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Abstract: Pancreatic ductal adenocarcinoma is a stroma-rich and highly challenging cancer to 

treat. Over recent years, it has become increasingly evident that the complex network of soluble 

cytokines, growth factors, proteases, and components of the extracellular matrix collaboratively 

interact within the tumor microenvironment, sustaining and driving cancer cell proliferation, 

invasion, and early metastasis. More recently, the tumor microenvironment has also been 

appreciated to mediate therapeutic resistance in pancreatic ductal adenocarcinoma, thus open-

ing numerous avenues for novel therapeutic explorations. Inert and soluble components of the 

tumor stroma have been targeted in order to break down the extracellular matrix scaffold, relieve 

vessel compression, and increase drug delivery to hypovascular tumors. Moreover, targeting of 

antiapoptotic, immunosuppressive, and pro-proliferative effects of the tumor stroma provides 

novel vantage points of attack. This review focuses on current and future developments in pan-

creatic cancer medicine, with a particular emphasis on biophysical and biochemical approaches 

that target the tumor microenvironment.
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Introduction to pancreatic cancer
Pancreatic ductal adenocarcinoma (PDA) is an extremely stroma-rich and highly 

aggressive solid tumor within the exocrine compartment of the pancreatic gland, and 

its incidence rates are steadily increasing in the Western world.1 In the US, an estimated 

43,920 new cases are diagnosed each year, and many diagnosed patients succumb 

to the disease after only a few months.2 The inability of clinicians to substantially 

improve the prognosis of PDA patients over the last few decades is reflected in a 

virtually unchanged 5-year survival rate of 5%–6% and a median survival of less than 

12 months.2 Potential reasons for such a poor clinical outcome reflect both the clinical 

and biological characteristics of pancreatic cancer. First, PDA is chiefly a disease of 

the elderly, and patients often initially note relatively nonspecific symptoms, includ-

ing back pain and dyspepsia.3 These symptoms often point towards degenerative and 

relatively harmless conditions that may not immediately raise concerns on the part 

of patients and general practitioners. More alarming symptoms include new onset of 

diabetes,4–6 painless jaundice, weight loss, or spontaneous deep vein thrombosis.7,8 As 

a result, a timely diagnostic work-up, including use of specialized imaging modali-

ties such as abdominal ultrasound scans, computed tomography (CT), or magnetic 

resonance imaging is often delayed for several months after initial symptom onset.9 

Second, no specific blood or urine biomarkers are presently available that would help 

to identify subgroups of patients with increased risk of developing PDA. Due to these 
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issues and the lack of early detection methods, 80% of PDA 

patients are diagnosed with unresectable locally advanced 

or metastatic disease.

Families having at least two first-degree relatives with 

confirmed PDA that does not meet the criteria of other 

inherited tumor syndromes, such as Peutz–Jeghers syndrome 

or hereditary chronic pancreatitis, comprise a small subset 

of the overall population of PDA patients (5%–10%).10 

Increased surveillance by high resolution imaging and various 

chemopreventive strategies are under investigation as poten-

tial modalities to detect PDA early or prevent its onset.11–16 

While the optimal treatment of locally advanced PDA with-

out detectable distant metastases remains to be determined, 

patients with distant metastases are candidates for systemic 

palliative chemotherapy dependent on comorbidities and 

general performance status. A relative minority of patients 

(15%–20%) who qualify for pancreatic resection receive a 

6-month course of adjuvant gemcitabine or 5-fluorouracil 

plus folinic acid chemotherapy (Figure 1).17 Perioperative 

morbidity and mortality have improved in high-volume 

centers owing to improved surgical resection techniques, 

postoperative care, and multidisciplinary approaches;18–20 

however, tumor relapse is unfortunately common, and the 

median survival rate for patients with R0 resection is approxi-

mately 2 years, with a 5-year survival of 15%–20%.21

This review focuses on current and future developments 

in pancreatic cancer medicine, with a particular emphasis on 

novel treatment options that target the tumor microenviron-

ment, in particular the tumor stroma.

Patient outcomes and current 
treatment options
Despite intensive clinical research activities aiming to iden-

tify effective chemotherapies, PDA has remained virtually 

unresponsive to conventional and targeted therapies.22 A large 

number of randomized clinical trials have been conducted 

in an attempt to improve overall survival in PDA patients. 

