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Abstract: Metal ions play an important role in biological processes and in metal homeostasis. 

Metal imbalance is the leading cause for many neurodegenerative diseases such as Alzheimer’s 

disease, Parkinson’s disease, and multiple sclerosis. 8-Hydroxyquinoline (8HQ) is a small 

planar molecule with a lipophilic effect and a metal chelating ability. As a result, 8HQ and its 

derivatives hold medicinal properties such as antineurodegenerative, anticancer, antioxidant, 

antimicrobial, anti-inflammatory, and antidiabetic activities. Herein, diverse bioactivities of 8HQ 

and newly synthesized 8HQ-based compounds are discussed together with their mechanisms 

of actions and structure–activity relationships.

Keywords: metal binding compound, antineurodegenerative, anticancer, antidiabetic, multi-

functional actions, structure–activity relationships

Introduction
8-Hydroxyquinoline (8HQ) (Figure 1), a quinoline derivative originating in plants as 

well as from synthesis, has been used as a fungicide in agriculture and a preservative 

in the textile, wood, and paper industries.1 8HQ possesses potent coordinating ability 

and good metal recognition properties, which means it is widely used for analytical 

and separation purposes as well as for metal chelation.2

Metal ions play a very important role in biological processes, and metal homeostasis 

is required for the maintenance of metal balance.3,4 Many diseases arise from the loss 

of homeostasis including metal overload and deficiency, which are caused by abnormal 

metal metabolism or metal absorption. Of all the hydroxyquinoline derivatives, 8HQ 

is the most interesting one to be explored, owing to its multifunctional properties, such 

as diverse bioactivities and therapeutic potentials.5

8HQ is the only one, among seven isomeric monohydroxyquinolines, capable 

of forming complexes with divalent metal ions through chelation.6 Most bioactivi-

ties of 8HQ and its derivatives originate from their chelating ability. As previously 

mentioned, metal imbalance is the leading cause for many diseases, therefore, 8HQ 

is a potent chelator that may restore metal balance and be useful for the treatment 

of metal-related diseases. In this review, the bioactivities, mechanisms of actions of 

newly synthesized 8HQ-based compounds, and their structure–activity relationships 

(SAR) will be discussed.

Antineurodegenerative activity
Transition metals such as Fe, Zn and Cu are found in the brain at relatively high con-

centration and are required for the brain’s cellular processes including synaptic neuronal 
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activity and metalloenzyme function; for instance, Cu/Zn 

superoxide dismutase (SOD), cytochrome C oxidase, etc.3

Metal homeostasis dysregulation is generally accepted 

as a key predisposing factor in many neurodegenerative 

diseases such as Alzheimer’s disease (AD), Parkinson’s 

disease, multiple sclerosis and others.4,7 Increasing levels 

of redox-reactive metal ions, such as Cu and Fe, in specific 

brain regions can generate reactive oxygen species (ROS) that 

cause lipid peroxidation and toxic reactive aldehyde products. 

These finally lead to damage of cellular components.7 The 

proteasome is a cellular system that degrades unwanted or 

abnormal proteins.4 It is worth noting that metal ions can 

interact with proteins in the brain and induce their confor-

mational change, leading to protein misfolding and rendering 

them resistant to proteasomes. Moreover, metal–protein inter-

action facilitates aggregation and accumulation of misfolded 

proteins in regions of the brain,8 leading to neurotoxicity, 

neuronal dysfunction, and neuronal cell death.7,9 It has been 

suggested that dysregulation of metal homeostasis and metal 

ion–protein interactions are involved in the pathogenesis of 

neurodegenerative diseases.10–12 Therefore, metal chelation 

therapy has been proposed to be a promising approach in 

restoring metal balance and reducing neurotoxicity caused 

by metal–protein interaction.13

An ideal metal chelator for neurodegenerative treatment 

had been suggested to be a low molecular weight (MW) 

and lipophilic (uncharged) compound capable of crossing 

the blood–brain barrier to reach target sites in the brain.3 In 

addition, the selectivity of compounds in chelating certain 

metal ions but not affecting metalloenzymes would also be 

required for cellular functions.3 It is necessary that the com-

pound would be able to chelate metal ions in accumulated 

proteins3 in order to reverse proteasome resistance, thereby 

allowing misfolded proteins to be degraded.14 Moreover, 

the drug itself is required to have minimal toxicity and side 

effects.3 However, merely controlling misfolded protein 

levels may not be sufficient to reverse the neurodegenera-

tive progression in the brain.14 Therefore, a new therapeutic 

strategy for preventing metal–protein interaction has been 

recently proposed.14

A series of 8HQ derivatives, such as 5-chloro-7-iod

o-8-hydroxyquinoline, or clioquinol (CQ), 5-((4-(prop-

2-ynyl)piperazin-1-yl)methyl)quinolin-8-ol (HLA-20), 

5-((methyl(prop-2-ynyl)amino)methyl)quinolin-8-ol (M30), 

and 5-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)quinolin-

8-ol (VK-28) (Figure 2), have been reported to exert potent 

antineurodegenerative effects.15 Among these, CQ has 

reached pilot Phase II of clinical trials in AD patients.16–20

CQ was originally used as an antimicrobial for amoebic 

dysentery (traveler’s diarrhea); however, after its neurotoxicity 

was reported among the Japanese in the late 1960s, this drug 

was withdrawn from oral usage.21 The proposed mechanism 

of toxicity is that CQ decreases vitamin B12 bioavailability, 

which results in neurological symptoms.22 However, the 

neurotoxicity can be reversed by vitamin supplementation 

and dosage control.20

CQ is a potent chelator containing two electron donor 

sites located at the quinoline ring nitrogen atom and phe-

nolate oxygen atom, which give rise to its chelating ability 

(Figure 3A). Moreover, halogen groups are known to increase 

its lipophilicity to allow its absorption to target sites in the 

brain.9 CQ selectively chelates Cu and Zn ions,9,23 which play 
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Figure 1 Structure of 8-hydroxyquinoline.
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Figure 2 8-Hydroxyquinoline derivatives with potent antineurodegenerative activity.
Abbreviations: HLA-20, 5-((4-(prop-2-ynyl)piperazin-1-yl)methyl)quinolin-8-ol; M30, 5-((methyl(prop-2-ynyl)amino)methyl)quinolin-8-ol; VK-28, 5-((4-(2-hydroxyethyl)
piperazin-1-yl)methyl)quinolin-8-ol.
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a vital role in misfolded protein production, aggregation, and 

accumulation that ultimately leads to neurotoxicity in AD.9,24 

However, the selectivity of the compound can minimize the 

chance of developing a depletion in systemic metal ions.9

Recently, a dual mechanism of CQ action based on metal–

protein interaction has been proposed.14 Firstly, as Cu and 

Zn chelators, CQ can inhibit misfolded protein production 

and aggregation. Moreover, the chelation of accumulated 

Zn in misfolded proteins can reverse proteasome resistance 

and promote misfolded protein degradation.14 However, 

the affinity of the compound to chelate Zn is not enough 

to alter Zn metalloenzymes.14 Secondly, CQ can function 

as a metal chaperone in transporting metal ions into cells 

and promoting redistribution of ions that consequently acti-

vate cell signaling involved in neuroprotective cascades.25 

Thus, the activity of CQ can be attributed to two aspects: 

the prevention of neurotoxicity initiated by metal–protein 

interaction and the redistribution of metal ions into cells to 

promote protective functions.14 It has been reported that CQ 

is a potent antineurodegenerative agent that can improve 

cognitive functions in AD patients;3 however, this compound 

was not further developed owing to manufacturing difficul-

ties. This was due to the presence of a small amount of the 

carcinogenic contaminant 5,7-diiodo-8-hydroxyquinoline 

(Figure 3B) that forms during large-scale chemical synthe-

sis.14 Thus, PBT2, a second generation CQ, was developed 

to solve the problem of CQ and to improve its solubility and 

its ability to cross the blood–brain barrier.14 It was observed 

that PBT2 could selectively chelate Cu and Zn and form 

neutral soluble complexes capable of passing through cel-

lular membranes. Due to its moderate affinity to metal ions, 

after entering cells it can release metal ions from the com-

plex. This leads to bioavailable delivery of Cu and Zn into 

cells.26–28 So far, PBT2 has shown improvement of cognitive 

function as noted for CQ in Phase IIa of clinical trials in AD 

patients.29,30 Results supported by in vitro and in vivo studies 

suggested that antineurodegenerative efficacies of both CQ 

and PBT2 are based on their chelating ability and metal ion 

delivery into cells.26–28 Moreover, metal binding affinity of 

both compounds is high enough to inhibit misfolded protein 

production and aggregation but not high enough to alter the 

actions of metalloenzymes.27,31

The Fe ion is considered to be another redox-reactive 

metal ion that causes oxidative stress via the Fenton reaction. 

