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Abstract: The specific pathogenesis underlying inflammatory bowel disease is complex, and it 

is even more difficult to decipher the pathophysiology to explain for the similarities and differ-

ences between two of its major subtypes, Crohn’s disease and ulcerative colitis (UC). Animal 

models are indispensable to pry into mechanistic details that will facilitate better preclinical 

drug/therapy design to target specific components involved in the disease pathogenesis. This 

review focuses on common animal models that are particularly useful for the study of UC and 

its therapeutic strategy. Recent reports of the latest compounds, therapeutic strategies, and 

approaches tested on UC animal models are also discussed.
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Introduction to ulcerative colitis
Ulcerative colitis (UC) is an idiopathic chronic relapsing–remitting inflammatory 

disorder that affects the colon, characterized by diarrhea and rectal bleeding (Figure 1). 

The molecular etiology of UC development is complex and involves genetic, microbial, 

environmental, and other unknown factors (Figure 1). In this review, we discuss the 

underlying pathophysiology of UC and how observations from animal models that 

mimic UC contribute to better understanding of this disease and lead to advancement 

in novel treatment design.

Based on recent reports, there is a steady increase in the global incidence of UC. 

Currently, the prevalence in Europe and North America is 24.3 and 19.2 per 100,000 

individuals, respectively, and 6.3 per 100,000 people in Asia and the Middle East.1 

Most patients develop UC between the ages of 15 and 30 years, although individuals 

aged 50–70 years form another potential risk group.2 There are no significant differ-

ences in UC risk between sexes. The growing prevalence of this disease increases both 

economic and health care burdens. In the United States, an individual UC patient has 

an average annual expenditure of approximately $15,020 in medical costs.3 Thus, better 

and more affordable treatments and eventually a cure are greatly needed.

An individual’s genetic makeup forms one of the primary causal factors for inflam-

matory bowel disease (IBD) development. The first clue that there is a partial genetic 

component to the risk of IBD comes from the observation that a family history of 

IBD confers one with a higher probability of disease development. The offspring of 

IBD-affected mothers have a higher incidence of developing the disease as compared 

with the offspring of IBD-affected fathers, indicating that maternal inheritance factors 

predetermine UC-related genetic risk.4 Molecular studies have also shown evidence of 
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UC-associated genetic imprinting, such that maternal inher-

ited gene expression and functions have been directly linked 

to IBD development.5 Recent Genome-Wide Association 

Studies have also identified 47 UC risk alleles.6 In addition 

to direct DNA sequence variants, changes in epigenetics, 

including DNA methylation, histone modifications, and 

noncoding RNA, contribute an additional layer of genetic 

contribution to IBD risk.

Environment and lifestyle constitute the second major 

arm of UC causal factors. During infancy, early exposure 

to microbes protects individuals from UC development at 

subsequent life stages. This is in sync with the notion that 

improved sanitation in developed countries may lead to 

immaturity of an individual’s immune system during child-

hood and subsequently increase susceptibility to UC later in 

life. Seasonal changes also exacerbate UC conditions, such 

that symptoms occur more frequently during spring and sum-

mer seasons.7 Meta-analysis has shown that smokers tend 

to be protected from UC as compared with nonsmokers.8 In 

contrast to UC, smoking appears to worsen Crohn’s disease 

(CD) symptoms.9

With the identification of these fundamental causal fac-

tors, the next step is to prioritize the directions for the next 

wave of UC research. The Crohn’s and Colitis Foundation of 

America composed a list of priorities for IBD research agen-

das, with the ultimate goal of applying bench-side discoveries 

to the bedside.10 To facilitate understanding of UC patho-

genesis, animal models, particularly mouse models, have 

become indispensable tools to study this topic (Figure 2). 

Experimental colitis can be induced using chemical irritant 

or bacterial infection. Over the years, many transgenic (Tg) 

and gene knockout (KO) mouse strains have been developed, 

allowing the opportunity to address specific pathophysiologic 

questions related to UC and to test novel drug/therapeutic 

candidates pertinent to specific components/pathways.

Chemical and bacterial induction  
of colitis in animal models
A UC-like phenotype can be induced in animals easily 

using either chemical administration or bacterial infection. 

Although the majority of these reports were performed on 

mice, chemically induced colitis has also been tested on other 
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Ulcerative colitis

Figure 1 Clinical and histological features of ulcerative colitis (UC) and causal factors influencing UC risk. Common diagnostic criteria of UC include both clinical and 
histological features. The main causes of UC are individual genetic background as well as environmental factors, which may alter/synergize with the genetic/epigenetic 
makeup.
Abbreviations: UC, ulcerative colitis; NSAID, nonsteroidal anti-inflammatory drug.
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species, ranging from lower organisms such as zebrafish and 

drosophila to higher organisms, including rats and porcine. 

The choice of animal and induction method will depend on 

the specific question the particular study is addressing.

Dextran sulfate sodium-induced colitis
A common method to create ulcer formation and inflam-

mation is through administration of dextran sulfate sodium 

(DSS) to animals. Strictly speaking, DSS does not directly 

cause intestinal inflammation per se; rather, it exerts chemical 

injury to the intestinal epithelium, resulting in exposure of the 

lamina propria (LP) and submucosal compartment to luminal 

antigens and enteric bacteria, triggering inflammation. The 

effectiveness of DSS-induced colitis depends on several 

factors, including dosage (usually 1%–5%), duration (acute 

or chronic), manufacturer/batch of DSS, strain of animals 

(C3H/HeJ and Balb/c mice strains are more susceptible), sex 

of animals (male mice are more susceptible), and microbial 

environment of animals (eg, germ-free [GF] versus specific 

pathogen-free [SPF]). In addition, DSS-administered mice 

also show highly variable disease severity. Unless animals 

are treated with multiple pulses of DSS, the phenotype lacks 

the chronic changes observed in humans. Nevertheless, DSS-

induced colitis is still commonly used, given its simplicity 

to administer (usually in the drinking water) and the ease of 

controlling the dosage (to determine severity) and duration 

(to study the inflammatory or recovery process). Although the 

earliest change in this model is characterized by a progres-

sive disruption of colonic crypts, macrophages and cluster 

of differentiation 4 (CD4+) T cells become more prominent 

in areas of wound healing in the basal portion of the LP after 

the late recovery phase.11 Many chemical compounds, gene/

cell therapy, and microbial interventions have been reported 

to be therapeutically effective in DSS-induced colitis (see 

review by Mizoguchi12).