To this end, the nucleoside analogue gemcitabine was 

combined with a second cytotoxic agent, eg, 5-fluorouracil, 

capecitabine, cisplatin, oxaliplatin, irinotecan, pemetrexed, 

or exatecan, but all combinations failed to achieve significant 

improvement in overall survival.23–29 Although much hope lay 

in novel targeted therapies such as the vascular endothelial 

growth factor inhibitor bevacizumab,30 the matrix metal-

loproteinase inhibitor marimastat,31,32 and the antiepidermal 

growth factor receptor agent cetuximab,33,34 none of these 

drugs alone or in combination with standard chemotherapies 

had a significant impact on patient outcome. Therefore, the 

relatively well tolerated nucleoside analogue gemcitabine 

remained the standard of care chemotherapy in most coun-

tries, mainly on the basis of modest patient benefit with only 

a marginal increase in median survival.35

The only targeted agent that has been approved for PDA 

patients is the epidermal growth factor receptor tyrosine 

kinase inhibitor erlotinib (Tarceva®, Genentech, CA, USA), 

since the combination of gemcitabine and erlotinib con-

ferred a marginal survival benefit over gemcitabine alone 

(6.24 months versus 5.91 months).36 Although statistically 

significant, the clinical relevance remains questionable. 

More recently, the  gemcitabine-free FOLFIRINOX protocol 

(folinic acid, fluorouracil, irinotecan, and oxaliplatin) was 

reported, and achieved a significant survival benefit for 

patients with metastatic PDA compared with gemcitabine 

monotherapy (11.1 months versus 6.8 months).37 Although 

FOLFIRINOX significantly improves quality of life com-

pared with gemcitabine,38 severe side effects such as grade 

3 and 4 neutropenia and dehydration limit the use of this 

aggressive combination chemotherapy to carefully selected 

patients with good performance status. More recently, results 

from the Phase III Metastatic Pancreatic Adenocarcinoma 

Trial (MPACT) in 861 patients comparing nanoformulated 

albumin-bound paclitaxel (nab-paclitaxel, Celgene, NY, 

USA) with gemcitabine and gemcitabine monotherapy were 

presented. The data show a significant survival benefit for the 

combination of nab-paclitaxel and gemcitabine (8.5 versus 

6.7 months), with a reasonable toxicity profile.39 Although 

the mechanism of action of nab-paclitaxel remains unclear, 
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Figure 1 Schematic overview of current clinical treatment strategies for pancreatic 
cancer patients according to whether they have resectable, locally advanced, or 
metastatic pancreatic cancer, and eCOG performance status 0–5.
Notes: eCOG 0, fully active without restrictions; eCOG 1, restricted in hard 
physical work, but ambulatory and able to carry out light work. The FOLFiRiNOX 
protocol includes folinic acid, fluorouracil, irinotecan, and oxaliplatin.
Abbreviations: 5-FU, 5-fluorouracil; ECOG, Eastern Cooperation Oncology Group; 
PDA, pancreatic ductal adenocarcinoma; nab-paclitaxel, albumin-bound paclitaxel.
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its tolerability profile is superior to that of conventional 

paclitaxel  dissolved in cremophor, and the MPACT regi-

men will likely become a new standard of care treatment 

and new backbone for novel targeted therapies in the future. 

Furthermore, the nab-paclitaxel and gemcitabine combi-

nation is undergoing investigation in localized resectable 

and unresectable PDA for its potential clinical benefit in 

these disease stages. Figure 1 shows the different clinical 

treatment algorithms for resectable, locally advanced, and 

metastasized PDA.

Cellular and molecular evolution  
of pancreatic cancer
Pancreatic carcinogenesis occurs through an accumulation of 

genetic alterations that result in deregulation of tumor cell-

autonomous and nontumor cell-autonomous pathways. These 

genetic changes are accompanied by typical morphologic and 

histologic alterations in epithelial, stromal, and inflammatory 

cells within the pancreas that eventually culminate in desmo-

plastic, highly invasive, and metastatic ductal adenocarcinoma. 