It is found to be elevated in many neurodegenerative dis-

eases, such as AD,3 Parkinson’s disease,32 and amyotrophic 

lateral sclerosis.33 In view of its multifunctional roles, 

8HQ-based compounds have been utilized in the treat-

ment and improvement of neurodegenerative patients. For 

example, M30 and HLA-20 (Figure  4) are novel multi-

functional 8HQ-based drugs synthesized by combining an 

Fe chelating compound possessing an antioxidant activity 

(VK-28) with the Parkinson’s drug (Ladostigil) containing 

the N-propagylamine moiety (Figure 5), which affords the 

neuroprotective property.34

As outlined in Figure 6, VK-28 can chelate excessive 

Fe ions in the brain, thereby preventing the Fenton reaction 

that produces reactive hydroxyl radicals ( ). It is capable 

of directly scavenging , which gives rise to antioxidant 

effects.35,36 Ladostigil contains the propargylamine moiety 

that accounts for its inhibition of the monoamine oxidase 

enzyme.34 This enzyme is involved in dopamine oxidation, 

which generates hydrogen peroxide (H
2
O

2
) that initiates the 

Fenton reaction in the presence of Fe2+, leading to oxidative 

stress in neurons.32 Compounds M30 and HLA-20 have 

moderate chelating affinity toward Fe, Cu, and, Zn, with 

the order Fe3+  .  Cu2+  .  Zn2+, and they strongly inhibit 

mitochondrial membrane peroxidation in vitro with a half 

maximal inhibitory concentration (IC
50

) in the micromolar 

range.15,37 In vitro studies indicated that M30 upregulates 

expression of  regulated hypoxia inducible factor, 

which is a hypoxia mimetic regulator, resulting in neuronal 

prosurvival and cytoprotective effects.38–40 In addition, M30 

has been reported to exhibit neurorescue and neuroprotective 

activities in animal models.41

Therefore, both HLA-20 and M30 are novel multi-

functional drugs that exhibit promising antioxidant and 

neuroprotective effects as well as antidepressant activity. 

These bioactivities arise from the ability of the compounds 

to elevate levels of dopamine, serotonin, and norepinephrine 

in the brain through the inhibition of the monoamine oxidase 

enzyme.42

Anticancer activity
It has been well recognized that redox-active metal ions do 

not only play important roles in normal cells but are also 
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Figure 3 Clioquinol and its electron donor sites (A) and 5,7-diiodo-8-
hydroxyquinoline (B).
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essential in cancer cells. Some transition metal ions, such as 

Fe and Cu are considered as cancer risk factors.43–50

In normal cells, Fe serves as a prosthetic group in many 

enzymes that are required for physiological processes, such as 

oxidase, catalase, and ribonucleotide reductase. In contrast, it 

generates ROS, leading to lipid peroxidation and damage to 

cellular components, such as lipids, proteins, and DNA.51,52 

Thus, Fe plays essential roles in cancer via the generation 

of ROS as well as serving as a nutrient for the growth of 

cancer cells.43

Most Fe that exists in the human body is in the protein-

bound form that cannot promote lipid peroxidation or ROS 

formation.51 In addition, free Fe per se is a poor catalyst for reac-

tive oxygen metabolites, but Fe toxicity arises when it binds to a 

low-MW chelator. Therefore, the formed Fe-chelator complex 

causes the dissociation of H
2
O

2
 into .53 The chelating ability 

of 8HQ has been proposed to account for its observed cytotoxic 

activity as afforded by the Fe-8HQ complex.54

The formed Fe-8HQ lipophilic complex is capable of 

entering and being distributed within cells,55 causing massive 
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Figure 4 M30 and HLA-20 are hybrids of Ladostigil and VK-28.
Abbreviations: HLA-20, 5-((4-(prop-2-ynyl)piperazin-1-yl)methyl)quinolin-8-ol; M30, 5-((methyl(prop-2-ynyl)amino)methyl)quinolin-8-ol; VK-28, 5-((4-(2-hydroxyethyl)
piperazin-1-yl)methyl)quinolin-8-ol.

N

Propargylamine

Figure 5 Propargylamine moiety.

breakage of DNA strands. In order to repair damaged DNA, 

large quantities of adenosine triphosphate are required, which 

consequently leads to cellular adenosine triphosphate deple-

tion and finally cell death.56 As such, possible mechanisms 

of DNA damage were proposed. The Fe-8HQ complex may 

be formed at specific sites that break the phosphodiester 

backbone of DNA, acting as chemical nucleases, causing 

oxidative degradation at the deoxyribose moiety.57 In other 

words, the Fe-8HQ complex acts as a cytostatic drug.58 

Another possible mechanism is that the Fe-chelator complex 

induces membrane damage, that leads to loss of calcium 

homeostasis, which triggers endonuclease to cleave DNA 

in an apoptotic-like manner.54 Results from SAR studies 

demonstrated that 8HQ is a crucial scaffold for anticancer 

activity.59 This relationship is derived from the ability of 

the compound to form chelate complexes with metal ions, 

incorporated with essential enzymes for DNA synthesis,60 

possibly, ribonucleotide reductase.61 Moreover, bis-type 

structure of 8HQ is required for potent anticancer activity.62 

In fact, S
1
 [bis-N-(8HQ-5-ylmethyl)benzylamine] has been 

reported to form Fe complexes with higher affinity to exert 

higher antiproliferative effects as compared to o-trensox 

(ie, the reference drug). However, o-trensox is a very high 

affinity Fe chelator in hepatocyte cultures.60 The results 

indicated that S
1
 is a promising starting point for anticancer 

drug development.60 In addition, metal complexes of mixed 
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ligands of 8HQ-uracils (Figure  7) have been reported to 

provide significant cytotoxicity against human cancer cells 

(ie, HepG2, A549, HuCCA-1, and MOLT-3).63

Recently, great interest in metal complex compounds 

has extensively increased due to their wide range of 

applications.64 The interaction of metal complexes with DNA 

has been studied for biotechnology and medical applications 

including their use as anticancer drugs.65 The metal complex 

binds reversibly to DNA via noncovalent interactions, such 

as electrostatic binding, groove binding, and intercalative 

binding.66,67 Intercalation between metal complexes and 

DNA bases is considered to be the most important binding 

mode giving rise to antitumor activity.68 This causes DNA 

conformational changes, which finally leads to DNA strand 

stress and breakage.69

The intercalating ability of metal complex compounds 

are dependent on the planarity of the ligands, the coordina-

tion geometry, types of ligand donor atoms, and metal ions.70 

Sulfonamide-substituted 8HQ metal complexes have been 

reported to exhibit higher DNA binding affinity than that 

of free ligands.69 The highest binding efficiency among 

metal complexes that are formed using the same ligands 

was found to be that of Cu complexes.69 It was suggested 

that pharmacological activities of metal complexes are 

dependent on the nature of both the ligands and the metal 

ions.71 This notion was demonstrated for metal complexes 

synthesized from different types of metal ions using the same 

ligand; such metal complexes were found to exert different 

bioactivities.72,73

Cu ions are a risk factor predisposing to cancer, and they 

also serve as an essential cofactor for tumor angiogenesis, that 

is crucial for tumor growth and metastasis.44–47 High levels of 

Cu in tissue or serum has been found in many cancer patients 

including those with breast, prostate, colon, lung, and brain 

cancer.74–78 It was suggested that Cu could be used as one of 

the selective targets for cancer treatments.79

The anticancer effects of 8HQ derivatives, such as CQ, 

are related to Cu and Zn ions. As a Cu chelator, CQ exerts 

selective antiangiogenesis activity80 toward breast cancer81, 

prostate cancer,79 leukemia, and myeloma,82 with less effect 

on normal cells. In addition, the antitumor activity of CQ 

has been proposed to be tightly associated with proteasome 

inhibitory ability,79 which is elicited through ionophore 

actions.