Oxazolone colitis
Intrarectal administration of the hapten oxazolone with etha-

nol into murine animals results in acute colitis. The condition 

is characterized by a T helper (Th)2-type immune response 

with a marked increase in interleukin (IL)-4 and IL-5 pro-

duction, accompanied by body weight loss, diarrhea, ulcers, 

and loss of epithelial cells in the large intestine.13 Thus, it 

resembles UC rather than other IBD subtypes, distinguish-

ing it from trinitrobenzene sulfonic acid (TNBS)-induced 

colitis (Th1-mediated immune responses), which mimics 

CD more closely. Natural killer T cells and their associated 

cytokine, mainly IL-13, are also intimately involved in 

oxazolone-induced colitis induction.14 Many studies have 

utilized oxazolone-induced colitis to test disease pathology 

and therapeutic interventions for UC.15,16 It was recently 

shown in oxazolone-treated mice that nicotine upregulates 

CD UC

Transgene/knockout Transgene/knockout

Mouse IBD models

Chemical Chemical

TNBS
Indomethacin

DSS
TNBS (Balb/c)
Oxazolone
Acetic acid
Sulfhydryl inhibitors

SAMP1/YitFc

N-cadherin dominant negative mutant

TNF∆ARE

TCRα−/−

WASP−/−

Mdr1a−/−

IL-2−/−

Gαi2−/−

IL-7 Tg

Adoptive transfer

TRUC (Tbet−/−XRag2−/−)
TGFβRIIDN
C3H/HeJBir

Figure 2 Mouse models of inflammatory bowel disease (IBD). Many mouse models are currently available that mimic the two major subtypes of IBD (Crohn’s disease [CD] 
and ulcerative colitis [UC]). Specific mouse models with characteristics of CD and/or UC are summarized. 
Abbreviations: ΔARE, a deletion nutant in AU-rich elements; DSS, dextran sulfate sodium; Gαi2, guanine nucleotide-binding protein G(i) subunit α-2; iL, interleukin; 
Mdr1a, multiple drug resistance 1a; TCR, T-cell receptor; Tg, transgenic; TNBS, 2,4,6-trinitrobenzenesulfonic acid; TNF, tumor necrosis factor; TRUC, T-bet(−/−)RAG2(−/−) 
ulcerative colitis; wASP, wiskott–Aldrich syndrome protein; TGF, transforming growth factor.
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the nicotine acetylcholine receptors on CD4+ T cells and 

increases regulatory T cell (Treg) numbers, accompanied 

by a decrease in the number of Th17 cells, resulting in the 

amelioration of the inflammatory phenotype.16 In contrast, 

nicotine treatment in TNBS-induced mice, which have 

CD-like Th1-associated inflammation, upregulates Th17 

cell numbers associated with an exacerbation of the inflam-

matory response. In a separate study, mice treated with 

3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor 

showed suppression of the Th1 response and attenuation of 

intestinal inflammation in TNBS-induced colitis, but not 

oxazolone-induced colitis.15 These examples illustrate the 

importance of choosing an appropriate model to answer a 

specific question when exploring a therapeutic potential of 

a drug/compound for a particular disease.

Acetic acid-induced colitis
Intrarectal administration of diluted acetic acid provides an 

alternative method to create chemical injury to the mucosal 

epithelium that induces a transient phenotype mimicking 

UC. The first report of this model was demonstrated by 

MacPherson and Pfeiffer17 where they instilled 10%–50% 

acetic acid into the rat rectum for 10 seconds, followed by 

flushing the lumen with saline three times. A diffuse colitis 

in an acetic acid dose-dependent manner was observed in 

these rats, with histopathological features including ulcer-

ation of the distal colon and crypt abnormalities.17 The 

ulcerated and injured mucosa, with destruction sometimes 

extending to the LP, begins to heal within days in mice and 

a few weeks later in rats.18 Subsequent modifications and 

optimization over years focused on varying the concentra-

tion of acetic acid and the contact time. As enemas of high 

concentration of acetic acid into the lumen often cause 

perforations, the latest protocol is executed using 4% acetic 

acid with 15–30 seconds of exposure. The advantages of 

acetic acid-induced colitis are its low cost and the ease of 

administration.

There are a large number of reports that describe com-

pounds that can ameliorate acetic acid-induced colitis. These 

include compounds aiming to target reactive oxidative spe-

cies such as N-acetyl cysteine, trimetazidine, vitamin E, and 

melatonin, suggesting that acetic acid-induced colitis may 

be a good model to study the efficacy of drugs that aim to 

interfere with reactive oxidative species pathogenesis.19–22 Of 

note, the epithelial injury observed within the first 24 hours 

of acetic acid induction is not immunologic in nature. Thus, 

designing drugs that target immune responses should be 

tested at a time point after 24 hours postinduction.

Salmonella-induced colitis
The gram-negative Salmonella typhimurium and Salmonella 

dublin are food-borne enteric bacterial pathogens that 

can cause intestinal diseases. Direct oral infection of 

S. typhimurium into mice results in systemic infection that 

may mask the phenotype of intestinal inflammation. However, 

this problem can be overcome by pretreating mice with an 

oral antibiotic cocktail to disrupt commensal microbial flora 

and allow better colonization of S. typhimurium, resulting in 

high-density growth of the bacterium within a day. The initial 

inflammation caused by such colonization has similar histo-

pathological characteristics to human UC, including epithelial 

crypt loss, erosion, and neutrophilic infiltration. Of note, this 

mode of colitis induction usually results in systemic infection 

within 5–7 days of infection. Therefore, it is perceived that 

S. typhimurium infection is a valuable model to study the 

acute phase, but not later stages, of colitis.

Salmonella has been shown to function as a good vector 

to introduce certain gene components into the mucosa to 

elicit immune response for vaccines against colitis.23 It can 

efficiently invade into the intestinal epithelium and Peyer’s 

patches (PP). Therefore, careful and detailed characteriza-

tion of its virulence factors is critical to efficiently create 

a safe attenuated strain for such gene therapy vaccination. 