Activating mutations in the K-ras gene represent a signature 

event in almost all pancreatic cancers (.90%), followed by 

subsequent somatic mutations involving the tumor suppres-

sor genes p16, p53, and DPC4/SMAD4.40–45 Interestingly, the 

number of actual mutations of these key drivers of pancreatic 

carcinogenesis correlates positively with a poor prognosis and 

shortened survival for patients.46 Mechanistically, oncogenic 

K-ras activation governs a multitude of mitogenic signals 

with profound cell-autonomous and noncell-autonomous 

effects that initiate epithelial transformation, dynamic rear-

rangement of a proinflammatory and immunosuppressive 

microenvironment, metabolic requirements, and finally drive 

frank malignancy.47–54 Recent evidence from genetically engi-

neered mouse models (GEMMs) with pancreas-specific and 

doxycycline-inducible expression of oncogenic K-rasG12D indi-

cates that abrogation of mutant K-ras in established tumors led 

to dramatic tumor shrinkage and depletion of the surrounding 

stroma after only a few days,55,56 further highlighting the key 

function of mutant K-ras in shaping tumor biology in PDA.

Global sequencing analysis and transposon-mediated 

insertional mutagenesis screens have also discovered genetic 

alterations at low frequency and provide multiple examples 

for the genomic instability and heterogeneity of PDA.57–59 

For the small subset of patients with inherited predisposi-

tion to PDA, several germline mutations, including BRCA2, 

STK11/LKB1, p16/CDKN2A, ATM,60 and PRSS1, have been 

reported.10

Alongside these molecular discoveries, a unique histo-

pathologic progression model similar to that of the adenoma-

carcinoma sequence in the development of colon cancer61 was 

proposed to describe the progression from a normal pancreas 

via preneoplastic lesions to invasive cancer.62,63 Preneoplastic 

lesions are classified as pancreatic intraepithelial neoplasms 

(PanINs) 1a/b, 2, and 3, according to their stepwise accu-

mulation of histopathologic and molecular alterations. The 

discovery that high-grade PanIN lesions increase the risk 

of developing PDA has sparked attempts to detect these 

lesions early by cross-sectional and endoscopic imaging 

techniques.16,64,65 Further, early (partial) pancreatectomy in 

patients with high-grade PanIN lesions is considered in high-

risk individuals (eg, familial PDA), but the ideal timing is 

still debated and data on overall survival from randomized 

clinical trials are currently not available.10

The traditional PanIN-PDA sequence (“ductal 

carcinogenesis”) has recently been challenged by the descrip-

tion of an alternative route of pancreatic carcinogenesis known 

as “acinoductal carcinogenesis”. Careful histopathologic 

investigations by Esposito et al identified tubular complexes 

within areas of acinar ductal metaplasia that form atypical 

flat lesions and may bypass the common PanIN precursor 

stages and directly evolve to invasive cancer.66–68 Histologic 

analysis of sporadic PDA cases confirmed the presence of 

tubular complexes in almost 80% of cases, and atypical flat 

lesions were also detected in cases of familial pancreatic 

cancer. These exciting findings need to be confirmed in larger 

series of sporadic pancreatic cancer cases and may provide 

novel insights into the development of PDA, with potentially 

profound implications in future diagnostic and preventive 

algorithms. Interestingly, earlier studies in GEMMs of pan-

creas cancer had also pointed towards a putative role of the 

acinar cell compartment in driving carcinogenesis with and 

without concomitant inflammation.69–72

Role of the stroma  
in pancreatic cancer
Histologically, PDA is an extremely stroma-rich and hypo-

vascular tumor, and indeed, most of the pancreatic tumor 

mass consists of activated (myo)fibroblasts, immune cells, 

and extracellular matrix components, such as collagen, 

desmin, fibronectin, and hyaluronic acid.9,73,74 Over recent 

years, it has become increasingly evident that the complex 

network of soluble cytokines, growth factors, proteases, and 

extracellular matrix components collaboratively interact 

within the tumor microenvironment, sustaining and driving 
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cancer cell proliferation, invasion, early metastasis, and 

