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Abstract: The identification of molecular genetic biomarkers considerably increased our cur-

rent understanding of glioma genesis, prognostic evaluation, and treatment planning. In glio-

blastoma, the most malignant intrinsic brain tumor entity in adults, the promoter methylation 

status of the gene encoding for the repair enzyme O6-methylguanine-DNA methyltransferase 

(MGMT) indicates increased efficacy of current standard of care, which is concomitant and 

adjuvant chemoradiotherapy with the alkylating agent temozolomide. In the elderly, MGMT 

promoter methylation status has recently been introduced to be a predictive biomarker that can 

be used for stratification of treatment regimes. This review gives a short summery of epide-

miological, clinical, diagnostic, and treatment aspects of patients who are currently diagnosed 

with glioblastoma. The most important molecular genetic markers and epigenetic alterations 

in glioblastoma are summarized. Special focus is given to the physiological function of DNA 

methylation – in particular, of the MGMT gene promoter, its clinical relevance, technical aspects 

of status assessment, its correlation with MGMT mRNA and protein expressions, and its place 

within the management cascade of glioblastoma patients.
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Glioblastoma
Diffuse gliomas are heterogeneous neoplasms that account for half of all intrinsic brain 

tumors. Histological grading of these tumors according to the classification system of 

the World Health Organization (WHO) provides a basis for defining groups of patients 

for clinical assessment, but also predicts the clinical behavior of the respective neo-

plasm with direct impact on the applied treatment regimes. WHO grade IV gliomas are 

characterized by high cellularity, cellular pleomorphism, nuclear atypia, brisk mitotic 

activity, microvascular proliferation, and necrosis.1 They account for 50%–60% of all 

astrocytic gliomas, with an increasing incidence of currently three to five new cases 

per 100,000 patient-years.2 The cause for glioblastoma development is not clear. Some 

authors speculate that cytomegalovirus infection may drive the oncogenic process by 

modulating growth factor and receptor expressions in gliomas.3 Clinically, these tumors 

are rapidly progressive and ultimately fatal, with a median survival of only 15 months 

in trial populations.4 Primary glioblastomas develop with only a short clinical history 

and without evidence of a previous lesion of lower malignancy. They account for 

the vast majority of glioblastomas in older patients. Morphologically, they cannot be 

distinguished from about 5%–10% of glioblastomas that develop in younger patients 

below the age of 50 years by progression from a pre-existing lower-grade glioma.5,6 
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These secondary glioblastomas differ significantly in their 

genetic profiles from primary glioblastomas.7,8

The diagnostic challenge
Routine diagnosis critically relies on magnetic resonance 

imaging (MRI) that frequently exhibits contrast enhance-

ment of the lesion in T
1
-weighted sequences accompanied 

by perifocal edema as being depicted on T
2
-/fluid-attenuated 

inversion recovery-weighted images. Lack of focal con-

trast enhancement, however, does not exclude grade IV 

histology.9,10 The vast majority of glioblastomas develop in 

the cerebral hemispheres. However, the highly infiltrative 

growing pattern frequently causes tumor spread into the 

basal ganglia or even the contralateral hemisphere, with 

unfavorable effects on patients’ outcome. Glioblastomas 

with primary location in the cerebellum, brain stem, or 

myelon are rare. Metabolic imaging such as positron emis-

sions tomography (PET) utilizing amino acid tracers (eg, 

O-[2-{18F}fluoroethyl]-1-tyrosine) is increasingly used to 

assess differential diagnosis,11,12 biological tumor volume, 

and intratumoral heterogeneity,10 and to monitor therapy.13–15 

Mainly due to its limited availability and associated costs, 

metabolic imaging has not yet been routinely implemented 

into a current standard of care algorithm for glioblastoma 

patients. Ultimately, tissue samples are needed for definite 

histological diagnosis. Neuropathological evaluation of 

gliomas, however, suffers from significant interobserver 

 variability, particularly in the distinction of grade III and 

grade IV histology and the determination of an oligoden-

droglial cell component.16

Current treatment concepts
More recently, some progress has been achieved in the treat-