Vaccinating mice with an attenuated mutant S. typhimurium 

strain that contains deletion of the znuABC operon, which 

encodes a zinc importer responsible for metal recruitment 

in the infected host, elicits effective immune responses and 

protects mice from subsequent Salmonella infection.23 In 

addition, elucidating how S. typhimurium interacts with 

host epithelial cells facilitates further understanding of 

ways to potentially prevent UC onset. For instance, blocking 

host inflammatory-induced proteins (eg, chitinase 3-like 1 

[CHI3L1, also known as YKL-40]) in the colon using appro-

priate antibodies (Abs) or inhibitors can prevent colonization 

of S. typhimurium on the intestinal epithelium, thus prevent-

ing further invasion.24

Adherent–invasive E. coli
The commensal adherent–invasive Escherichia coli (AIEC) 

strain was originally isolated from the ileum of CD patients 

and was shown to exacerbate intestinal inflammation in an 

opportunistic manner.25 However, AIEC can adhere to both 

small and large intestinal epithelial cells (IECs) with equal 

affinity.26 Induction of colonic inflammation in animal mod-

els using AIEC infection requires mild epithelial damage, 

such as low-dose DSS treatment, during the entire course 

of the infection. The phenotype of the colonic inflammation 
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mimics UC, including body weight loss, presence of blood in 

stool, and colonic neutrophilic infiltrations.24 A recent study 

showed that AIEC encodes a pathogenic form of chitinase, 

chiA, that is distinguishable from other nonpathogenic E. coli 

and is utilized to adhere to host epithelial cells by binding 

with colonic inducible protein CHI3L1.27 Administration of 

chitin microparticles (1–10 µm in size) into mice ameliorates 

colonic intestinal inflammation, presumably by blocking the 

interaction of bacterial-derived factors (such as AIEC chiA) 

with host CHI3L1.28 Similarly, using anti-CHI3L1 Abs also 

resulted in an ameliorative effect.24

Effective invasion into, and colonization of, AIEC in the 

mucosal epithelium is usually hindered by mucosal biofilm 

formation of probiotic bacteria, such as Lactobacillus casei.29 

Certain antibiotics result in the disruption of the intestinal 

microflora, including the probiotic biofilm, creating an ideal 

environment for the opportunistic AIEC to adhere to and 

invade IECs and macrophages. It has been shown that AIEC 

does not adhere efficiently in non-antibiotic-treated mice, 

but colonizes well in the antibiotic-treated animals.30 This 

result suggests that restoration of a beneficial microbiota, 

either through probiotic intake or other methods such as 

fecal microbial transplantation, can theoretically prevent 

further exacerbation of intestinal inflammation by commensal 

pathogenic bacteria.

Transgenic and gene knockout 
animal models of ulcerative colitis
IL-7 Tg mice
IL-7 is a pleiotropic cytokine and a candidate risk gene 

associated with UC. IECs express IL-7, which serves as a 

regulatory factor for the development and homeostasis of 

lymphocytes that express IL-7 receptor (IL-7R).31 In UC 

patients, IL-7 protein expression is significantly upregulated 

and exerts its optimal effects in maintaining long-lived 

memory CD4+ T cells in colonic mucosa.32 IL-7 appears to 

mediate the persistence of chronic colitis through the IL-7Rα 

chain expressed specifically on CD4+ T cells, but not on other 

cell types.33 Thus, blocking IL-7R functions has shown to be 

effective in suppressing adoptive transfer-induced intestinal 

inflammation in mice.34 Administration of specific anti-IL-7R 

Ab into murine colitis models (eg, Helicobacter bilis-infected 

Mdr1 KO mice) also controls macrophage and dendritic cell 

(DC) expansion.35

IL-7 Tg mice expressing the murine IL-7 complementary 

DNA spontaneously develop acute colitis at 1–3 weeks of age, 

characterized by a mixed cellular infiltration that includes 

neutrophils and lymphocytes.36 At 8–12 weeks of age, the Tg 

mice display rectal prolapse and remittent intestinal bleeding, 

with rectal erosion, goblet cell loss, and occasional crypt 

abscesses. Upregulation of IL-7R on mucosal lymphocytes 

is also associated with disease progression.36 Thus, an IL-7 

Tg mouse model is useful to understand T-cell-mediated 

pathogenesis of colitis for therapeutic interventions targeting 

T-cell functions.

TCRα KO mice
In 1993, Mombaerts et al37 showed that T-cell receptor α 

chain (TCRα) KO mice spontaneously developed chronic 

colitis, which was mediated by a Th2-type immune response 

closely resembling human UC with an inflammatory pattern 

restricted primarily to the colonic mucosa. At 4–6 months 

of age, approximately 60% of TCRα KO mice produced 

soft stools, associated with loss of goblet cells, and a mixed 

cellular infiltration mainly consisting of lymphocytes and 

neutrophils in the affected LP. Spontaneous colitis develops 

in TCRα KO animals when raised in a helicobacter-free/SPF 

facility, but not in GF or conventional (CV) environments.38 

When SPF-born TCRα KO mice were subsequently trans-

ferred into a CV environment, the mice developed attenuated 

mild colitis.39 This supports the notion that early life exposure 

to environmental microbes may be protective against colitis 

risk later in life.

Several therapeutic interventions have been tested 

in TCRα KO mice with efficacy. Daily oral administration 

of 3 mg/kg dexamethasone, a member of the glucocorticoid 

class of steroid drugs, into TCRα KO mice was effective 

in preventing goblet cell loss and leukocyte infiltration.40 

Immunotherapy treatment using anti-IL-4 Abs has also 

been shown to suppress both clinical and histological signs 

of colitis by controlling Th2-type cytokine productions.41 

Administration of purified immunoglobulin G, with a 

mixture of monoclonal auto-Abs reactive against colonic 

epithelial cells, can attenuate colitis in B-cell-deficient 

TCRα KO mice.42 Carbon monoxide, a prominent compo-

nent in cigarette smoking, exerts anti-inflammatory effects 

in TCRα KO mice through suppression of IL-1β, tumor 

necrosis factor-α (TNFα) and IL-4, as well as through 

induction of IL-10 production, providing molecular 

insights into how smoking has protections against UC.43 In 

addition, oral administration of chitin microparticles into 

TCRα KO colitic mice also showed suppression of IL-4 

and TNFα production and increased interferon-γ (IFNγ) 

production in the mesenteric lymph nodes (MLNs).28 It 

was found that chitin treatment in TCRα KO mice normal-

izes intestinal bacterial composition, as compared with 
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control groups that exhibit expansion of a certain genre 

of commensals microbes.

wiskott–Aldrich syndrome  
protein KO mice
Patients with Wiskott–Aldrich syndrome have not only 

immunodeficiency but also often autoimmune manifes-

tations, with 5%–10% of patients developing colonic 

inflammation.44,45 They either lack or express a defective 

form of Wiskott–Aldrich syndrome protein (WASP), an 

intracellular molecule specific to hematopoietic cells. Given 

the major biological role of WASP in actin polymerization, it 

is crucial for multiple cellular functions such as cell motility, 

activation, and signaling.46 Like their human counterpart, 

WASP KO mice on the 129 SvEv background also develop 

spontaneous colitis from 4 months of age. Full penetrance 

was observed at 6 months of age. The pancolitic pattern of 

inflammation along with elevations in Th2 cytokines in the 

colonic LP associated with this model mirror features of 

UC.47 Initially, it was hypothesized that aberrantly activated 

effector T cells as well as deficient and dysfunctional Tregs 

associated with WASP deficiency bore the sole responsibil-

ity for colitis development, but more recent studies have 

revealed a role of WASP KO innate immune cells in disrupt-

ing mucosal regulation.47,48 The advantages of using this 

model for studying UC pathogenesis are the Th2-skewed 

cytokine profile mimicking human disease, aberrant natural 

Treg and innate immune cell function, and a human correlate 

where a subset of patients with the same genetic defect also 

suffer from colitis.