therapeutic resistance.75–80 An important subtype within the 

stromal population is pancreatic stellate cells, which have 

emerged as pancreas-specific myofibroblasts and share mor-

phologic and functional characteristics with hepatic stellate 

cells.81–83 Activated pancreatic stellate cells secrete profibrotic 

proteins abundantly and interact with tumor cells in multiple 

ways to establish and maintain the pronounced desmoplastic 

reaction in PDA (Figure 2).84–86 The clinical relevance is 

highlighted by histologic characteristics of patient samples, 

suggesting that the extent of the stromal reaction correlates 

with shortened survival in patients undergoing surgery.87 The 

complex cellular and biochemical interactions of pancreatic 

stellate cells and cancer cells have limited faithful in vitro 

investigation to traditional two-dimensional coculture assays 

in the laboratory. Therefore, intensive efforts are currently 

being made to establish three-dimensional or organotypic 

culture systems where cancer cells and stromal cells can be 

grown within a reconstituted extracellular matrix gel to study 

the tumor-stromal crosstalk and test novel compounds.88,89

The advent of various GEMMs of pancreas cancer has 

marked a milestone for the scientific community in understand-

ing the biological implications of the tumor stroma and provides 

ample opportunities for preclinical testing of novel agents 

directed against cell-autonomous and noncell-autonomous 

targets.90–93 The most commonly used pancreatic cancer GEMM 

bears an activating K-rasG12D allele that is conditionally activated 

in pancreatic progenitor cells by crossing mice with transgenic 

strains that express Cre recombinase in pancreatic lineages 

(PdxCre or p48Cre). These mice are referred to as “KC” mice 

and develop murine PanIN lesions with 100% penetrance, 

and progress to PDA with a long latency.94 The addition of a 

dominant negative mutation in the tumor suppressor gene p53 

(Trp53R172H/+) greatly accelerates pancreatic tumor development 

and penetrance at an early age, and these mice are accordingly 

termed “KPC” mice.95 In contrast with traditional xenograft 

tumors, GEMMs faithfully recapitulate human PDA, including 

the presence of abundant tumor stroma and comorbidities such 

as cachexia, jaundice, metastasis to distant sites, and activation 

of biochemical pathways. Although the KPC is a faithful mouse 
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Figure 2 Schematic of tumor microenvironment crosstalk and interdependence in PDA, with a particular focus on novel experimental therapeutic interventions and clinical trials. 
Notes: Left bottom panel: PSC and CAF exert immunosuppressive, growth-promoting, and antiapoptotic effects on tumor cells, and can be targeted by inhibition of SHH 
and CTGF. Upper left panel: eCM components providing a scaffold for tumor cells, creating barriers for drug delivery, and providing a variety of prosurvival signals for tumor 
cells. Upper right panel: Tumor vessels are compressed by dense tumor stroma, and vessel density is low due to antiangiogenic factors in the eCM scaffold. The hypoxic 
environment causes an aggressive tumor phenotype, and tumor vasculature can be targeted by SHH and gamma secretase inhibitors. Lower right panel: immune cells create 
an immunosuppressive microenvironment allowing pancreatic tumors to progress, and immunotherapeutic approaches such as agonist CD40 antibodies or anti-GM-CSF 
antibodies reverse this phenotype. Novel agents/regimens directly targeting tumor cells are nab-paclitaxel + gemcitabine and FOLFiRiNOX. Selected ongoing and recently 
completed clinical trials are mentioned by National Clinical Trial (NCT) number, and details can be obtained online at http://clinicaltrials.gov/. The FOLFiRiNOX protocol 
includes folinic acid, fluorouracil, irinotecan, and oxaliplatin.
Abbreviations: Ab, antibody; CAF, cancer-associated fibroblasts; CTGF, connective tissue growth factor; ECM, extracellular matrix; GM-CSF, granulocyte-macrophage 
colony-stimulating factor; PDA, pancreatic ductal adenocarcinoma; PSC, pancreatic stellate cells; SHH, Sonic Hedgehog; nab-paclitaxel, albumin-bound paclitaxel.
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model of PDA, the resources and staffing required to maintain, 

image, and treat a large cohort of animals is substantial and 

beyond the practical abilities of a single laboratory.

The first ultrasound-guided and controlled preclini-

cal study in KPC mice was performed by Ken Olive in 

the Tuveson laboratory and targeted the profibrotic Sonic 

Hedgehog (SHH) pathway. SHH plays important roles dur-

ing pancreas organ development, and is re-expressed during 

malignant transformation to activate and expand stromal 

rather than epithelial cells, thus promoting desmoplasia in 

pancreatic carcinogenesis.96–98 Strikingly, pharmacologic 

inhibition of SHH by the smoothened inhibitor IPI-926 

resulted in marked stromal depletion and increased microves-

sel density and patency, paralleled by significantly improved 

delivery of several chemotherapeutics in the KPC mouse 

model.99 Although the intrinsic effects of SHH inhibition on 

chemosensitivity could not be excluded, this study identified 

the tumor stroma as a biophysical barrier for drug delivery. 