ment of glioblastoma patients. A companion prospective 

multicenter study performed by the European Organization 

for Research and Treatment of Cancer (EORTC) and the 

National Cancer Institute of Canada (NCIC) has shown that 

the addition of the alkylating agent temozolomide to radio-

therapy improved 2-year survival of patients with newly diag-

nosed malignant glioma (mainly glioblastoma) from 11.0% 

to 27.3%, 3-year survival from 4.4% to 16.0%, and 5-year 

survival from 1.9% to 9.8%, respectively.17,18 Temozolomide 

is an orally administered chemotherapy with limited side 

effects and a good penetration of the blood–brain barrier. It 

prevents replication by alkyl group-mediated crosslinking 

of DNA.19 Currently, radiotherapy with concomitant and 

adjuvant temozolomide is the gold standard for patients 

with newly diagnosed glioblastoma.4 Most recent results 

from the Phase III study AVAglio,  evaluating the  addition of 

the antiangiogenic agent bevacizumab to combined chemo-

radiotherapy with temozolomide, have indicated favorable 

effects on progression-free survival (median 10.6 months 

versus 6.2 months) and duration of good clinical perfor-

mance (Karnofsky performance status $70; 9 months versus 

6 months).20,21 However, no effect on overall survival was 

observed. In the elderly, the best treatment strategy is highly 

influenced by the patient and tumor-related factors and ranges 

from combined chemoradiotherapy with temozolomide for 

highly selected patients with good clinical performance status 

to either radiotherapy or temozolomide treatment alone, and 

supportive care only.22–28

Open tumor resection also represents one of the main-

stays in glioblastoma treatment and is usually considered the 

first step within the management algorithm.29,30 The highly 

infiltrative growing pattern of glioblastomas into surround-

ing brain tissues explains that curative resection generally 

cannot be achieved. However, there is good evidence that 

overall survival is improved if early postoperative MRI 

depicts that no residual contrast-enhancing tumor mass has 

been left in situ (“gross total resection”).31–35 In a community 

setting, complete resection is achieved in about 40%–45% of 

patients, a similar proportion receives incomplete resection, 

and about 10%–20% are diagnosed by biopsy only.21 The 

number of patients without residual tumors can be signifi-

cantly increased if microsurgical tumor removal is performed 

with the aid of 5-aminolevulinic acid and intraoperative 

MRI.31,36 The prognostic impact of incomplete resection is 

poorly defined.30 Favorable impacts on survival rates have 

been suggested if at least 78% of contrast-enhancing tumor 

volume has been successfully removed.37 However, this and 

other studies did not compare the impact of incomplete resec-

tion with biopsy only, and there is some evidence that biopsy 

only with early transferral to chemoradiotherapy might be 

appropriate in selected patients in whom even partial resec-

tion bears a considerable risk of surgery-related sequalae.38 

In patients suffering from clinical deterioration due to a 

large space-occupying tumor burden, decompressive surgery 

should be attempted.30

Although the use of temozolomide has improved outcome 

considerably, almost all patients suffer from recurrent disease. 

Local tumor progression (within 3 cm from the margin) is 

the predominant pattern (93.5%) of treatment failure.39–42 

In general, tumor recurrence is associated with poor out-

come as treatment options are limited.43  Approximately 

one-quarter of patients with glioblastoma develop a type of 

recurrence that allows for local treatment including repeated 
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surgical resection.44 Although reoperation might improve 

post-recurrence survival in selected cases, its value must 

be counterbalanced by the risk of surgery-related morbid-

ity and mortality.45,46 Other local treatment options include 

stereotactic radiosurgery for small lesions, hypofractionated 

radiotherapy protocols, even for larger recurrent tumors, and 

any combination of local irradiation and chemotherapy.43 

Systemic therapy is generally considered essential for 

recurrent tumors. Various antineoplastic agents have been 

tested. Efficacy, however, is generally hampered by the 

broad chemoresistance of glioblastoma cells, in parallel with 

the limited bioavailability of most drugs inside the central 

nervous system. The most important approaches include 

rechallenge regimes with dose-intensified temozolomide and 

non-temozolomide-containing regimes.43,47 Since 2009 the 

monoclonal antibody to vascular endothelial growth factor 

bevacizumab has gained US Food and Drug Administration 

approval for recurrent glioblastoma based on response rate, 

with favorable effects relative to historical controls from 

noncomparative Phase II trials.48,49 The rejection in Europe, 

however, was based on the absence of a randomized trial with 

a bevacizumab-free control arm.47 Other targeted approaches 

address the epidermal growth factor receptor, mammalian 

target of rapamycin, histone deacetylase, and many other 

structures in recurrent glioblastoma. However, postrecur-

rence survival rarely exceeds 6–9 months in most clinical 

study populations.