Ionophore is a subset of metal-binding drugs that are 

capable of transferring multiple metal ions across biological 

membranes, either in or out of cells.83–85 Two properties are 

required for metal-binding compounds to act as ionophore, 
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which are described as follows. First, compounds should 

have low to moderate metal affinity, allowing them to bind 

metal ions in higher concentration areas and release them in 

lower concentration areas.80 Second, a suitable logarithmic 

measure of acid dissociation constant value (pKa) is neces-

sary for compounds to be protonated upon entering cell 

compartments, which induces the release of metal ions from 

the complex.80 If the extracellular pH is higher than the pKa 

of the ionophore, the compound will form a complex with 

the metal ion. Once the metal complex passes into the cell, 

where the pH is lower than the pKa, the metal ions will be 

released.80 Both properties have been noted for CQ thereby 

allowing it to act as an ionophore with the capability to 

transport Cu and Zn ions into cells.25,26,86

As a Cu ionophore, CQ has been reported to be able to 

deliver metal ions into cells, where it exerts its activity.79 

CQ has been found to interact with Cu ions in tumor cells 

to form active Cu complexes which target the proteasome.87 

Either Cu1+ or Cu2+ interact with electron donors, such as thiol 

and amino groups that are located outside the active site of 

proteasome88–90 thereby causing its conformational changes. 

These effects finally lead to proteasome inhibition79,87 and 

apoptosis of tumor cells.87 Some organic Cu complexes 

including CQ-Cu complexes have been reported to exhibit 

potent proteasome inhibitory effects on tumor cells but not 

on normal cells.81,91 Moreover, in vivo study of the effect on 

prostate cancer cells and xenografts by CQ was reported.79 

The results showed that CQ alone can form an active metal 

complex with Cu of tumor cells, leading to androgen receptor 

repression, angiogenesis reduction, and apoptosis induction. 

Particularly, androgen receptor overexpression was found 

in all stages of prostate cancer,92,93 indicating that CQ may 

serve as an excellent antiandrogen receptor agent for prostate 

cancer treatment and prevention.79

Besides acting as the Cu ionophore, CQ also provides 

anticancer activity as the Zn ionophore.84 The CQ-Zn com-

plex is a known proteasome inhibitor; however, its growth 

inhibitory effect is weaker than that exerted by the CQ-Cu 

complex.84 In addition, CQ relays Zn ions to lysosomes85 

and inhibits nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) activity84,94 thereby leading to 

lysosomal disruption and cell apoptosis.84,95

The ionophore property of CQ was confirmed by add-

ing metal ions, such as Cu and Zn, which can potentiate its 

cytotoxic activity instead of reversing the effects, as can be 

expected in the case of metal chelators.80 This indicated that 

CQ can transport metal ions into cells and exhibits cyto-

toxic activity.80 Furthermore, the anticancer activity of 8HQ 

derivatives on human cancer cells indicated that the effect is 

enhanced by Cu ions, a redox-reactive metal ion, as it leads to 

an elevation of ROS. However, such effects were not observed 

for Zn ions, which are non-redox reactive metal ions.96

It has been further demonstrated that nitro containing 

8HQ derivatives such as nitroxoline (8-hydroxy-5-nitroquin-

oline; NQ) (Figure 8) exerted more potent anticancer activity, 

with a IC
50

 of 5–10-fold less than that of CQ (halogenated 

8HQ derivative), and may be less neurotoxic.96 Unlike 

CQ, the antitumor effect of NQ is mainly exhibited via an 

increasing level of ROS in cells. The nitro moiety of NQ is 

a nitrogen radical source that initiates redox reactions, that 

consequently alters intracellular signaling thereby leading to 

antiangiogenesis and inhibition of tumor cell growth. These 

effects are enhanced by Cu but not Zn ions. This hypothesis 

was supported by studies that demonstrated that NQ acted as 

an antiangiogenic agent both in vitro and in vivo.84

It is notable that Cu ions enhanced the cytotoxic activity 

found in NQ.96 While Zn ions are known to enhance cytotoxic 

activity, the activity is found only in association with com-

pounds containing an iodine moiety on the C-7 position of 

quinoline rings, such as CQ.96 However, the mechanism by 

which Zn enhances the cytotoxic activity has not been fully 

elucidated.96 The neurotoxicity of CQ has been reported to 

be involved with the Zn transporting activity.86,97 CQ that 

contains iodine at the C-7 position is capable of acting as a Zn 

ionophore, while NQ does not.96 Such an observation explains 

why NQ is less neurotoxic than CQ. Moreover, neurological 

diseases have not been reported in patients treated with NQ,98 

suggesting that NQ is a novel compound with less neurotoxic-

ity and should be further developed as an anticancer drug.

Recently, glucoconjugates of 8HQ derivatives (Figure 9) 

were developed as anticancer prodrugs in order to improve 

the selectivity and to avoid chelation of systemic metal ions.99 

It was reported that glucose avidity, increased glycolysis 

rate, and overexpression of glucose transporters were found 

in cancer cells.100 The study indicated that glucoconjugates 

could enhance drug delivery owing to the presence of the 

glucose moiety in drug molecules. The molecular structures 

of conjugated glucose can mask the chelating properties of 

compounds until they reach their target sites. Moreover, the 

presence of glucose in the drug structure promotes a more 

selective action by exploiting glucose transporters, which 

were found to be overexpressed in cancer cells.99 Therefore, 

glucoconjugated drugs are more selective to cancer cells and 

can cause less systemic side effects.99 After glucoconjugates 

are trapped in target cells, glucose moieties are hydrolyzed 

by specific β-glucosidases, which allows the compounds 
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was supported by the finding that the minimum inhibitory 

concentration (MIC) value was not changed by the addition 

of metal ions such as Fe, Cu, Mn, Zn, or Ni.109 Therefore, 

it was suggested that 8HQ interacts with several molecular 

targets to evade TB resistance.109

Most of the clinically used antituberculosis drugs are known 

to be more active against replicating TB and are able to kill both 

types of TB. The more potent actions were exhibited against the 

nonreplicating type as was observed in 8HQ, which has not been 

reported in the literature.109 Thus, 8HQ could be a promising 

compound for the improvement of TB treatment.109

The antitubercular activity of CQ-metal complexes were 

also reported.113 In particular, a series of mixed ligand metal 

complexes using CQ and 1,10-phenanthroline as ligands 

to coordinate with transition metal ions were synthesized 

and tested for antitubercular and antifungal activities.113 It 

was found that the Mn(II) complex was active against TB 

(MTCC200) with comparable MIC to the standard drug rifam-

picin with MIC values of 45 µg/mL and 40 µg/mL, respec-

tively,113 whereas the  Co(II) complex showed more potent 

activity with MIC 6.4-fold less than that of rifampicin.113 This 

study showed that free ligands and metal complexes exerted 

higher antitubercular activity than that of metal salts.113

Inhibitory effect on Escherichia coli
A previous study reported the antimicrobial effects of 

8HQ and its derivatives including 2-hydroxyquinoline 

(2HQ), 4-hydroxyquinoline (4HQ), and 6-hydroxyquinoline 

(6HQ) as well as 2-methyl-8HQ against human intestinal 

bacteria (Bifidobacterium longum, Clostridium difficile, 

Clostridium perfringens, E. coli, Lactobacillus acidophilus, 

and Lactobacillus casei).103 The results from the paper disc 

agar diffusion method demonstrated that only 8HQ could 

exhibit anti-intestinal bacterial activity. Strong inhibition was 

also observed for E. coli and C. difficile at a concentration 

of 0.5 mg/disc and for C. perfringens at a concentration of 

0.1 mg/disc. The SAR study indicated that different posi-

tions of the hydroxyl group but not the methyl group on the 

quinoline ring gave rise to growth inhibitory activity against 

intestinal bacteria. Particularly, compounds with an OH group 

at the C-8 position displayed effective E. coli, C. difficile, 

and C. perfringens inhibitions.103 On the other hand, 2HQ, 

4HQ, and 6HQ showed no growth inhibition against all of 

the tested intestinal bacteria.

Inhibitory effect on Staphylococcus aureus
Aqueous formulation of 8HQ (0.5% 8HQ), or com-

mercially available as AQ+, was reported to strongly 
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N
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Figure 8 Chemical structures of nitroxoline (NQ) and clioquinol (CQ).
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Figure 9 Glucoconjugates of 8-hydroxyquinoline and clioquinol.
Abbreviations: Glu8HQ, glucoconjugate of 8-hydroxyquinoline; GluCQ, 
glucoconjugate of clioquinol.

to display chelation and exert antiproliferative effects.101 It 

has been demonstrated that 8HQ-glucoconjugates are novel 

compounds with potential for further development as selec-

tive anticancer treatment.99

Antimicrobial activity
Antimicrobial effects of 8HQ and its derivatives encom-

passing antibacterial,102–104 antimalarial,105–107 antiviral,108 

antitubercular,109 and antidental plaque activities110,111 have 

been previously reported.