Thus, the tumor microenvironment, in particular the dense 

tumor stroma, is now considered to be a potential reason 

for the failure of most systemic therapies in PDA. Indeed, 

hypoenhancing masses are visualized in PDA patients when-

ever contrast-enhanced imaging is used, and poor perfusion 

has been associated with an aggressive phenotype.100

Novel targets in the  
microenvironment  
of pancreatic cancer
The biophysical role of the pancreatic tumor stroma as a barrier 

to drug delivery has been the focus of intensive clinical and 

preclinical research over the last 3 years, and also attracted 

attention in other tumor entities.101,102 Surprisingly, an SHH 

inhibitor IPI-926 (saridegib, Infinity, MA, USA) and GDC-0449 

(vismodegib, Genentech, CA, USA) both failed in Phase II 

clinical trials, and investigations are still ongoing to compre-

hend the discrepancy between the clinical and preclinical data. 

However, the SHH signaling cascade remains an intriguing and 

widely investigated pathway in PDA, and pharmacologic inhibi-

tion may still be a beneficial therapeutic option in the future, 

depending on the specific compound and cotreatments.103

Other solid and soluble components of the tumor 

microenvironment have been targeted in order to break down 

the extracellular matrix scaffold, relieve vessel compression, 

and increase drug accumulation within the tumor (Figure 2). 

One prominent example is the enzymatic depletion of 

hyaluronic acid, a glycosaminoglycan, by human recombi-

nant PEGylated hyaluronidase (PEGPH20). Pancreatic can-

cers are extremely rich in the megadalton form of hyaluronic 

acid, and the solvation of water by hyaluronic acid is thought 

to be responsible for the high interstitial fluid pressure in 

PDA that results in compression of intratumoral blood ves-

sels.104,105 The Hingorani group has shown that treatment with 

PEGPH20 in murine pancreas tumors results in decreased 

levels of intratumoral fluid pressure in PDA, and this group 

and ours have noted that treatment with PEGPH20 results 

in the re-expansion of blood vessels and improved drug 

delivery, accompanied by slowing of tumor growth and pro-

longed survival in KPC mice.106,107 The results of a Phase I/II 

dose-escalation study (NCT01453153) with PEGPH20 in 

combination with gemcitabine in 28 patients with previously 

untreated stage IV pancreatic cancer were presented at the 

2013 annual scientific meeting of the  American Society 

of Clinical Oncology, and suggested promising efficacy, 

particularly in patients with a high intratumoral content of 

hyaluronic acid.108

Connective tissue growth factor (CTGF/CCN2) is a 

pleiotropic growth factor that is overexpressed in human and 

murine pancreas tumors. Therapeutic inhibition of CTGF 

using a monoclonal human antibody (FG-3019, Fibrogen, 

CA, USA) resulted in significantly increased induction of 

tumor cell apoptosis in KPC mice when combined with gem-

citabine.78 Notably, neither stromal depletion nor increased 

drug delivery was observed. Rather, stromal-derived CTGF 

impinged on the antiapoptotic machinery in tumor cells, 

and the X-linked inhibitor of apoptosis protein was down-

regulated upon treatment with FG-3019. Finally, cotreatment 

with FG-3019 and gemcitabine resulted in slowing of murine 

tumors and prolonged survival in KPC mice.78 FG-3019 in 

combination with gemcitabine and erlotinib (an epidermal 

growth factor receptor tyrosine kinase inhibitor) is currently 

being investigated in a Phase I safety and bioactivity study 

in patients with locally advanced and metastasized PDA 

(NCT01181245).