The prognostic network  
of glioblastoma patients
In glioblastoma, the patient’s prognosis and response to ther-

apy are highly influenced by clinical and molecular genetic 

factors that are increasingly used for prognostic profiling 

and  individualized risk-adapted treatment  considerations.50 

Classical phenotypical traits correlating with favorable 

survival are younger age, good performance status, and 

 noneloquent circumscribed tumor formations.8,35,51–53 

 However, these conventional prognostic factors do not nec-

essarily account for the highly variable clinical courses of 

glioblastoma patients.

Molecular biomarkers have improved our understand-

ing of glioma development, are increasingly exploited for 

glioblastoma subclassification, and have gained prognostic/

predictive relevance. From a clinical perspective, a biomarker 

should be highly sensitive and specific in providing informa-

tion relevant for diagnosis, prognosis, or therapy of a disease. 

So far, only a few biomarkers have gained clinical relevance 

in glioblastoma patients.

Genetic markers relevant  
for glioma patients
Mutations in the gene encoding for the Krebs cycle enzyme, 

isocitrate dehydrogenase (IDH), have been identified as one 

of the earliest molecular events in the pathway of glioma 

genesis. They are frequent in grade II/III astrocytomas, oli-

goastrocytomas, and oligodendrogliomas, and can be used 

to differentiate primary and secondary glioblastomas.6,54,55 

These findings suggest that histologically differently appear-

ing tumor subclasses might share common precursor cells, 

and that histologically indistinguishable tumors (eg, primary 

versus secondary glioblastomas) could be separated into 

biologically distinct subclasses. IDH point mutations are 

predominantly found at the arginine 132 (IDH1), but can 

also occur at arginine 172 (IDH2). These mutations cause 

alterations in the active site of the IDH enzyme and result 

in increased production of 2-hydroxyglutarate, which is 

associated with an increased risk of cancer and glioma 

progression.56 IDH1 mutations are associated with favorable 

outcome in WHO grade III and IV malignant gliomas.57,58 

Notably, patients with IDH1 wild-type anaplastic astro-

cytoma WHO grade III experience even worse outcome 

than those with glioblastomas WHO grade IV harboring 

an IDH1 mutation.59 The prognostic impact of the IDH1 

status in WHO grade II astrocytomas is more controversial 

but might be associated with unfavorable outcome until 

tumor progression occurs.60 TP53 mutations are frequent 

in 70% of secondary glioblastomas and seldom in pri-

mary glioblastomas.61 TP53 modulates cell-cycle control 

in tumor cells and has been associated with unfavorable 

outcome in grade II gliomas.62,63 Loss of heterozygosity on 

chromosome arms 1p and 19q (LOH 1p/19q) is frequent 

in oligodendroglial tumors, and has been associated with 

increased chemosensitivity in grade III gliomas.64,65 Whether 

1p- and 19q-codeleted tumors have a less aggressive natural 

course than noncodeleted tumor has not been clarified so 

far. In glioblastoma, LOH 1p/19q is rare (∼5%).50 However, 

an oligodendroglioma-like component (GBM-O) is seen 

in 15% of all glioblastomas and has been associated with 

improved clinical outcome.66 Whether a favorable outcome 

in these patients is also influenced by LOH 1p/19q has not 

been unequivocally clarified.67,68 Other molecular genetic 

markers, such as PTEN mutation, epidermal growth factor 

receptor variant III and CDK 4 amplifications, and CDKN2 A 

homozygous deletion, can be used to separate primary from 

secondary glioblastomas, indicating different biology and 

cells of origin.8,69 However, these markers have not yet gained 

prognostic relevance in clinical trials.70
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Besides a mutated IDH1 status and LOH 1p/19q, 

methylation of the promoter region of the O6-methylguanine-

DNA methyltransferase (MGMT) gene has been correlated 

with favorable outcome in malignant glioma patients.

