.46–61 Indeed, 

it is possible that with greater educational and occupational 

attainment in women, the sex differences will diminish. The 

changing trends of intellectual lifestyles in men and women 

may contribute to changing epidemiologic patterns for AD 

and dementia across countries and over time.

Exercise
Gender roles can affect exercise participation as parenthood 

and marital status have been shown to be significantly related 

to whether women exercise.155 Several studies suggest that 

exercise and cardiorespiratory fitness are associated with a 

reduced risk of MCI and AD156–160 and with a slower rate of 

decline after a diagnosis of AD.161 While women are thought 

to be more “health-seeking” than men, it has been estimated 

that American women tend to get less exercise than men over 

the lifespan.162 Studies on sex differences in exercise patterns 

and risk of AD are ambiguous. Some studies suggest that 

exercise lowers the risk of cognitive decline and AD more in 

women than men.163,164 In contrast, another study suggested 

that women who exercise tend to receive less of a protec-

tive effect than men.165 These conflicting results may be due 

to the stage of life in which exercise is measured because 

most studies have measured self-reported physical activity 

in late-life. One study of over 9,000 women collected self-

reported information on physical activity when the women 

were in their teens, age 30, age 50, and in later-life.158 Physical 

activity at all time points was associated with a reduced 

risk of cognitive impairment in late-life. However, physical 

activity in the teenage years was associated with the greatest 
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reduction in risk. Women who were not active as teenagers, 

but who were physically active at age 30 and 50, also had a 

reduced risk, but not as much as those who were active as 

teenagers. Further, among women who were physically 

active as teenagers, late-life physical activity did not appear 

to further reduce the risk of cognitive impairment, suggest-

ing that early activity, when the brain is developing, may be 

most important.

The benefits of teen activity on late-life cognition are 

likely multifactorial. Teens who are active have better cogni-

tive performance.166 Youth physical activity may contribute 

to a cognitive reserve, similar to the effects of education, 

which would therefore have long-term effects on cognition.167 

Physical inactivity in the teenage years is also associated 

with obesity and diabetes;168 both are risk factors for AD.169 

Physical activity and exercise are much more strongly 

encouraged for girls and teenage women now compared to 

the early- and mid-20th century; time will determine the 

impact that this trend may have on the sex difference in the 

prevalence of AD. Notably, while there is increasing focus 

on exercise, overall lifestyle is becoming more sedentary. 

Low activity throughout the day may be more beneficial 

than 30 minutes of moderate physical activity combined with 

10 hours of sedentary behavior. Little research to date has 

focused on sex differences in sedentary behavior and how 

these differences may relate to risk of AD.

Smoking
Acetylcholine is a neurotransmitter that is decreased in 

Alzheimer’s patients. Indeed, the current US Food and 

Drug Administration-approved medications for AD primar-

ily focus on inhibiting the degradation of acetylcholine. 

Nicotinic acetylcholine receptors are especially reduced 

in AD. Therefore, it was hypothesized that nicotine could 

be used to prevent or delay the progression of AD, and that 

smoking may be associated with a reduced risk of AD. Indeed, 

nicotine has been shown to increase cognitive performance 

in both animals and human smokers.170 However, the results 

of clinical trials examining the use of a nicotine patch in 

AD patients have been mixed with some studies showing 

reduced cognitive decline,171 and others showing no beneficial 

effect.172 Larger studies are ongoing. Although it is possible 

that nicotine could be beneficial for AD, cigarette smoking 

contains several other toxins, has carcinogenic effects, is a 

known risk factor for cardiovascular and pulmonary disease, 

and therefore may increase the risk of AD. Additionally, many 

smokers also drink, and the interaction between cigarette 

smoking and heavy alcohol use may be especially detrimental 

for cognition.173 A recent study suggests a strong interaction 

between smoking and alcohol use in predicting rate of cog-

nitive decline, such that cigarette smokers who were heavy 

alcohol users had significantly faster rates of decline than 

smokers who were moderate alcohol users.173

Cigarette smoking exacerbates Alzheimer’s pathol-

ogy in transgenic mice and rats, including amyloido-

genesis, tau phosphorylation, neuroinflammation, and 

neurodegeneration.174,175 Among humans, initial case–control 

studies reported that cigarette smoking was associated with a 

reduced risk of AD.176–178 However, these studies may have 

been biased because smoking is strongly associated with 

cardiovascular disease and premature death.179 Thus, smok-

ers who survive to old age, when they are at greater risk of 

AD, may be more resilient to the negative effects of smok-

ing and aging-related diseases. Subsequent cohort studies, 

especially those examining smoking in mid-life, have found 

that smoking is a risk factor for AD.180–182 Cigarette smoking 

has also been associated with greater regional brain atrophy 

in cognitively normal individuals.183

Some studies suggest that men who smoke are at greater 

risk of developing AD compared to women who smoke,180,184 

whereas other studies did not show a sex difference.181 

Traditionally, men have had a higher prevalence of smoking 

because it was more socially acceptable for men to smoke. 

It wasn’t until the 1920s and 1930s that more women began 

to smoke. However, smoking among women was still less 

than in men. In 1965, 51.9% of men versus 33.9% of women 

smoked.185 In recent years, the gender gap has been narrow-

ing such that in 2009, 23.5% of men and 17.9% of women 

were current smokers. The differential changes in smoking 

by gender may impact the subsequent incidence rate of AD 

among women and men.

Conclusion
With the aging of the baby boomer generation, the prevalence 

of AD is reaching an epidemic size. By 2050, 14–16 million 

Americans will be diagnosed with the disease. Many more 

individuals will provide either formal or informal care for 

AD patients. There is currently no cure for this devastating 

disease. Current approved medications are symptomatic, and 

do not modify the underlying disease pathology. Although 

randomized clinical trials of medications to reduce amyloid 

and other targets are ongoing, a push towards understand-

ing the factors associated with the risk and progression of 

AD is critical to identify possible preventive measures and 

potential new treatment targets. Future clinical trials of new 

therapies for AD should consider a deliberate stratification 
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by sex, and should have adequate sample size to test for a 

therapeutic effect in men and women separately. A drug may 

have efficacy in only one sex, or the effect may be stronger 

in one sex.

A sex-specific or gender-specific focus in AD research is 

still not mainstream. However, as described in this review, 

the prevalence and incidence of AD, and brain structure 

and function, vary by sex and gender. There are also clear 

sex- and gender-specific risk factors for AD. Ignoring these 

differences will impede research and treatments. Further, 

this information is critical for predicting the future disease 

burden. For example, at the beginning of this century, men 

had higher education and occupational attainment. However, 

currently women, on average, have higher educational attain-

ment than men. It is important to study these historical, social, 

and cultural trends to determine their impact on the future 

prevalence and incidence of AD. Understanding these sex 

differences and gender differences will help to define indi-

vidualized treatment and preventive interventions for AD.
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