Secreted protein acidic and rich in cysteine (SPARC) is 

overexpressed by cancer-associated fibroblasts and represents 

another intriguing target in PDA. Results from a Phase I/II 

clinical study showed that patients with high stromal SPARC 

levels responded better to nab-paclitaxel and gemcitabine 

(median survival 17.8 months versus 8.1 months for low 

SPARC),109 suggesting that the albumin-binding protein 

SPARC may act as a novel biomarker for PDA that retains 

nab-paclitaxel to accumulate the drug intratumorally. In 

contrast, two independent studies identified high expres-

sion of SPARC as a negative prognostic marker for patients 

with resectable and unresectable PDA.110,111 Our group has 

undertaken several preclinical studies regarding SPARC and 
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the efficacy and mechanism of action of nab-paclitaxel in 

 combination with gemcitabine. We reported remarkable 

therapeutic efficacy for nab-paclitaxel in highly treatment-

resistant KPC tumors. Importantly, nab-paclitaxel was much 

better tolerated than cremophor-paclitaxel and could be 

administered in more than four-fold higher concentrations. 

Moreover, we identified a synergistic effect of nab-paclitaxel 

through reactive oxygen species-mediated degradation of 

the primary gemcitabine-metabolizing enzyme, cytidine 

deaminase. Therefore, combinations of nab-paclitaxel and 

gemcitabine resulted in increased intratumoral gemcitabine 

levels.112 However, genetic ablation of SPARC in the KPC 

model neither resulted in decreased intratumoral (nab-)

paclitaxel levels nor altered the response to treatment.113 

Nonetheless, elevated serum SPARC levels may play a role 

in paclitaxel uptake in certain PDA patients and could be 

investigated noninvasively in PDA patients prior to starting 

nab-paclitaxel-based chemotherapies.113 The exact function 

of SPARC and the mechanism of action of nab-paclitaxel 

remains a subject of intense clinical114 and preclinical 

investigation,115 and will help to systematically evaluate the 

predictive power of different in vivo models by rigorous com-

parison with the human data. To this end, tissue analysis of 

the MPACT trial is anxiously awaited by the field and should 

provide more answers on this exciting topic.

Partly owing to the hypovascular state of PDA, hypoxia 

is considered a hallmark feature that may predict more 

aggressive behavior and impair the response to therapies 

by providing a niche for slow-cycling, highly drug-resistant 

cells.116–118

Chemotherapeutic agents such as TH-302 are selectively 

activated in the hypoxic tumor microenvironment and are 

currently being investigated in preclinical119 and several clini-

cal trials in PDA patients (NCT01746979, NCT00743379, 

NCT01144455, NCT01833546). Hypoxia is also known to 

stimulate the Notch signaling pathway, and gamma secretase 

inhibitors are currently under early clinical investigation in 

PDA patients (NCT01232829, NCT01098344).  Experimental 

data in human cell lines and GEMMs underscore the thera-

peutic potential of Notch inhibitors in inducing treatment 

responses.120,121

The field of cancer immunotherapy is rapidly evolving 

and has recently provided fascinating insights into pancre-

atic carcinogenesis with potential therapeutic implications 

for patients. For instance, tumor-derived granulocyte-

macrophage colony-stimulating factor has been ascribed a 

central role in mediating a proinflammatory and immunosup-

pressive tumor microenvironment in PDA, and abrogation 

of granulocyte-macrophage colony-stimulating factor 

blocked tumor development by inhibition of Gr-1+ CD11b+ 

and recruitment of cytotoxic CD8+ T-cells into the tumor 

microenvironment.122,123 However, immune surveillance does 

not inevitably depend on therapy-induced T-cells. A combined 

Phase I preclinical-clinical study (NCT00711191) investi-

gated the effects of a CD40 agonist antibody in 21 patients 

with metastatic PDA, and showed promising clinical activity, 

with tumor regression in some patients.124,125 Mechanistically, 

activated macrophages, but not activated T-cell-infiltrated 

tumors, induced tumor cell death and depleted the tumor 

stroma.124 This is the first clear example that shows how 

closely interconnected the immune cell and stromal cell 

compartment is in PDA, and suggests that critical cross points 

between immune and stromal cells must be interrupted in 

order to achieve robust treatment responses.

Conclusion and future perspectives
Tumor-stromal interactions are highly complex and con-

tribute to the key hallmarks of cancer, such as sustained 

proliferative signaling, angiogenesis, activation of invasion, 

and metastasis, as well as extracellular matrix remodeling.126 

More recently, the tumor microenvironment has been increas-

ingly appreciated as being instrumental in mediating resis-

tance to therapy in PDA and other cancers, thus opening up 

numerous avenues for therapeutic exploration, for both the 

biophysical and biochemical approaches described above.