Antibacterial activity
Antitubercular activity
Nonreplicating Mycobacterium tuberculosis (TB) or latent 

TB is more tolerant to most antituberculosis drugs than 

the replicating type of TB and requires a more prolonged 

treatment.109 In fact, more than 200 8HQ-like compounds 

were identified to have an inhibitory effect against replicating 

TB.112 Results showed that 8HQ itself exerted the most potent 

activity among other compounds in its class.113 8HQ can kill 

both replicating and nonreplicating TB in vitro, with a more 

potent effect noted for the nonreplicating type.109 Moreover, 

toxicity toward mammalian cells was not observed within the 

tested range of concentrations (0.1–10 µM), suggesting its 

safety in humans.109 Insight into its mechanism of action was 

not fully elucidated; however, the bidentate chelating prop-

erty of 8HQ was probably not the primary mechanism. This 
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inhibit the growth of S. aureus including methicillin-

resistant S. aureus (MRSA), methicillin-susceptible 

S. aureus, and vancomycin-intermediate S. aureus and 

displayed median MIC of 0.25%, which is equal to an active 

ingredient concentration of 12.5 µg/mL at optimum pH of 

9.2.1 Lowering of the pH value caused a reduction in its effi-

cacy: pH 7.5 yielded 4-fold reduction, and pH 5.5 resulted 

in 8-fold reduction.1 Interestingly, MRSA and vancomycin-

intermediate S. aureus were equally susceptible to AQ+ as 

was observed for methicillin-susceptible S. aureus. It was 

suggested that the susceptibility to AQ+ was not influenced 

by antibiotic resistance determinants of the microbe.1 Data 

from electron microscopy indicated that AQ+ actively disrupts 

bacterial cell walls thereby leading to cell lysis.1 A time-

killing study showed that AQ+ killed 99.9% of all bacterial 

cells from tested isolates within 6 hours. The time-killing 

curve of AQ+ was similar to that of gentamicin. Moreover, 

at higher concentration of AQ+, a more rapid killing effect 

was observed.1 MRSA is carried in the anterior nares, and 

it should be noted that mupirocin-containing nasal ointment 

is currently being used to prevent transmission; however, 

antibiotic resistance had been reported to increase.113 Owing 

to the lipophilicity of 8HQ and its potency against various 

S. aureus strains as well as its rapid killing nature, it has been 

suggested that this compound could be used as topical hand 

cleansing agent to prevent MRSA transmission.1

The efficacy of 8HQ in inhibiting S. aureus is dependent 

on its chelating ability and is enhanced in the presence of 

Cu. In addition, 8HQ derivatives were found to inhibit S. 

aureus strains.102 Quantitative structure-activity relationships 

(QSAR) study performed on 24  substituted 8HQ deriva-

tives showed that ten three-dimensional descriptors such as 

molecular refraction (MR), partition coefficient (logP), total 

energy (E), standard Gibbs free energy (G), lowest unoccu-

pied molecular orbital (LUMO), highest occupied molecular 

orbital (HOMO), total molecular energy (TotE), Wien index 

(WInd), Balaban index (BInd), and octanol-water ClogP 

were significant for the development of highly predictive 

(R2 = 0.988) model.102 Moreover, potent activity was found 

in ester derivatives rather than styryl derivatives.102

Antidental plaque activity
Antidental plaque activity of 8HQ derivatives has been 

reported.110,111 Dental plaque is a combination of oral micro-

organisms colonized on oral surfaces in which a microbial 

consortium or oral biofilm is formed.115 Mutans strepto-

cocci and Porphyromonas gingivalis are the most important 

among such oral microorganisms since they are pathogens 

of dental caries and periodontal diseases, respectively.115 At 

equilibrium, oral biofilms are beneficial for the prevention of 

exogenous and potentially pathogenic species colonization. 

However, unfavorable disruption of dynamic balance between 

host and microbial community at local sites eventually leads 

to an overgrowth of virulent or pathogenic species causing 

diseases.116 Mutans streptococci comprises two species, 

Streptococcus mutans and S. sobrinus, in which S. mutans 

is highly prevalent in dental plaque and is considered as 

an etiological pathogen for dental caries.117 An in vitro 

study of antidental plaque activity of three 8HQ deriva-

tives, namely 8HQ sulfate, 5-chloro-7-iodo-8HQ (or CQ), 

and 5,7-dichloro-8HQ, against S. mutans, Streptococcus 

sanguis, Actinomyces viscosus, and Actinomyces naeslundii 

was reported. The result showed that all 8HQ derivatives 

differentially inhibited each of the tested organisms.111 These 

compounds were prepared in percentage concentrations in 

polyethylene glycol owing to their sparingly water-soluble 

nature.111 CQ and 5,7-dichloro-8HQ exerted a bactericidal 

effect at 0.05% concentration on S. mutans (cariogenic) and 

A. viscosus (periodontogenic), whereas 8HQ sulfate showed a 

bacteriostatic effect against both pathogens at a higher (0.3%) 

concentration.111 It was demonstrated that halogenated 8HQs 

were more potent dental plaque inhibitors.110,111 The low water 

solubility is a limitation in using these bioactive compounds 

via an aqueous vehicle such as mouth rinse.111 However, such 

compounds could be used via a polyethylene glycol vehicle 

as an ointment or additive ingredient in dentifrice to control 

dental diseases.111

It is widely known that the antibacterial activity of 8HQ 

is closely related with its chelating ability, therefore, Fe or 

Cu chelation is required for the activity.110 Previous SAR 

studies indicated that substitution near the nitrogen atom or 

the phenolic group could alter the chelating ability, which led 

to a reduction of the antimicrobial activity.118,119 This study 

demonstrated that the hydrophobic logP parameter alone is 

not adequate for accurate computational prediction. Thus, 

electronic parameters such as pKa and steric parameters 

including MW and molecular refractivity are required for 

antidental plaque prediction.110 The QSAR study showed that 

two main factors are involved in antidental plaque activity 

of 8HQ against S. mutans.110 The results revealed that com-

pounds with increased lipophilicity and electron-withdrawing 

substituents at the 5-position led to improvements in the activ-

ity, whereas bulky substituent groups afforded a decrease in 

the activity.110 According to these findings, the most potent 

S. mutans inhibitor should contain small C-5  substituents 

with lipophilicity and electron-withdrawing properties.110 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2013:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1165

8-Hydroxyquinolines chelating properties and medicinal applications

Notably, CQ contains a 5-chloro group with lipophilicity 

and an electron-withdrawing nature, making this compound 

a good S. mutans inhibitor.110

Antimicrobial activity of metal  
complexes and novel compounds
Metal-8HQ complexes
The antimicrobial activity of divalent metal-8HQ complexes 

and their mechanisms of action have been proposed.120 It was 

assumed that 8HQ uses its high lipophilicity to penetrate 

bacterial cell membranes in order to reach its target site 

of action, which could possibly be a metal-binding site of 

bacterial enzymes. The metal-8HQ complex will dissociate 

into a 1:1 ratio of 8HQ-metal charged complex and 8HQ free 

ligand.120 The charged 8HQ metal complex can bind and block 

the metal-binding sites on bacterial enzymes, which gives rise 

to the antimicrobial effect.119 Therefore, the lipophilicity, as 

indicated by the logP, is considered to be an important factor 

for antimicrobial activity of the investigated compounds.120 In 

addition, the dissociated free ligand of 8HQ possesses high 

chelating ability that could bind metallic prosthetic groups 

of microbial enzymes thereby leading to the inhibition of 

enzymatic activity.5,120

Recently, 8HQ-uracil metal complexes bearing antimi-

crobial activity (Figure 7) have been reported.121 The com-

plexes exhibited growth inhibition against many strains of 

Gram-positive and Gram-negative bacteria including resistant 

pathogens, such as S. aureus, Enterococcus faecalis, and 

Candida albicans.121

Previously, 4-benzenesulfonamide (HQMABS), shown 

in Figure 10, is a hybrid of 8HQ and sulfanilamide and was 

reported to be a ligand for metal complexes.5 This study 

showed that HQMABS exhibited more potent antimicrobial 

activity with higher sensitivity against Gram-positive bac-

teria as compared to their individual parent compounds (ie, 

8HQ and sulfanilamide).5 This demonstrates that there is a 

synergistic effect of 8HQ and sulfanilamide that facilitates 

the penetration of HQMABS into the site of action in bac-

terial cells.5 Therefore, HQMABS exhibited antimicrobial 

effects through a similar mechanism to that of 8HQ, as a 

membrane active agent via metal ion chelation.122 On the 

other hand, all metal complexes of HQMABS displayed 

weak to moderate activity as compared to their respective 

free ligand, HQMABS. Moreover, the antimicrobial activ-

ity of these compounds is dependent on the nature of the 

ligands, concentration and lipophilicity of the compound, 

nature of metal ions, geometry of the complex, and coor-

dinate sites.5

8HQ-based quaternary cationic surfactant
Quaternary cationic surfactants (Figure 11) were synthesized 