Several treatment strategies have been investigated using 

WASP KO animals. WASP-expressing retrovirus was trans-

duced into WASP-deficient hematopoietic stem cells before 

transfer into lethally irradiated recipient mice, resulting in the 

attenuation of colitis along with normalized populations of 

mature B and T cells compared with chimeric mice with con-

trol retrovirus-transduced WASP-deficient bone marrow cells 

that developed disease.49 In addition, given that UC patients 

were found to produce lower levels of intestinal alkaline 

phosphatase, WASP KO mice were treated with oral intestinal 

alkaline phosphatase and were found to effectively attenuate 

colitis with less cellular infiltration and reduced production of 

IL-4 and IFNγ.50,51 Furthermore, direct neutralization of IL-4, 

but not IFNγ, with weekly injection of anti-IL-4 antibody 

for 8 weeks ameliorated disease.47 Lastly, administration of 

a newly formulated IL-10-immunoglobulin fusion protein 

completely abrogated colitis development in chimeric mice 

with WASP-deficient innate immune cells.48

Mdr1a KO mice
Mdr1a KO mice lack the multiple drug resistance 1a (mdr1a) 

gene, encoding for the cell surface P-glycoprotein (P-gp) 

transporter that pumps small amphiphilic/hydrophobic 

molecules across the cell membrane. Approximately 25% 

of these mice develop colitis between 8 and 36 weeks of 

age when raised in an SPF facility, but not in a GF facility.52 

Histological findings in this model include mucosal thicken-

ing and loss of goblet cells that is also accompanied by crypt 

abscesses and ulceration in the colon.52 Mdr1a KO mice are 

devoid of the proper ability to dispose of bacterial breakdown 

products in epithelial cells. The accumulation of these bacte-

rial products increases excess/abnormal antigen presentation 

to neighboring T cells, leading to a marked T-cell activation 

state that drives the colitis. Recently, T-cell involvement 

in the development of colitis in the Mdr1a KO model has 

been increasingly characterized. The lack of Mdr1a (P-gp) 

restricts the development of inducible Treg cells, thus pro-

ducing fewer functional forkhead box P3 (Foxp3)-positive 

Treg cells and therefore less IL-10 production to control and 

regulate intestinal inflammation.53 Hematopoietic-specific 

Mdr1a deficiency results in a more severe colitis than mice 

that have Mdr1a deficiency only in IECs, suggesting a critical 

role of immune cell-derived P-gp in colitis development.54

Consistent with the finding that Mdr1a KO mice in a GF 

facility do not develop colitis, prophylactic treatment using 

broad-spectrum oral antibiotics greatly reduces the incidence 

of colitis development.52 Mdr1a KO mice fed with a diet con-

taining a polyphenol compound called curcumin (commonly 

found in spices used in Asian food) demonstrated upregula-

tion of xenobiotic metabolism as well as downregulation 

of proinflammatory pathways and associated attenuation 

of histological signs of colitis.55 Meta-analysis has identi-

fied several polymorphisms in the Mdr1a locus in human 

UC, but not CD, patients that affect its gene expression and 

regulation.56 Loss of Mdr1a expression was implicated in 

UC development, but not in CD patients.57 Administration 

of the probiotics Lactobacilli upregulates P-gp expression 

under both normal and inflammatory conditions, and reduces 

myeloperoxidase activity and histological signs of injury in 

DSS-treated mice.58 These results suggest that Mdr1a KO 

mice can be utilized in the design of drugs targeting intestinal 

epithelial barrier dysfunction and in elucidating the mecha-

nisms underlying the benefits of probiotic treatment.

iL-2 KO mice
IL-2 is an effective regulatory cytokine produced by CD4+ 

T cells and amplifies stimulatory responses by promoting 
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T lymphocyte expansion. IL-2 KO mice are viable and 

develop normally before 4 weeks of age, thereafter displaying 

50% mortality. The remaining mice develop colon-restricted 

inflammation with 100% penetrance by 6 weeks of age when 

maintained in a CV environment, but not in GF conditions.59 

The clinical and histological characteristic of this inflam-

mation bears striking resemblance to human UC, including 

crypt abscess, ulcerations, and loss of goblet cells.59 Of note, 

GF-reared IL-2 KO mice showed signs of other non-UC phe-

notypes such as disturbances in bone marrow hematopoietic 

cells, lymphocytic hyperplasia, hemolytic anemia, and gen-

eralized autoimmunity, but not colitis. SPF-maintained mice 

begin to show signs of colonic inflammation only at 17–20 

weeks of age, and heightened T-cell and B-cell activation were 

found to mediate the colitis.59 These T cells are presumably 

activated through altered antigen presentation by DCs. In 

IL-2 KO mice, colonic DCs increase four- to five-fold under 

inflammatory conditions and localize within the T- and B-cell 

aggregates, expressing high levels of major histocompatibil-

ity complex class II, CD80, CD86, CD40, CD205, and C-C 

chemokine receptor type 5 molecules.60 These changes in DC 

phenotype may be induced by certain colitogenic bacteria or 

antigens. It was shown that Bacteroides vulgatus mpk mono-

colonized IL-2 KO mice do not manifest colitis but instead 

exert protective effect, unlike E. coli mpk monocolonized 

IL-2 KO mice that develop disease.61,62 Bacteroides vulgatus 

mpk-infected IL-2 KO mice increase IL-6 expression and 

semimaturation of LP DCs.62 It was reported that intestinal 

bacterial flora and endogenous antigens, but not environmental 

antigens, are the main contributors affecting SPF-associated 

colitis phenotype in this murine model.63

Specific targets have been identified to control the severity of 

colitis in IL-2 KO mice. It was noted that 2,4,6-trinitrophenol–

ovalbumin-immunized IL-2 KO mice displayed much more 

severe intestinal inflammation as compared with untreated 

mice. In contrast, mice administrated monoclonal Abs against 

the αEβ7 integrin together with 2,4,6-trinitrophenol– ovalbumin 

immunization demonstrated attenuated disease associated with 

a reduction in CD4+ cells and IFNγ production in the LP.64 In 

addition, treating 8-week-old IL-2 KO mice with green tea 

polyphenol extract in the drinking water reduced IFNγ and 

TNFα production after 1 week of treatment and displayed 

further improvement in the general histological scores of the 

spontaneous colitis after 6 weeks.65

Gαi2 KO mice
Guanine nucleotide-binding protein G(i) subunit α-2 (Gαi2) 