Emerging evidence of metabolic reprogramming driven 

by oncogenic K-ras,56 and the dependency on autophagy,51 

a catabolic pathway degrading cellular organelles and mac-

romolecules, highlight additional metabolic targets that will 

be investigated in the near future. Further, exciting data have 

been reported recently by the Fearon group in Cambridge, 

UK, showing that a subtype of stromal cells expressing fibro-

blast activation protein-α not only cause failure of immune 

surveillance in murine tumors but may also contribute to 

tumor syndromes, such as cachexia and anemia,127 symptoms 

that are most relevant for patient well-being and survival.

A critical and clinically relevant issue remains the dynam-

ics of tumor cell dissemination, and whether PDA metas-

tasizes early or late during disease progression. Whereas 

deep sequencing data for human PDA suggested a long 

latency (on average 17 years) for the occurrence of distant 

metastases,71 a computational analysis of 228 PDA patients 

supported the notion that spread of malignant cells repre-

sents an early event during carcinogenesis, and most patients 

may harbor distant metastases at earlier disease stages 

than previously anticipated.128 Provocative lineage tracing 
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experiments in GEMMs of pancreatic cancer proposed a 

mechanism by which single mutant cells detach from the 

basement membrane by epithelial-to-mesenchymal transi-

tion to enter the blood circulation prior to the development 

of frank malignancy. The disseminated cells seeded the liver 

and showed stem cell properties, a process that was further 

promoted by pancreatic inflammation.129

These studies must be confirmed independently but may 

transform our understanding of the evolution of pancreatic 

cancer and prioritize our efforts toward investigational 

clinical trials that compare neoadjuvant cytotoxic and anti-

metastatic therapies with upfront surgery. Also, patients at 

risk for developing pancreatic cancer (eg, Peutz–Jeghers syn-

drome, hereditary pancreatitis, familial pancreatic cancer) 

should be considered for evaluation of anti-inflammatory 

and antimetastatic therapeutic approaches. Moreover, these 

studies may open new avenues to understand the genetic, 

epigenetic, and microenvironmental determinants that may 

explain long-term survivors and those who never develop 

metastases.130

GEMMs of PDA that recapitulate important aspects of 

the tumor microenvironment are critical tools for inves-

tigating tumor-stromal interactions in the laboratory and 

for testing novel compounds that target components of the 

microenvironment prior to clinical testing. Given the long 

list of failed clinical trials in the past, it remains speculative 

which compounds will make the difference for patients with 

pancreatic cancer. Therefore, it is timely for the field to con-

sider including these GEMMs prior to evaluating therapies 

in the clinic.

To enhance our molecular understanding of treat-

ment success or failure, clinicians should seek to obtain 

pretreatment biopsies from patients via endoscopic 

ultrasound-guided fine needle aspiration biopsy or endo-

scopic ultrasound-guided core biopsy. Limitations in the 

quantity and quality of biopsy samples requires optimized 

approaches to obtain tissue specimens for histologic and 

immunohistochemical analysis of stromal, inflammatory, 

and parenchymal tissue components,131 and post-treatment 

biopsies are highly desirable for monitoring the effects of 

treatment on tumor biology and to prospectively explore 

potential biomarkers.  Contrast-enhanced endoscopic 

ultrasound combined with elastography is an additional 

noninvasive technique that may provide useful information 

before and during therapies.114,132,133 Further, experimental 

molecular imaging approaches in various mouse models 

of pancreas cancer have recently identified potentially 

promising candidates, such as plectin-1, cathepsins, and 

the tight-junction protein claudin-4, that could be deployed 

for early detection,134–137 and should now be rigorously 

evaluated in the clinical setting to improve early diagnosis 

of PDA.

To conclude, the last few years have seen a virtual explo-

sion of knowledge in the field of basic and translational 

pancreatic cancer research, and we are hopeful that the 

continuing effort to translate these findings to the clinic will 

eventually benefit our patients. Targeting the tumor microen-

vironment provides a novel and much needed vantage point 

of attack, and we anticipate that several of the components 

within the tumor microenvironment described here will 

be exploited to achieve robust treatment responses for this 

recalcitrant tumor.
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