from the reaction of 8HQ and long chain alkyl halides.104 

The study showed that cationic amphiphilic structures of 

quaternary salts allowed the compounds to interact with the 

bacterial lipid bilayer membrane.122 The effect may alter the 

membrane itself or cause toxicity to the membrane thereby 

leading to bacterial cell death.123 The activity of these 

8-hydroxyquinolium derivatives is dependent on both the 

polar heads (ie, size and electronic charge distribution) and 

the hydrocarbon chain length.104 It was found that the activity 

increased from C-12 to C-14 carbon atoms and decreased 

in the case of C-16.104 This suggested that cationic and long 

chain hydrocarbons of an appropriate length facilitate bacte-

rial killing via membrane attack.

Antiviral activity
It is well recognized that nucleic acid binding ability is 

important for RNA-dependent-DNA polymerase inhibi-

tion, which is essential for antiviral activity.124 Among the 

groups of tested metal-binding compounds, 8HQ exhibited 

high antiviral activity with approximately 50-fold higher 

activity.124 Moreover, the binding activity of the Cu complexes 

of 8HQ and its derivatives were significantly higher than their 

respective free ligand forms.124 Interestingly, this activity was 

enhanced markedly when an equimolar concentration of Cu 

was added.124 According to Albert et al,119  the ratio of metal 

complex and their free ligand was shown to affect their anti-

bacterial and antifungal activities; particularly only the 1:1 

ratio provided the activity. It was found that increasing the 

amount of ligands resulted in the formation of more inactive 

complexes, thereby resulting in decreased activity – which is 

known as concentration quenching. This phenomenon was 

observed when high concentrations of drugs gave rise to 

lower inhibition of DNA synthesis in comparison to using a 

low drug concentration.124 Despite binding to viral nucleic 

acid, another possible mechanism of antiviral activity is its 

binding to Zn in enzymes, thereby leading to the inactiva-

tion of viral enzymes.125,126 However, the stability of the Cu 

complex is much greater than that of the Zn complex.127 This 

was supported by the study demonstrating that the 8HQ-Cu 

complex inhibited RNA-dependent-DNA polymerase as well 

as inactivating Rous sarcoma virus and herpes simplex virus 

with comparable activity as to that of 8HQ free ligand.112 

Therefore, antiviral activity as exerted by ligand binding to 

Zn metalloenzymes may not be possible.112

Macrocyclic polyamines such as AMD3100 (Figure 12) 

has reached Phase II of clinical trials and is considered to 
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Figure 10 Chemical structures of HQMABS and metal complexes.
Abbreviation: HQMABS, 4-benzenesulfonamide.
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Figure 11 Quaternary ammonium salts of 8-hydroxyquinoline.

be a prototype for an antihuman immunodeficiency virus 

compound.108 AMD3100 is known to block host cell entry 

via blocking cell surface G-protein-coupled receptors, such 

as CCR5 and CXCR4, which are chemokine receptors.128–130 

Hydroxyquinoline-polyamine conjugates (Figure 13) were 

synthesized using hydroxyquinoline conjugation with 

polyamine backbones or polyazamacrocycles in order 

to mimic chemokine receptor antagonists.108 The results 

showed that the conjugated compounds elicited antihuman 

immunodeficiency virus activity against two viral strains, 

Human immunodeficiency virus (HIV), 1  LAV and HIV-1 

BaL, whereas CQ and polyazamacrocycle were shown to be 

inactive.108 Interestingly,  AMD3100 (the reference compound) 

is only active against HIV-1 LAV thereby suggesting that 

the quinoline moiety is necessary for conjugated polyamine 

compounds as anti-HIV agents against both viral strains.108

Antiparasitic activity
Antimalarial activity
Malaria is considered to be a life-threatening infectious 

disease worldwide.131 Quinoline-containing compounds 

have been used for malarial treatment, such as quinine.132 

Unfortunately, drug-resistance has been continuously 

reported107, thus, the search for novel quinolone-based 

compounds is a demanding issue.133 Studies have shown 

that high sensitivity of  human malaria to such compounds 

is mainly due to high lipid-water logP and metal-binding 

constants.134–139 It was noted that the inhibition of Plasmodium 

falciparum multiplication and the chelating ability of the 

compounds were directly correlated.106 Chelators are known 

to interact with parasitic enzymes in different ways, such as 

by interacting with sulfhydryl groups, with amino groups, 

and with certain metal ions of enzymes.137 8HQ as a potent 

chelator with high lipophilicity, and is known to possess an 

antimalarial effect against the intracellular stage of malaria 

in red blood cells by inhibiting a variety of metalloprotein 

oxidase enzymes, thereby resulting in the inhibition of 

glycolysis and parasitic growth.135 In vivo toxicity of 8HQ 

derivatives as diabetogenic agents (Figure 14) has previously 

been reported. However, a small group of substituents at the 

C-5 and C-7 positions on the quinoline ring can markedly 

lower the toxicity in higher animals.106

Substitution with a chlorine group at the C-5 or at 

both the C-5 and C-7 positions of 8HQ (Figure 14A and 

B, respectively) was shown to increase the lipid solubility 

and chelating ability of the compounds. These increases 

are expected to be an effect of the phenolic group that leads 

to improvement in metal chelation.106 Surprisingly, in this 

case, an improvement of the antimalarial activity was not 

observed.106 Unlikely to be found in bacterial systems, the 

addition of an extra aromatic ring at the C-5 and C-6 posi-

tions (Figure 14C and 14D, respectively) was shown to not 

only increase its lipophilicity but also led to a decrease in 

its antimalarial activity. This could be attributed to the bulky 
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Figure 13 Chemical structures of hydroxyquinoline-polyamine conjugates using 
hydroxyquinoline conjugation with polyamine backbone or polyazamacrocycles.

structures of the aromatic ring, that may cause steric effects 

and thereby hinder the compound from interacting with 

macromolecules on plasmodial enzymes or receptor sites.106 

It was suggested that the substitution of C-5 or C-7 positions 

with electron-withdrawing groups or aromatic rings could 

improve the lipophilicity of the compounds and is likewise 

beneficial for drug delivery to target an intracellular site of 

action. Thus, improved chelating ability and reduced in vivo 

toxicity were observed, but antimalarial activity showed no 

improvement. This indicated that the antimalarial effect as 

afforded by these compounds may be contributed to other 

factors.106

Linkages of antiparasitic and anticancer activities
Metabolic pathways in intracellular parasites (ie, T. gondii 

and P. falciparum) and in cancer cells are more sensitive to 

oxidative stress than normal cells and are dependent upon 

glycolysis in order to produce energy. In addition, some anti-

cancer drugs were found to have antimalarial activity.138–140 

Results from computational screening of quinoline-based 

antitumor compounds showed that nitrogen substitution at 

the C-5 position of the quinoline ring is required for anti-

protozoal activity. Apparently, 5-nitroso-8HQ (NSC3852) 