KO mice exhibit distinct lethal diffuse colitis phenotype 

within 5–7 weeks of age, associated with clinical and 

histopathological features resembling UC.66 These include 

colonic thickening, lymphocyte and neutrophilic infiltrations, 

crypt and goblet loss, and crypt abscesses. Cell analysis also 

showed a marked increase in memory CD44high, CD45RBlow, 

and CD62Llow CD4+ T cells in LP.67 Transfer of Gαi2 KO 

splenic CD3+ T cells, but not MLN CD3+ T cells, into 

immunodeficient mice causes severe colitis.68 B cells within 

the hematopoietic compartment appear to be an important 

regulatory factor in controlling the colitis phenotype in 

Gαi2 KO mice, as indicated by a reduction in LPS-induced 

proliferation and IL-10 production.69 Indeed, cell transfer of 

B cells isolated from wild-type MLNs can protect Gαi2 KO 

mice from colitis.

Testing of therapeutic agents in Gαi2 KO mice has 

shown positive results in ameliorating colitis. Intraperitoneal 

injection of the acellular Bordetella pertussis vaccine into 

Gαi2 KO mice demonstrated an increase in regulatory IL-10 

production in the intestine, accompanied by a significant 

reduction in colitis.70 Excessive proliferation of CD4+ T cells 

was controlled upon treatment, along with an increase in 

apoptosis of activated Th1-type CD4+ T cells. Ex vivo cul-

tures of colons obtained from Gαi2 KO mice respond to the 

anti-inflammatory agent methyl-prednisolone in a similar 

manner as colons from mice that had been orally treated with 

the same drug, as determined by inflammatory-associated 

gene expression.71 Hence, colonic culture systems, rather 

than in vivo testing, can be utilized to validate future IBD 

therapies.

Comparative evaluation  
of various animal ulcerative colitis  
models in drug development
With the current spectrum of animal models available to 

study UC, together with the explosive information of the 

underlying molecular pathogenesis of the disease, these 

resources can be carefully leveraged to determine the best 

approaches to design therapeutic drug targets to combat the 

disease (Figure 3).

The most obvious dogma is to start testing using lower 

organism models, including Caenorhabditis elegans, 

drosophila, and zebrafish, that provide a convenient and 

fast approach to doing large-scale screenings of both drugs 

and genetic targets (see review by Lin and Hackam72). 

These lower organisms are ideal subjects to study microbial 

response, as well as understanding the genetics of signal-

ing pathway or intestinal physiology. Upon identifying 

drug candidates or genetic targets from pilot tests in lower 
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organisms, further precise investigation can be performed 

using mouse models. It is important to first identify the 

most appropriate model that best represents the component 

in which the drug is exerting its effect: T-cell-mediated 

UC (IL-7 transgene, TCRα KO, WASP KO, Gαi2 KO, and 

IL-2 KO mice), B-cell biology (Gαi2 KO mice), intestinal 

barrier dysfunction (Mdr1a KO mice), and signaling path-

way dysregulation (Gαi2 KO mice). Of note, the condition 

of animal husbandry and the cleanliness of the mouse 

facility (eg, GF, SPF, or CV) will have robust effects on 

the results, including the penetrance and severity of colitis 

in the mice.

If the drug candidate does not pertain to any specific 

pathway/process, chemically induced colitis mice may be a 

good approach. The advantage of using these methods, as 

compared with spontaneous models, is the ease of controlling 

the chemical dosage, which affects the extent and severity 

of colitis. This is particularly useful when multiple doses of 

the drug are to be administered. In addition, the duration 

of the induction is also highly controllable, hence allowing 

one to dissect between onset, acute, and recovery phases of 

the colitis.

When the desired outcome of the new candidate drug/

therapy is observed in the rodent colitis models, further 

investigation can be extended to larger animal models, such 

as porcine or sheep.72 The morphology and physiology of pig 

intestine share a high degree of similarity to those of humans 

and thus may better reflect responses in patients. Finally, 

positive findings of a novel therapeutic agent in preclinical 

testing in animal models can then be extended into a Phase 

I clinical trial for human UC patients.

Role of animal models in the  
development of alternative  
and emerging ulcerative  
colitis treatments
Current drug treatment for UC patients includes 5 amin-

osalicylic acid (5-ASA), corticosteroids, thiopurines, and 

anti-TNFα Abs. Except for 5-ASA, the mechanisms of action 

of which is not entirely clear, these therapies aim to exert 

immunosuppression to control the extent of inflammation. 

However, long-term efficacy is achieved only in approxi-

mately one-third of the patients with moderate to severe 

T cell
TCRα−/− mice
WASP−/− mice
Mdr1a−/− mice

B cell
Gαi2−/− mice

Immunoregulatory
IL-2−/− mice
IL-7 Tg mice
WASP−/− mice

Epithelial signaling pathway
C. elegans
Drosophila

Bacterial virulence factors
Salmonella infection
AIEC infection

Host-microbial interaction
Salmonella infection
AIEC infection
Chemically induced colitis
(DSS, oxazolone)

Environmental/bacterial flora
C. elegans
Zebrafish
Mouse (husbandry)

Epithelial barrier
DSS
Oxazolone
Acetic acid
Sulfhydryl inhibitors
Mdr1a−/− mice

Figure 3 Ulcerative colitis (UC) models that address the specific framework of disease pathology. Invertebrate (eg, Caenorhabditis elegans, drosophila) and vertebrate 
(eg, zebrafish, mouse) models have their respective advantages in the study of UC pathogenesis. Different models can be utilized and carefully chosen to more appropriately 
address particular questions, mainly altered enteric microbial membership, intestinal epithelial dysregulation, and aberrant immune responses.
Abbreviations: AieC, adherent–invasive Escherichia coli; DSS, dextran sulfate sodium; Gαi2, guanine nucleotide-binding protein G(i) subunit α-2; iL, interleukin; Mdr1a, multiple 
drug resistance 1a; TCR, T-cell receptor; Tg, transgenic; wASP, wiskott–Aldrich syndrome protein.
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disease and is accompanied and restricted by adverse effects, 

including risks of infections, lymphoma, and nonmelanoma 

skin cancer. Animal models have provided a platform for 

insights into emerging therapies that hopefully will be more 

efficacious and/or safe (Figure 4).