Physiological function of DNA 
methylation and its role  
in glioma formation
One of the first and most important epigenetic modifications 

studied in humans is DNA methylation, which describes 

the covalent addition of a methyl group preferentially at 

the 5′-position of a cytosine or guanine nucleotide. These 

CpG dinucleotides tend to cluster to so-called CpG islands, 

being located in the promoter regions of more than half of 

all human genes, or to CpG island shores, which are regions 

of lower CpG density that lie in close proximity to CpG 

islands.71,72 DNA methylation is mediated by the DNA meth-

yltransferase family of enzymes. These enzymes catalyze 

the transfer of a methyl group from S-adenosyl methionine 

to DNA and are responsible for maintaining the methyla-

tion pattern (eg, during DNA replication).73,74 Generally, 

CpG methylation is closely associated with transcriptional 

inactivation. Less frequently, when occurring at gene bod-

ies, it can cause transcriptional activation. Genome-wide 

methylation patterns have been associated with tumor ini-

tiation and progression in several cancers, including colon, 

breast, and lung.75,76

DNA methylation in glioblastoma
The genome of glioblastoma cells shows broad hypomethyla-

tion with specific areas of hypermethylation.77–80 This char-

acteristic pattern has been associated with increased genetic 

instability, silencing of tumor suppressors such as TP53 

and PTEN, and activation of oncogenes. Hypermethylation 

mostly occurs at the promoter CpG island of genes that are 

associated with tumor suppression,81,82 DNA repair,83 cell-

cycle regulation,84 apoptosis,85,86 invasion,87,88 and migration.89 

Interestingly, the methylation patterns differ between gliomas 

of WHO grade II–IV.90

The Cancer Genome Atlas project has identified a 

glioma CpG island methylation phenotype that correlated 

with younger age, a proneural gene expression profile,91 

and longer overall survival in glioblastoma patients.92 More-

over, a high frequency of IDH1 mutations indicates a link 

between metabolic alterations and epigenetic modification 

in these tumors.93,94 Increased production of the metabolite 

2-hydroxyglutarate interferes with α-ketoglutarate-dependent 

enzyme, including histone demethylases and the TET 

family of 5-methylcytosine hydroxylases,56,95 which causes 

genome-wide histone  modifications,96 and alterations of DNA 

methylation status97 in malignant glioma cells.98,99

MGMT promoter methylation  
in glioblastoma
In glioblastoma, promoter methylation of the gene  encoding 

for MGMT is undoubtedly the genetic fingerprint with highest 

impact on clinical practice. The MGMT gene is located at 

chromosome 10q26 and codes for a ubiquitously expressed 

suicide DNA repair enzyme that removes alkyl adducts from 

the O6-position of guanine.100 As O6-alkylated guanine leads 

to double-strand breaks and base mispairing, thereby induc-

ing apoptosis and cell death, MGMT protects normal cells 

from carcinogens. Unfortunately, it also protects tumor cells 

from normally lethal effects of chemotherapy with alkylat-

ing agents such as temozolomide.100 MGMT is consumed 

when counteracting TMZ-induced DNA damage, and it 

has been predicted that the intracellular level of MGMT 

correlates with chemoresistance.101 However, analysis of 

MGMT protein expression in glioblastoma tissue by immu-

nohistochemistry failed to correlate with survival under 

chemoradiotherapy.102

Clinical relevance
Methylation of the MGMT promoter is found in 35%–45% 

of malignant gliomas (WHO grades III and IV) and in about 

80% of WHO grade II gliomas.60,103 MGMT methylated 

and unmethylated glioblastomas seem to differ in primary 

location,104 pattern of contrast enhancement105 and the appar-

ent diffusion coefficient in MRI analysis,106 the incidence of 

pseudoprogression,107,108 and pattern of recurrence as deter-

mined by 18FET-PET imaging.109 However, none of these 

methods sufficiently allows for noninvasive determination 

of MGMT promoter methylation status for the individual 

patient.104,105,110

The methylation status of the MGMT promoter has been 

identified as a strong and independent predictive factor 

of favorable survival in glioblastoma patients undergoing 

chemotherapy with alkylating agents.103,111–113 The median 

survival for patients with a methylated MGMT promoter 

was 21.7 months compared with 12.7 months for patients 

without. Accordingly, a high frequency of MGMT promoter 

methylation was noted in long-term survivors of glioblas-

toma who received repetitive alkylating chemotherapy 

during the course of the disease.23,114 Generally, carriers of 

the methylated form of the MGMT promoter respond sub-

stantially better to therapy with temozolomide as compared 
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with those with an unmethylated MGMT promoter.17,58 This 