(Figure 15) exerted the most potent predicted activity and 

is therefore relevant to the experimentally observed activity 

against T. gondii, with a half maximal effective concentra-

tion of 78.6 nM. But, its activity against P. falciparum was 

found to be eight times less active than that for T. gondii.105 

So far, NSC3852 was reported to exert anticancer activity 

as elicited through the production of superoxide anion and 

nitric oxide (NO) against breast cancer cells.141 In contrast, 

antiprotozoal activity of NSC3852 was attributed to differ-

ent mechanisms.105 Particularly, it was hypothesized that 

NSC3852  increased the intracellular oxidative stress via 

indirect mechanisms. This involves arylation of protein 

sulfhydryls and the depletion of intracellular glutathione,142 

which resulted in the metabolism of NSC3852 to non-redox 

cycling naphthoquinone and NO release from the nitroso 

group of the compound.105

Interestingly, antiparasitic and anticancer activities of 

8HQ derivatives are potentiated upon complexation with 

metal ions such as Cu and Zn.84 A series of antimony-

8HQ complexes were synthesized and found to exhibit 

more potent antitrypanosomal and cytotoxic activities 

when compared to Sb salt (SbCl
3
) and their free ligands, 

which are 8HQ, 5-chloro-8HQ, and 5-chloro-7-iodo-8HQ 

(or CQ).143

Antioxidant activity
Oxidative damage is frequently found in many diseases such 

as aging, atherosclerosis, cancer, diabetes,144 and neurode-

generative diseases.7 Free radicals are continuously produced 

in cells through a wide range of biological processes.144 

For example, the changing oxidation stage of Cu, which 

is a cofactor of SOD, results in the generation of ROS.145 

Therefore, antioxidant defenses, such as those afforded 

by tocopherol, ascorbic acid, SOD enzyme, and catalases, 

are necessary in the maintenance of homeostasis.146 Many 

phenolic compounds, derived from either natural sources 

or synthetic methods, have been reported as potent anti-

oxidants.147–149 An effective antioxidant activity of phenolic 

compounds is dependent on the stability of the phenoxyl 

radical formed in the reaction150 as well as the position of a 

substituent which affects the phenoxyl radical.151
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8HQ derivatives have been reported as potent antioxi-

dants,32,37,152,153 which arises from their chelating ability. It 

is widely known that mixed ligand metal complexes can 

commonly occur in biological fluids from various bioactive 

ligands with metal ions.154 Interest in the area of metal compl-

exation has steadily increased. SOD is one of the most useful 

antioxidant enzymes, known to convert superoxide into H
2
O

2
 

and oxygen.155 However, this enzyme has certain limitations 

such as short shelf-life, low lipid solubility, low penetration 

into the cell,155 and high MW.156 The SOD structure has a 

central metal atom surrounded by the protein structure, thus, 

accordingly, great focus has been reported on the synthesis 

of small-sized lipophilic metal complexes in efforts to mimic 

the SOD activity.63,157,158

A series of mixed ligand metal complexes using 8HQ, 

5-iodouracil, and 5-nitrouracil as ligands were synthesized 

and studied for their antioxidant activity using SOD assay.63 

The results showed that amongst the different tested metal 

complexes, the 5-iodouracil-Mn-8HQ complex was shown 

to exert the highest activity, with a IC
50

 of about 3-fold less 

than that of the free ligand 8HQ.63 This indicated that the 

coordination of metal ion into the free ligand can lead to 

enhancement of SOD activity.63 However, complexation of 

different types of metal ions with the same combination of 

ligands resulted in different bioactivities.65

Anti-inflammatory activity
Nitric oxide is a short-lived free radical product generated 

by the conversion of L-arginine to L-citrulline, which is 

facilitated by nitric oxide synthase (NOS).159 There are three 

isoforms of NOS comprised of endothelial NOS, inducible 

NOS (iNOS), and neural NOS.160 Small amounts of NO 

produced by endothelial NOS and neural NOS were shown 

to play important roles in the maintenance of homeostasis. 

In contrast, large amounts of NO from iNOS is generated in 

pathological conditions and inflammation.161 NO production 

is regulated by the expression of the iNOS gene,162 which is 

mainly modulated at the transcriptional level via the binding 

of transcription factors to sites such as NF-κB sites, activa-

tor protein-1, interferon regulatory factor 1, and CCAAT/

enhancer-binding protein β (C/EBPβ).163 The NF-κB site is 

essential for lipopolysaccharide-mediated NO production in 

response to inflammation.164 Macrophage-derived NO acts 

as a host-defense mechanism against microbes and tumors, 

as well as a regulator of proinflammatory genes in vivo.159 It 

has been found that 8HQ inhibits lipopolysaccharide-induced 

NO production. Particularly, it suppresses iNOS mRNA 

expression and iNOS promoter activity by inhibition of 

NF-κB activation and C/EBPβ DNA-binding activity.160 The 

study demonstrated that 8HQ possesses anti-inflammatory 

activity and could be further developed for the treatment of 

inflammatory diseases.160

Pb transportation across erythrocyte 
membranes
Long-term exposure to Pb from the environment causes lead 

poisoning. Pb accumulation is found in bone tissue165 and is 

also distributed to other organs.166 Moreover, Pb accumulation 

in bone tissue is correlated with an increased risk of cardio-

vascular mortality,167 cognitive changes, and neurodegenera-

tive diseases.168,169 The majority of Pb in whole blood is not 

found in the plasma but is sequestered in erythrocytes, which 

take up Pb via anion exchangers.83 The accumulation of Pb in 

erythrocytes affects erythrocyte enzymes, especially ∆-ALA 

dehydratase170 and 5-nucleotidase.171 Such accumulation also 

accelerates the vascular clearance of red blood cells172 and 

thrombin generation,173 which may lead to an increased risk 

of developing cardiovascular disease.174 Most of the chelators 

that are employed for chelation therapy are not capable of 

passing across the erythrocyte membrane. Thus, the effective 
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Figure 14 Substituted 8-hydroxyquinoline derivatives.
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Abbreviation: NSC3852, 5-nitroso-8-hydroxyquinoline.
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reduction of the total body Pb level is not achieved and gives 

only a short period of therapeutic benefit.83,175 Therefore, a 

combination of Pb ionophore and Pb chelating agent was 

recommended as a new strategy for lowering total body Pb 

accumulation.176

∆-ALA dehydratase is well recognized as a Zn-

containing erythrocyte enzyme.83 Pb is believed to displace 

Zn from the enzyme, thereby leading to enzyme inactivation. 

However, the addition of Zn has been reported to restore 

∆-ALA dehydratase activity in vivo.177,178 Since Pb ions 

enter erythrocytes through anion channels, if they were not 

trapped in extracellular areas they could reenter cells.83 Thus, 

the increase of intracellular Zn may reverse Pb binding and 

facilitate the release of Pb from the enzyme. This potenti-

ates intracellular Pb ions to exit from erythrocytes into the 

extracellular space, where they are effectively eliminated 

by Pb chelators.83

CQ is a hydrophobic halogenated 8HQ derivative known 

to act as a Zn ionophore. It is capable of transporting Zn 

across the cellular membrane.80 An in vitro study demon-

strated that CQ acting as a Zn ionophore could facilitate Pb 

escape from erythrocytes into the extracellular space. An 

increased intracellular Zn level thereby allows more effec-

tive chelation.83 This suggested that 8HQ derivatives and 

other classes of Zn ionophore could be further developed 

as a combined agent, acting as Pb chelators by lowering the 

total body Pb accumulation.83

Building block for artificial carbohydrate 
receptors
Artificial carbohydrate receptors exploiting carbohydrate-

based molecular recognition processes via noncovalent inter-

actions of sugar binding179–181 have been developed (Figure 16) 

for diagnostic and therapeutic purposes.182 Binding preference 

in carbohydrate recognition is an important factor for effec-

tive systemic outcome.183 An in vitro study demonstrated that 

8HQ-based receptors elicited higher affinity to β-galactoside 

as compared to that of quinoline-based receptors.183 Moreover, 

the addition of more 8HQ moieties into the receptor can 

potentiate higher affinity.183 It was suggested that the quinoline 

hydroxyl group plays an important role in complex forma-

tion and molecular recognition of carbohydrates. Therefore, 

8HQ-based compounds could potentially be used as a building 

block for artificial carbohydrate receptors.183

Potential antidiabetic activity
Insulin/insulin-like growth factor-1 signaling pathway (IIS) 

is an evolutionarily conserved pathway, which regulates 

lifespan and longevity in various species from nonverte-

brates to humans.184 In nonhuman organisms, decreased IIS 

has been found to be associated with extended lifespan and 

protection against oxidative stress damage.185,186 In addition, 

experiments on mouse models also demonstrated a significant 

role of down-regulated IIS in the maintenance of metabolic 

homeostasis and oxidative defense.184 In humans, individuals 

with decreased IIS as found in those with Laron syndrome 

were shown to exhibit a lower rate in the development of 

diseases of civilization including acne, cancer, and diabetes 

mellitus (DM).184

Forkhead box proteins (FOXO) are crucial regulators 

against oxidative stress conditions. Activation of FOXO in the 
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Figure 16 8-Hydroxyquinoline is used as a building block for artificial carbohydrate 
receptors.
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Abbreviations: FOXO1, forkhead box protein O1; SOD, superoxide dismutase.
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nucleus results in an expression of many downstream effec-