Antibodies targeting immune cell 
trafficking to the gut
A potential target to treat chronic intestinal inflammation 

is to intervene with the process of immune cell recruitment 

and infiltration into the intestine. Leukocytes rapidly circu-

late through the microvasculature unless there is a specific 

signal for cells to exit the circulation and penetrate target 

organs. This process requires signaling between integrins 

on the endothelial surface (called adhesion molecules) and 

their receptors on the leukocyte surface membrane. Pertinent 

to the gut, mucosal addressin cell adhesion molecule-1 

(MAdCAM-1) is expressed only in the intestinal tract and 

its associated lymphoid tissue and is recognized by its 

receptor α4β7 on the leukocyte surface, whereas vascular 

cell adhesion molecule-1 is expressed on endothelial cells 

in other organs besides the intestinal mucosa and functions 

as a ligand for both receptors α4β7 and α4β1.73 Studies in 

animal models from more than a decade ago demonstrated 

the efficacy of inhibiting these signals in the treatment of 

chronic colitis. Podolsky et al74 and Hesterberg et al75 dem-

onstrated attenuation of acute colitis in cotton-top tamarins 

by administration of anti-α4 monoclonal antibody and anti-

α4β7 monoclonal antibody, respectively. At the same time, 

Picarella et al76 demonstrated the efficacy of Abs to β7 and 

to MAdCAM-1 in ameliorating colitis induced by transfer of 

CD4+CD45RBhi cells into lymphopenic mice. These preclini-

cal studies demonstrated the proof of concept that interfering 

with leukocyte trafficking to the intestine could be effective 

colitis treatment.

Given that expression of mucosal adhesion molecules 

MAdCAM-1, intercellular adhesion molecule-1, and vascular 

cell adhesion molecule-1 have been described in mucosal 

tissues from patients with either CD or UC, Abs to these 

molecules and their corresponding receptors were deemed 

favorable targets as novel therapies for IBD (Figure 5).77 

Natalizumab, a monoclonal antibody to α4 integrin, was 

Current standard treatment:
Corticosteroids, anti-TNFα Abs, Thiopurines
Potential emerging standard treatment:

Potential emerging alternative treatment:
Immune trafficking antibodies, cytokine signaling inhibitors

Bone marrow transplant, Helminth infection, stem cell therapy

Current alternative treatment:

Probiotics, antibiotics

Potential emerging alternative treatment:

Fecal microbial transplant

Current standard treatment:

5-ASA

Potential emerging alternative treatment:

Stem cell therapy

Restoration of enteric microbial flora

Epithelial health

Immunoregulation

Figure 4 Current and emerging drug/therapy for ulcerative colitis (UC) treatment. Current treatments of UC mainly function by immunosuppression. Emerging therapies 
of UC have potential to target three major layers of UC dysfunction, including restoration of normal intestinal microbial flora, promotion of epithelial health (restitution of 
epithelium), and suppression of immunological cell trafficking and activation, with potentially fewer side effects compared with current available treatments.
Abbreviations: 5-ASA, 5-aminosalicylic acid; Abs, antibodies; TNF, tumor necrosis factor.
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approved in 2008 by the US Food and Drug Administration 

(FDA) for severe, refractory CD after efficacy was docu-

mented.78,79 However, its use is highly limited due to the risk 

of progressive multifocal leukoencephalopathy, a potentially 

fatal demyelinating disease, given its interference with leuko-

cyte homing to the central nervous system through blockade 

of α4β1 signaling. Therefore, targeting α4β7 more specifi-

cally with vedolizumab (aka MLN02 and MLN0002) should 

theoretically avoid this risk. Data from Phase III clinical trials 

demonstrate benefit in inducing and maintaining response in 

patients with moderately to severely active CD or UC, with no 

case of progressive multifocal leukoencephalopathy reported 

thus far, despite more than 2,000 patients having received 

at least one dose of vedolizumab in a clinical trial setting.80 

At this moment, vedolizumab is awaiting FDA approval for 

both CD and UC.

Similar to the idea of blocking α4β7, an antibody against 

β7 and other specific inhibitors of trafficking to the gut are 

also actively being investigated, given encouraging results 

from animal studies. Based on the effect of β7 antibody 

on the murine colitis model of CD45RBhi transfer and the 

positive results from a Phase I study showing safety and a 

hint of efficacy, etrolizumab (aka rhuMABβ7) is undergoing 

Phase II testing for UC.76,81 Similarly, MAdCAM-1 mono-

clonal antibody PF-00547,659 demonstrated some efficacy 

for UC.82 Even though alicaforsen (ISIS 2302), an inhibi-

tor of intercellular adhesion molecule-1 (ICAM-1), was 

not obviously efficacious in CD, an enema formulation of 

an ICAM-1 inhibitor was found to be comparable with 

mesalamine (a commonly used medication) in efficacy for 

left-sided UC.83–85 Overall, these results establish inhibitors 

of gut-homing molecules to be effective in treating IBD, as 

was seen in animal models in the 1990s.

Inhibition of cytokine signaling
Instead of inhibiting particular cytokines, one successful 

method of treatment has been through blocking the signal-

ing pathway shared by multiple cytokines. Receptors within 

the IL-2R family (IL-2, IL-7, IL-9, IL-15, and IL-21) com-

prise two subunits, a shared common gamma subunit, and 

a second subunit that is specific to the particular cytokine.86 

The common gamma subunit signals through activation of 
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s
Healthy Colitis Antibody treatment

α4β7

MAdCAM-1

T cell infiltration

Y

Y
Anti-MAdCAM-1 
(eg, PF-00547, 659)

Anti-α4 (eg, natalizumab)
Anti-α4β7
(eg, vedolizumab)
Anti-β7
(eg, etrolizumab)

Up-regulation and interaction 
between MAdCAM-1 (endothelial)
and α4β7 (lymphocytes)

Inhibition of interaction/extravasation
using specific antibodiesRolling circulating lymphocytes

Figure 5 Blocking of immune cell trafficking to the colon. Upregulation of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) on intestinal vascular cells and 
expression of integrins (eg, α4β7) on lymphocytes promote interaction and adhesion of lymphocytes onto the intestinal endothelium and subsequent extravasation into 
colonic tissues. Blocking MAdCAM-1 or α4β7 using specific antibodies disrupts this interaction and control of colitis severity.
Abbreviation: ieCs, intestinal epithelial cells.
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the protein tyrosine kinase Janus kinase 3 (Jak3), which 

is expressed solely in immune cells. Jak molecules then 

transduce the cytokine signal through different isoforms of 

signal transducer and activator of transcription (STAT), lead-

ing to downstream gene activation. As STAT3 activation is 

important in IL-6-mediated T-cell proliferation and in T-cell-

mediated colitis, given STAT3 KO CD4+CD45RBhi cells are 

unable to induce colitis when transferred into a lymphopenic 

host, and given STAT3 variants have been associated with 

increased risks of UC, a selective inhibitor of Jak3 represents 

a promising novel therapeutic option for colitis without other 

unwanted effects.6,87 Preclinical data are limited to one study 

demonstrating efficacy of intraperitoneal injection of Janex-

1, an inhibitor of Jak3, in attenuating TNBS-induced colitis, 

but given known benefits in transplant rejection, rheumatoid 

arthritis, and psoriasis, it was tried on UC.88 Phase II data 

revealed efficacy of tofacitinib, an oral Jak3 inhibitor, in 

inducing response and remission in moderately to severely 

active UC in a dose-dependent manner.89 Phase III clinical 

trials are undergoing, with hopes of FDA approval in the near 

future. If confirmed to be effective, tofacitinib would become 

the only nonsteroidal oral treatment to induce remission for 

moderately to severely active UC.