predominant influence of MGMT promoter methylation is 

independent of surgical treatment. Moreover, a methylated 

MGMT promoter status seems to stratify outcome even in 

the recurrent disease.115 Postrecurrence survival was better 

in those MGMT methylated patients who receive alkylat-

ing therapy for recurrent disease.115 However, a methylated 

MGMT promoter status does not influence outcome in solely 

irradiated glioblastoma patients (without alkylating therapy), 

whereas in grade III gliomas favorable outcome in methylated 

patients seems to be irrespective of the applied treatment 

regime.58,116 It is currently unclear, however, whether this 

observation indicates a true prognostic value for MGMT 

methylation in all grade III gliomas.117 In grade II gliomas, 

MGMT promoter methylation shows a Janus head-like corre-

lation with shortened progression-free survival but prolonged 

overall survival under radio and/or chemotherapy.61

Determination of the MGMT  
promoter methylation status
Currently, there is no consensus about the most suitable tech-

nique for determination of the MGMT promoter methylation 

status. This concerns both the tissue sampling technique as 

well as the molecular assays currently used in the clinical 

setting.30 MGMT promoter methylation status can be effi-

ciently determined even from small (1 mm³) formalin-fixed, 

paraffin-embedded tissue samples obtained from stereotactic 

biopsy procedures.23 Analysis of MGMT promoter methyla-

tion status of multiple tissue samples harvested from serial 

biopsy procedures throughout entire tumor volumes has 

proven that this molecular fingerprint is homogeneous in 

glioblastoma formations.23 Notably, only vital (non-necrotic) 

tumor specimens must be used for subsequent analysis in 

order to avoid false-negative results.23,118 Analyses from 

paired tumor samples harvested from primary and recurrent 

glioblastomas revealed that MGMT promoter methylation 

status is unchanged during the course of the disease.115

In respect of the currently available methods for MGMT 

testing, nonquantitative methylation-specific polymerase 

chain reaction (MSP)119 seems to be the most appropriate one 

in a clinical setting.120,121 Commonly, two pairs of primers – 

each specific to either the methylated or the unmethylated 

MGMT promoter region – are used for MSP as originally 

described by Esteller et al.122 However, discrepancies exist 

between sequencing analyses123 and results from MSP. 

Tumors classified as “unmethylated” by MSP could turn 

out to be “methylated” or at least “partially methylated” 

using sequencing analysis.124 A recent study systematically 

analyzed the impact of specific CpG sites within the MGMT 

promoter on the transcriptional regulation of MGMT using 

a luciferase reporter assay.125 This study revealed that MSP 

is located within the optimal region for MGMT testing. 

However, the study also showed that substitution of a single 

CpG outside the MSP region almost completely inhibited the 

promoter activity. Also, there was a high variability regard-

ing the methylated positions. Hence, promoter methylation-

mediated gene silencing seems to be strongly dependent on 

the location of the methylated CpGs and the extent of the 

overall CPG island methylation, which considerably com-

plicates classification.117,126 Given these facts, determination 

of all individual CpG sites of the recently identified optimal 

region might predict the transcriptional activity and sensitiv-

ity to alkylating substances more confidently.117 More clinical 

data are needed to support this assumption.

MGMT determination by immunohistochemistry has also 

been suggested. However, this method lacks standardization, 

reproducibility, and correlation with outcome.

MGMT promoter methylation  
and RNA expression
Differential regulation of MGMT mRNA expression might 

also explain why MGMT promoter methylation is not 

unequivocally linked to a favorable treatment response. 

It has been shown that not all patients with a methylated 

promoter reveal similar response to temozolomide treatment 

and that a considerable number of unmethylated tumors 

experienced a surprisingly favorable course of the  disease.127 

These observations could be explained by discordant cor-

relations between MGMT promoter methylation (as being 

determined by both MSP and sequencing analysis) and 

MGMT mRNA expression pattern. High (low) mRNA 

MGMT expression was detected in approximately 25% of 

glioblastomas despite a methylated (unmethylated) MGMT 

promoter. Notably, those patients with low transcriptional 

activity exhibited a better treatment response, which was 

independent of MGMT promoter methylation. These obser-

vations were confirmed by another study verifying low 

MGMT immunostaining in 23% of unmethylated patients 

and high MGMT expression in 8% of methylated patients.128 

The underlying mechanisms of discordance still remain 

unclear. It has been hypothesized that low MGMT expres-

sion levels combined with an unmethylated promoter might 

result from transcript destabilization and/or transcription-

repressing factors, such as miRNA regulation or histone 

modifications.127,129 Additionally, variable outcomes in the 

unmethylated glioblastoma population could be mediated by 
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further factors, such as a heterogeneous expression pattern 