tors including antioxidant enzyme genes such as superoxide 

dismutase (MnSOD) and catalase. At the promoter level, 

FOXO1 induces the expression of the Hmox1 gene (heme 

oxygenase-1) thereby leading to the reduction of mitochon-

drial respiration and ROS formation.185 Moreover, in pancre-

atic β-cell, FOXO1 functions to inhibit β-cell proliferation 

and prevent β-cell apoptosis187 as shown in Figure 17. There-

fore, the level of nuclear FOXO is important for oxidative 

stress resistance and cytoprotection of cells.187,188

Overstimulated IIS is closely associated with the 

pathogenesis of DM. Overconsumption of hyperglycemic 

diet can cause high blood glucose levels, which induces 

glucose/FOXO1-mediated β-cell proliferation in order 

to produce insulin for controlling blood glucose.188 This 

long-term phenomenon generates insulin resistance and 

hyperinsulinemia, which are the hallmarks of DM type 

2.188 IIS is found to regulate nuclear distribution of FOXO 

proteins.185 The induction of IIS, caused by hyperglycemic 

diet, induces Zn-dependent phosphorylation of nuclear 

Hyperglycemic diet

CQ Zn

CQ transport Zn into the cells

Zn-dependent
phosphorylation

of FOXO1

Inhibit transcription of
FOXO1-dependent genes

Inhibit hepatic enzymes
PEPCK and G6Pase

Inhibit hepatic 
gluconeogenesis

Insulin synthesis
and secretion

β-cell
proliferation

β-cell
apoptosis

Oxidative stress
resistance

MnSOD
catalase

Impaired insulin synthesis

Impaired controlling blood glucose

Blood glucose

Transcription

FOXO1

FOXO1 exclusion
from nucleus

FOXO1

Pi

Target gene

Activation of IIS pathway

Figure 18 The role of CQ as Zn ionophore in controlling blood glucose level via inhibition of FOXO1.
Abbreviations: IIS, Insulin/insulin-like growth factor-1  signaling pathway; CQ, clioquinol; FOXO1, forkhead box protein O1; G6Pase, glucose-6-phosphatase; SOD, 
superoxide dismutase; PEPCK, phosphoenolpyruvate carboxykinase; Pi, phosphorylation.
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FOXO1,189 that subsequently triggers their exclusion from 

the nucleus.185

Reduction of nuclear FOXO1 levels as a result of phos-

phorylation leads to three events. First, an impairment of 

oxidative stress resistance of β-cells as caused by down-

regulation of MnSOD and catalase gene expressions.184 

Second, an increased proliferation and apoptosis of β-cells. 

Third, the inhibition of FOXO1  serves as key regulators 

for the inhibition of hepatic gluconeogenesis. Therefore, 

FOXO1  inhibition suppresses hepatic enzymes necessary 

for glucose production, such as phosphoenolpyruvate 

carboxykinase and glucose-6-phosphatase, at the transcrip-

tional level.189 Obviously the first two events promote β-cell 

apoptosis thereby leading to impaired insulin synthesis and 

altered blood glucose level, while the last event facilitates the 

lowering of blood glucose as shown in Figure 18.

8HQ has been reported as a diabetogenic agent owing to its 

ability to harm β-cells.190 As a Zn ionophore, 8HQ carries Zn 

into cells in the form of lipophilic, uncharged complexes and 

releases Zn inside the cells to promote Zn-dependent FOXO1 

phosphorylation thereby leading to oxidative damage and 

apoptosis of β-cell.190 In addition, acidic proton (H+) released 

from the –OH group of 8HQ causes damage to β-cells.190

The SAR study of 8HQ and its derivatives indicated 

that their binding affinity to Zn2+, charge of complex, and 

acidity are determinant factors for diabetogenicity of the 

investigated compounds.190 As mentioned, FOXO1 phos-

phorylation is Zn-dependent, therefore, compounds that 

possess affinity to bind and form uncharged complexes 

with Zn are also capable of penetrating into cells thereby 

leading to the induction of FOXO1 phosphorylation and 

the triggering of its exclusion from the nucleus.190 Reduced 

nuclear FOXO1 levels ultimately lead to β-cell destruction 

and apoptosis.190

A series of 8HQ and derivatives containing OH groups 

at different positions on the quinoline ring (ie, 2HQ and 

4HQ) as well as ionizable functional groups (ie, CO
2
H and 

OH

8HQ

A

2HQ 4HQ CQ

B

DC

8-Hydroxyquinaldine 8-Hydroxy-5-sulfonic acidXanthurinic acid

N

OH
N CH3

N OH

OH

N

OH

OH

N CO2H

SO3H

OH
N

OH

CI

I N

Figure 19 8HQ derivatives with different substitutions.
Abbreviations: CQ, clioquinol; HQ, hydroxyquinoline.
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Inactivate
PEPCK
G6Pase

Figure 20 Liver functions on controlling glucose metabolism and antidiabetic 
actions of 8‑hydroxyquinoline derivatives.
Abbreviations: CQ, clioquinol; FOXO1, forkhead box protein O1; G6Pase, 
glucose-6-phosphatase; GLUT-1, glucose transporter; HIF-1a, hypoxia inducible 
factor; HLA-20, 5-((4-(prop-2-ynyl)piperazin-1-yl)methyl)quinolin-8-ol; InsR, 
insulin receptor; M30, 5-((methyl(prop-2-ynyl)amino)methyl)quinolin-8-ol; PEPCK, 
phosphoenolpyruvate carboxykinase.
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Table 1 Brief review of 8-hydroxyquinoline (8HQ) and its 
derivatives

8HQ is a lipophilic compound with diverse bioactivities which are 
exerted via its chelating ability.
Ionophore is a subset of metal-binding compounds which are capable of 
transferring multiple metal ions across biological membranes, either in 
or out of cells.
Antineurodegenerative activity
• � 8HQ derivatives are small lipophilic compounds that are capable of 

entering the blood–brain barrier into the target site in the brain.
•  �As selective chelator to certain types of metal ions, 8HQ derivatives 

decrease neurotoxicity caused by metal-protein interaction.
•  �As antioxidant, 8HQ derivatives reduce ROS formation and oxidative 

damage to the brain.
Anticancer activity
•  �Fe is a redox-reactive metal ion that generates ROS and serves as 

nutrient for cancer cell growth.
•  �8HQ is capable of forming complexes with metal that incorporated 

in enzymes required for DNA synthesis. This results in an 
antiproliferative effect of the compound.

•  �8HQ-Fe lipophilic complex intercalates with DNA strands and causes 
massive DNA damage leading to cancer cell apoptosis.

•  �Cu is a cofactor for tumor angiogenesis and is found in relatively high 
levels in tissue and serum of cancer patients compared to normal 
subjects. This indicates the potential of using Cu as a selective target 
for cancer treatment.

•  �CQ acts as Cu ionophore to transport Cu into cells where it exerts 
activity. CQ-Cu complex interacts with electron donor groups located 
outside of proteasome leading to proteasome inhibition and apoptosis.

Antimicrobial activity
•  �8HQ derivatives were reported to exert antimicrobial activities against a 

variety of microorganisms such as Mycobacterium tuberculosis, Escherichia 
coli, Staphylococcus aureus (including MRSA), Streptococcus mutans, Candida 
albicans, HIV, Plasmodium falciparum and Toxoplasma gondii.

Antioxidant activity
•  �8HQ and its derivatives are potent antioxidants.
•  �8HQ metal complexes were reported with improved antioxidant 

activity (SOD assay) compared to free ligand 8HQ.
Anti-inflammatory activity
•  �8HQ inhibits nitric oxide production at transcriptional level via 

inhibition of NF-κB and C/EBPβ DNA binding.
Transportation of Pb across red blood cells (RBC)
•  �Long-term exposure to Pb-containing environment causes lead 

poisoning. Excessive Pb ions are sequestered in RBC and affect  
Zn-containing RBC enzyme leading to cardiovascular risk.

•  �Most of the clinically used Pb chelators are not capable of passing across 
erythrocyte membrane thereby giving only a short period of therapeutic 
benefits.

•  �CQ acts as Zn ionophore to increase Zn intracellular level of RBC. 
Additional Zn ion is believed to displace Pb from enzyme and promote 
Pb escape into the extracellular space, where it is effectively chelated by 
Pb chelators.

•  �CQ and other classes of Zn ionophore are considered to be 
promising compounds that should be further developed as combined 
agents with Pb chelators to improve treatment outcome.