Appendectomy
Appendectomy, especially during childhood, is inversely 

associated with the risk of UC development and has been 

increasingly supported by both clinical and experimental 

studies. One of the earliest observations was reported 

in 1987 by Gilat et al90 in a study in search of childhood 

causal factors of IBD. Subsequently, a large Swedish cohort 

analyzing 212,963 patients (with matched controls) who 

had undergone appendectomy before the age of 50 years 

was followed for development of UC.91 It was found that 

inflammatory-associated appendectomy (eg, appendicitis 

or lymphadenitis), but not nonspecific abdominal pain, cor-

related with the lower risk of subsequent UC. Therefore, 

inflammation of the appendix preceding appendectomy, 

rather than appendectomy itself per se, appears to confer the 

protection against UC. Importantly, this correlation is specific 

to patients who have undergone appendectomy before the 

age of 20 years.

One of the earliest reports on the effect of appendectomy 

on experimental colitis in animal models was reported by 

Mizoguchi et al92 using the TCRα KO mice. When appen-

dectomy was performed in young (3–5 weeks) TCRα KO 

mice, only 3.3% developed spontaneous intestinal inflamma-

tion after 6–7 months, with reduced MLN cell population, 

whereas up to 80% of sham-operated TCRα KO mice 

developed colitis during the same period. The structure of 

the appendix lymphoid follicle is highly similar to intestinal 

PP, and cellular proliferation rate in the appendix lymphoid 

follicle is twice that in the PP.92 Thus, it appears that appendix-

 associated/derived lymphocytes may hold key roles in UC 

development.

In a separate report, 7-day treatment with 2.5% DSS of 

mice that underwent appendectomy showed delayed onset 

and course of colitis development as compared with sham-

operated mice.93 This was also accompanied with lower 

colonic damage scores and a reduction in ulcerated mucosal 

surface area. Interestingly, splenectomy did not show any 

benefits in DSS-induced colitis. Thus, although spleen 

enlargement is a frequent phenotype during DSS treatment, 

the fact that splenectomy did not confer protection suggests 

that this enlargement is a consequence, not a cause, of DSS-

induced colitis.

Finally, the protective effect of appendectomy was also 

nicely demonstrated in a T-cell transfer colitis experiment.94 

Fluorescence-labeled colitis-inducing CD62L+ CD4+ cells 

that were transferred into immunodeficient severe com-

bined immunodeficiency (SCID) mice were found to have a 

3.5-fold preferential homing toward the appendix than the 

colon and to express high levels of α4β7 adhesion molecule 

costimulatory molecule CD154. Therefore, with the help of 

various UC animal models, detailed characterization of the 

components within the appendix may further shed light on 

the pathophysiology underlying UC development to facilitate 

future therapeutic intervention attempts.

Helminth therapy
Increasing reports on both colitis mouse models as well as 

human UC clinical trials demonstrate that helminth infec-

tion provides beneficial effects on UC. Studies on helminth 

infection in UC mouse models have provided mechanistic 

insights into how the nematode induces tolerogenic DCs that 

can block colitis development and regulate T-cell responses.95 

In addition to an immunoregulatory effect on adaptive 

immunity, evidence has supported that helminth infection 

can promote IL-22-mediated mucosal barrier regulation and 

gut microbiota to improve intestinal inflammation.96

The identification of these specific helminth factors can 

provide alternatively effective and safe treatment. It was 

demonstrated that injection of the hookworm Ancylostoma 

caninum-derived excretory/secretory factors can induce 

IL-4+ IL-10+ CD4+ T-cell response and ameliorate DSS-

induced colitis in mice.97 To specifically determine the precise 
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factors that have such protective effect, Cantacessi et al98 

have characterized the transcriptome of Trichuris suis using 

next-generation sequencing. Recently, Du et al99 reported that 

subcutaneous injection into colitic mice with a recombinant 

of a helminth excretory–secretory protein called Trichinella 

spiralis 53 kDa protein reduces disease activity index and 

macroscopic and microscopic inflammation score. Testing in 

UC animal models will hopefully further identify therapeuti-

cally effective products among helminth-derived factors to 

broaden clinical treatment options.

Amidst the success of helminth therapy in mouse models 

and human clinical trials, several reports have provided dif-

ferent effects and perspectives. Recently, Bager et al100 dem-

onstrated in population-based cohort studies that infection of 

the helminth pinworm that causes enterobiasis does not lower 

the risk of UC. They suggested that, in contrast to pinworms, 

hookworms or schistosomes thrive in tropical countries, 

and thus the higher rates of chronic inflammatory disease, 

including UC, in nontropical regions may be an effect of the 

absence of tropical helminth. In addition, Wang et al101 have 

also reported an exacerbation of disease by the tapeworm 

Hymenolepis diminuta infected into oxazolone-induced 

colitic mice through IL-5-mediated immune responses. These 

data suggest that perhaps not all helminth are protective, and 

careful characterization of helminth-based therapy in mouse 

models is critical to identify the efficacy and safety aspects 

before proceeding to human clinical trials.102

Stem cell-based therapy
Pluripotent cell-based therapy for CD is in Phase I trials, 

which may provide informative insights in the treatments 

for UC patients as well.103 Colitic IL-10 KO mice that 

were injected with nondifferentiated embryonic stem cells 

tagged with yellow fluorescence protein showed homing 

in the colon, small intestine, liver, and thymus tissues, but 

not in the spleen or bone marrow, associated with improved 

colitis inflammatory scores upon transplantation.104 In addi-

tion, transplantation of IECs from in vivo predifferentiated 

embryonic stem cells into mice was also found effective in 

reducing inflammation and in restoration of immune balance. 