of the DNA repair enzyme APNG, which confers resistance 

to temozolomide treatment.130

MGMT for decision making  
in glioblastoma patients
MGMT promoter methylation status has been established 

as an important clinical biomarker in neuro-oncology. 

Accordingly, determination of MGMT promoter methylation 

status is of utmost interest for prognostication of adult 

patients suffering from newly diagnosed glioblastoma. This 

also includes those patients with nonresectable tumors that 

undergo biopsy only. However, with a lack of established 

alternative treatment options and in the absence of any clini-

cal consequence of routine determination of the MGMT pro-

moter, methylation status does not yet add to the management 

of glioblastoma patients outside clinical trials. In the absence 

of potent alternative drugs, temozolomide chemotherapy 

should not be withheld from unmethylated glioblastoma 

patients younger than 70 years of age in general practice. 

Moreover, discordant responses even within the subgroups 

of methylated and unmethylated patients indicate that treat-

ment decision in respect of chemotherapy cannot be based 

on this biomarker alone.

The effects of MGMT promoter methylation in malig-

nant gliomas seem to also be dependent on WHO grading. 

In anaplastic glioma, favorable progression-free survival in 

MGMT methylated patients was also seen under radiation 

therapy alone.58 This difference might be explained by the 

high incidence of other favorable molecular markers in WHO 

grade III gliomas, such as IDH1 mutation, 1p/19q deletion, 

or yet to be identified novel aberrations.

MGMT in the elderly
In the older glioblastoma patient, MGMT promoter methy-

lation status is on the verge of entering clinical decision 

making. Combined chemoradiotherapy comprising temo-

zolomide might be too toxic for the elderly, with increased 

side effects.22,131,132 For the elderly with malignant glioma, 

two recently published Phase III trials have evaluated the 

place of dose-dense/conventional temozolomide regimes 

alone as compared with conventional/hypofractionated 

radiotherapy.25,133 Overall survival in methylated patients 

was better if temozolomide treatment was applied, whereas 

in unmethylated patients radiotherapy alone was more 

 effective. Thus, MGMT promoter methylation is an  important 

biomarker for personalized treatment strategies in the elderly 

subpopulation.

MGMT and clinical trials
MGMT promoter methylation testing has recently been 

introduced as a marker for patient selection within clinical tri-

als.113,134–137 Results from a Phase I/IIA trial for cilengitide have 

shown that treatment effects were better in MGMT promoter 

methylated patients.138 Accordingly, the ongoing Cilengitide, 

Temozolomide, and Radiation Therapy in Treating Patients 

With Newly Diagnosed Glioblastoma and Methylated Gene 

Promoter Status (CENTRIC) study (NCT00689221) was 

one of the first prospective multicenter studies that evaluated 

alternative treatment (cilengitide, temozolomide, and radiation 

therapy) in MGMT methylated glioblastoma patients only. 

The Radiation Therapy Oncology Group (RTOG) 0825 trial 

also incorporated MGMT promoter methylation testing for 

primary glioblastoma patients who underwent bevacizumab 

administered with radiotherapy compared with conventional 

concurrent chemoradiotherapy (temozolomide).139

Conclusion
There is an urgent need to identify biomarkers in malig-

nant glioma patients in order to indicate patients at risk of 

tumor relapse, treatment failure, or adverse events, and to 

allow for prognostication and clinical decision making.122 

Currently, the methylation status of the MGMT gene pro-

moter seems to separate different subtypes of malignant 

glioma patients and will certainly influence future studies 

in respect of stratification of patient groups who are more 

likely to respond to a certain therapy. The usefulness of 

MGMT testing in a routine clinical setting will be of fun-

damental relevance when distinct treatment strategies for 

methylated and unmethylated glioblastoma patients will 

be available.
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