Building block for artificial carbohydrate receptors
•  �8HQ-based receptors exhibit high affinity to β-galactoside thereby 

indicating their potential as artificial carbohydrate receptors.

(Continued)

Table 1 (Continued)

Potential antidiabetic activity
•  �FOXO proteins are crucial regulators against oxidative stress 

conditions.

•  �Nuclear FOXO1 is important for the expression of many downstream 
effector genes, which function to maintain glucose homeostasis and 
protect against oxidative stress condition.

•  �FOXO1 exclusion from the nucleus activates β-cell proliferation 
and insulin production; however, this also reduces oxidative stress 
resistance leading to β-cell apoptosis.

•  �A compound is considered diabetogenic if it has the ability to harm 
β-cells, including decreasing antioxidant defenses and activating β-cell 
proliferation leading to β-cell apoptosis.

•  �8HQ has been reported as a diabetogenic agent due to its ability to 
induce Zn-dependent FOXO1 phosphorylation via action of the Zn 
ionophore as well as its acidity caused by release of H+ from OH 
groups. These phenomena lead to β-cell apoptosis, which affects 
insulin production and control of blood glucose.

•  �It was suggested that the ideal antidiabetic agent should be 
capable of decreasing blood glucose level via induction of FOXO1 
phosphorylation as well as minimizing β-cell damage.

•  �CQ is considered a potential antidiabetic agent. It has the ability to 
induce FOXO1 phosphorylation without diabetogenic effect. It was 
suggested that increased lipophilic, electronic, and steric effects may 
be involved in the lack of diabetogenicity.

•  �8HQ-based antineurodegenerative agents such as M30 and HLA-20 
have beneficial effects on controlling blood glucose via Fe chelation. 
Glucose metabolism is directly controlled by hepatic factors. The 
decreased hepatic Fe levels can mimic hypoxic conditions that results 
in lower blood glucose level.

Abbreviations: C/EBPβ, CCAAT/enhancer-binding protein beta; CQ, clioquinol; 
HIV, Human immunodeficiency virus; MRSA, methicillin-resistant Staphylococcus aureus; 
NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; ROS, reactive 
oxygen species; SOD, superoxide dismutase; HQ, hydroxyquinoline; FOXO, 
forkhead box protein.

SO
3
H) and polar amino groups were investigated in vitro.190 

The results showed that 8HQ and 8-hydroxyquinaldine 

(Figure  19A) displayed diabetogenic effects and strongly 

induced FOXO1 phosphorylation in the presence of Zn2+. 

However, all 8HQ derivatives with substituents at C-2 (CO
2
H) 

and C-5 (SO
3
H) (Figure 19B) positions showed no diabe-

togenicity, and no induction of FOXO1 phosphorylation. 

This could be attributed to anionic charge groups (CO
2

– and 

SO
3
–) that inhibited their penetration into the cell and specific 

compartments. Furthermore, 2HQ and 4HQ (Figure 19C) 

displayed no diabetogenic effects and no induction of 

FOXO1 phosphorylation. This suggested that the OH group 

in the C-8 position on the quinoline ring was crucial for the 

observed diabetogenic effect. Interestingly, CQ (Figure 19D), 

a derivative of 8HQ-bearing substitutions with hydrophobic 

groups at C-5 (chlorine) and C-7 (iodine) positions induced 

FOXO1 phosphorylation without diabetogenic effects. The 

phosphorylation of FOXO1 arises from its CQ property as the 
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transporter and the insulin receptor, which consequently causes 

lower blood glucose levels34 as shown in Figure 20.

In addition, both compounds exhibit protective effects 

against oxidative damage to β-cells.152 A study on pancreatic 

β-cell lines indicated that cytoprotective effects of HLA-20 and 

M30 arise from combined actions152 in which they act as Fe 

chelators. M30 and HLA-20 directly decrease ROS formation 

by inhibiting the Fenton reaction as well as indirectly increasing 

catalase activity,152 possibly by maintaining nuclear FOXO1 

levels.184 Furthermore, both compounds promote antiapoptotic 

effects against H
2
O

2
 stress-induced mitochondrial dysfunc-

tion.152 Mitochondria are known to play important roles on cell 

cycle regulation,152 and their dysfunction is a critical event lead-

ing to cell apoptosis.152 M30 and HLA-20 exert antiapoptotic 

effects by maintenance of a mitochondrial factor called ∆ψM, 

which is necessary for mitochondria survival.152

Due to IIS and the FOXO1 phosphorylation inductive 

ability and significant cytoprotective effects, 8HQ and its 

derivatives could be a promising class of compound that 

merits further development for the treatment of DM.152,190

Conclusion
Metal imbalance plays a crucial role in the etiology of many 

diseases that affect quality of life. The objectives of treatment 

Zn ionophore. It was suggested that increased hydrophobicity 

alone is unlikely to account for the nondiabetogenicity of CQ; 

however, other factors such as electronic and steric effects 

may be involved in the lack of diabetogenic effects.

According to IIS regulatory  roles on glucose homeostasis, 

an ideal antidiabetic agent should be capable of inducing 

FOXO1 phosphorylation as well as minimizing oxidative 

damage to β-cells. Recent studies suggested that the scope of 

drug design may focus on small Zn-binding FOXO1 regula-

tors targeting lipophilic compounds that do not release H+ 

after Zn-binding.191 Therefore, CQ is a potential candidate 

for DM treatment.190

Antidiabetic activity of other 8HQ derivatives, such as M30 

and HLA-20, have been reported to function through different 

mechanisms.34,152 The liver is the center of Fe homeostasis, 

and hepatic enzymes are found to be key regulators of hepatic 

gluconeogenesis.34 Glucose metabolism is directly controlled 

by hepatic factors that in turn are regulated by Fe levels, as is 

the case for the glucose transporter and the insulin receptor.34 

As Fe chelators, M30 and HLA-20 generate low levels of Fe, 

thereby mimicking hypoxic conditions.34 Such conditions 

increase the expression of  regulated hypoxia inducible 

factor. The activation of hypoxia inducible factor leads to the 

expression of downstream effector genes including the glucose 

Table 2 Bioactivities and specific mechanisms of 8-hydroxyquinoline (8HQ) and its derivatives

Action Activity Mechanism
Cu chelator Antineurodegenerative Reduces neurotoxicity caused by metal–protein interaction

Anticancer Inhibits tumor growth and metastasis by antiangiogenesis
Induces apoptosis by inactivation of SOD1 enzyme

Antimicrobial and antiparasitic Inhibits microbial enzymes
Antioxidant Mimics SOD activity

Fe chelator Antineurodegenerative Reduces neurotoxicity caused by metal–protein interaction
Anticancer Inhibits tumor growth by antiproliferation

Inhibits enzymes required for DNA synthesis
Induces apoptosis by DNA intercalation of 8HQ-Fe complex

Antimicrobial and antiparasitic Inhibits microbial enzymes
Antidiabetic Alters glucose metabolism via expression of hepatic factors

Zn chelator Antineurodegenerative Allows degradation of misfolded proteins
Reduces neurotoxicity caused by metal–protein interaction

Cu ionophore Antineurodegenerative Restores brain metal homeostasis by redistribution of intracellular  
Cu ions and delivery of Cu ions to the brain areas where they are depleted
Activates protective signaling cascades

Anticancer Inhibits apoptosis via proteasome inhibition
Zn ionophore Antineurodegenerative Restores brain metal homeostasis by redistribution of intracellular  

Zn ions and delivery of Zn ions to brain areas where they are depleted
Anticancer Induces apoptosis via lysosomal disruption and NF-κB inactivation
Antidiabetic Increases insulin production and inhibits hepatic enzymes required for 

gluconeogenesis via induction of Zn-dependent FOXO1 phosphorylation
Pb poisoning treatment Improves effect of Pb chelators by promoting Pb escape from red blood 

cells into extracellular space

Abbreviations: NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; SOD, superoxide dismutase; FOXO, forkhead box protein.
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are not only aimed at restoring metal balance but also at 

minimizing cellular damage. 8HQ and its derivatives possess 

diverse pharmacological and biological activities, which are 

a result of their chelating ability (Table 1). Interestingly, such 

bioactivities originate from multiple mechanisms (Table 2). 

These mechanisms of actions function in restoring metal 

homeostasis as well as promoting protective effects. There-

fore, 8HQ and its derivatives are considered as promising 

candidates that should be further developed as therapeutics 

for many diseases.
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