A similar test using IL-10 KO mice with active colitis was 

performed through intracolonic infusion of colonic stem 

cells, which showed an ameliorative effect on colitis.105 The 

authors therefore suggested that colonic stem cells provide 

a safer option for colitis treatment, as compared with those 

of systemic stem cell administration.

Bone-marrow derived cells (BMDCs) have also been 

demonstrated to control the extent of inflammation when 

transplanted into colitic mice. Lethally irradiated DSS-

induced colitic mice transplanted with BMDCs from green 

fluorescence protein (GFP) Tg mice showed the presence of 

GFP in vimentin+ colonic interstitial cells, but not Ki-67+-

proliferating cells, cytokeratin+ epithelial cells, or CD31+ 

endothelial cells.106 The transplanted GFP BMDCs frequently 

transdifferentiated into subepithelial myofibroblasts and 

fibroblasts that reside in the colonic subepithelium even after 

recovery. To fully correct the immunodysregulation in colitis, 

it was demonstrated that total body irradiation followed by 

transplantation of BMDCs is more effective in ameliorating 

colitis in mice.107

Systemic infusion of mesenchymal stem cells (MSCs) 

in DSS-induced colitis mice also ameliorated colitis, 

characterized by downregulation of TNFα and IL-1β.108 

Mechanistically, MSC systemic infusion induced transient 

T-cell apoptosis via the Fas/Fas ligand-dependent apoptotic 

pathway.109 The apoptotic T cells then trigger macrophages 

to produce high levels of transforming growth factor-β, 

resulting in the upregulation of CD4+CD25+Foxp3+ Treg 

production and, eventually, enhanced immune tolerance. 

Colitic rats showed the presence of the transplanted MSCs 

only in the LP.110 In addition, topical implantation, rather than 

systemic transplantation, of MSCs into the chemically injured 

intestinal area is sufficient to promote the healing process.111 

This success utilizing stem cell therapy in animal models is 

promising as an emerging therapy for human disease and 

has been studied in clinical trials.103 Further investigation in 

animal models will aid in determining the long-term fate of 

the engrafted stem cells, to ensure long-term safety of this 

mode of UC therapy.

Fecal microbiota transplant
Aiming to balance the dysregulated intestinal microbiome 

has been attempted through probiotics treatment, with some 

degree of success in clinical and animal studies.112 However, 

the outcome is nevertheless variable and modest, and so 

probiotics are considered supplementary and not substitutes 

for conventional therapy. Therefore, the potential of fecal 

microbiota transplantation (FMT) to regulate the homeostasis 

of the abnormal intestinal microbiota now poses an attractive 

alternative method for UC treatment.

One of the pioneering investigations of FMT as a UC 

treatment was reported by Bennet and Brinkman,113 where 

Bennet himself was suffering from UC and self-experimented 

with FMT, reporting improvements after 3 months with 

resolution of symptoms after 6 months. Although it is 

perceived that the normal flora present in FMT donors can 
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restore the normal balance in dysregulated microbial flora 

in IBD patients, the proper mechanism behind the FMT 

effect is currently still obscure. Mice that were deficient 

in nucleotide-binding oligomerization domain 2 and given 

FMT showed a reduced disease risk and long-term changes 

in microbiota compositions.114 Conversely, wild-type mice 

that were transplanted with the dysregulated fecal microbiota 

derived from nucleotide-binding oligomerization domain 

2 KO mice showed increased disease risk, suggesting the 

presence of particular microbial subsets that may be protec-

tive or colitogenic.

Recent survey results have revealed that the majority of 

UC patients show keen interest in considering FMT in their 

treatment regimen.115 With the emerging technology and 

maturation of humanized mouse models, mouse models of 

UC will serve as a valuable tool to elucidate the mechanism 

behind FMT beneficial effects, as well as to define proper 

safety issues and long-term effects.

Herbal and plant extracts
The therapeutic effects of herbal or plant extracts have been 

exploited for centuries, and identifying and characterizing 

these components can provide alternative treatment options 

for UC patients. These include both Western-derived herbs as 

well as traditional Chinese medicine. Many of the reported 

randomized clinical trials compared the efficacy of these 

alternative agents with that of standard treatments (ie, 5-ASA, 

sulfasalazine, and steroids) or placebo. A literature review 

reported that the number of subjects who have undergone 

clinical trials using a herbal treatment for UC from 1947 to 

2013 ranges from 14 to 224 subjects, with treatment duration 

lasting for 4–12 weeks.116 No major adverse reactions, other 

than minor side effects, including nausea, constipation, and 

flatulence, were reported to be associated with these different 

herbal treatments.116 The major herb/plant extracts that have 

been shown to have potential benefit for UC include aloe vera, 

Boswellia serrata, butyrate, licorice, slippery elm, tormential 

extracts, wheat grass, curcumin, bromelain, and psyllium (see 

review by Ke et al117). One main aim of the treatment is to 

induce remission of UC, whereby aloe vera, wheat grass, and 

HMPL-004 (Andrographis paniculata extract) appear to have 

some efficacy when compared with placebo controls.118–120 

Another major goal of herb/plant extract therapy is to main-

tain remission in UC, in which curcumin, myrrh, chamomile 

extracts, and coffee charcoal treatment in patients results in a 

relapsed rate that is comparable with 5-ASA-treated patients 

in randomized clinical trial reports.121,122 However, caution 

needs to be taken in interpreting these observations, given 

many of these studies were done on patients with only mild 

disease, treatment effects were not rigorously tested with 

objective endpoints in all studies, and long-term safety and 

efficacy are not known.

Given some hint of efficacy, it is important to understand 

the underlying mechanisms behind the potential therapeutic 

effects of these herbs and plant extracts by using UC animal 

models. For instance, A. paniculata extract (HMPL-004) 

has been demonstrated to reduce splenic CD4+ T cells as 

well as inhibit CD4+ T-cell proliferation and differentiation 

into Th1/Th17 effector cells in a murine CD45RBhi cell 

transfer model.123 In Mdr1a KO colitic mice, reduction of 

colitis histological signs by curcumin treatment is associated 

with upregulation of xenobiotic metabolism and also down-

regulation of proinflammatory pathways.55 These studies 

provide further in vivo mechanistic understanding of how 

each individual herb/plant extract may work, facilitating the 

choice of the most appropriate herbal treatment for defined 

groups of patients.

Conclusion
Animal models have become indispensable tools to study 

mechanisms and treatments of diseases. Insights learned from 

such models allow us to design novel therapeutic strategies 

and to define, in a preclinical setting, the safety and efficacy 

of such novel treatments before human clinical trials. The 

fact that there are currently numerous models available also 

indicates that no single model is perfect, and it is therefore 

essential to define the specific question in mind, in order to 

identify the ideal model for study.
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