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Purpose: Personalized medicine is predicated on the concept of identifying subgroups of 

a common disease for better treatment. Identifying biomarkers that predict disease subtypes 

has been a major focus of biomedical science. In the era of genome-wide profiling, there is 

controversy as to the optimal number of genes as an input of a feature selection algorithm for 

survival modeling.

Patients and methods: The expression profiles and outcomes of 544 patients were retrieved 

from The Cancer Genome Atlas. We compared four different survival prediction methods: 

(1) 1-nearest neighbor (1-NN) survival prediction method; (2) random patient selection method 

and a Cox-based regression method with nested cross-validation; (3) least absolute shrinkage 

and selection operator (LASSO) optimization using whole-genome gene expression profiles; or 

(4) gene expression profiles of cancer pathway genes.

Results: The 1-NN method performed better than the random patient selection method in terms 

of survival predictions, although it does not include a feature selection step. The Cox-based 

regression method with LASSO optimization using whole-genome gene expression data dem-

onstrated higher survival prediction power than the 1-NN method, but was outperformed by the 

same method when using gene expression profiles of cancer pathway genes alone.

Conclusion: The 1-NN survival prediction method may require more patients for better perfor-

mance, even when omitting censored data. Using preexisting biological knowledge for survival 

prediction is reasonable as a means to understand the biological system of a cancer, unless the 

analysis goal is to identify completely unknown genes relevant to cancer biology.

Keywords: brain, feature selection, glioblastoma, personalized medicine, survival 

modeling, TCGA

Introduction
We expect that next generation sequencing technology keeps evolving, and that the 

cost of sequencing will drop to a practically affordable range.1 It may, therefore, soon 

be feasible to obtain whole genome gene expression profiles of individual patients from 

whole transcriptome shotgun sequencing (also called RNA-Seq). A critical question 

is whether the availability of high-content information from this new technology will 

be clinically useful; for example, can it help predict survival of an individual patient 

and personalize treatment? Contemporary approaches for survival prediction often 

use a few number of genes that were identified as biomarkers from intensive scientific 

studies with whole gene expression profiles and/or other molecular measurements. 

Protein interaction networks in combination with gene expression data have been 

used to identify biomarkers associated with cancer metastases.2 Another approach 
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is to identify subcategories of a cancer and the associated 

biomarkers for each category, so as to allow treating a patient 

based on the cosegregation of her/his cancer profile within 

one cancer subcategory.

Recently, subgroup-specific biomarker networks have 

been shown to predict glioblastoma prognosis.3 However, 

what if a patient’s cancer is an example of a rare case that was 

not identified as a major tumor subcategory/group? Such rare 

cases tend not to be identified within a unique group, mostly 

because previous studies did not consider large enough 

numbers of patients; yet a new patient’s genomic profile 

may be very similar to a few patients’ genomic profiles. In 

such cases, database pattern match, which attempts to fit 

an individual genomic profile to previously characterized 

profiles and related outcomes, might be more useful than 

using a biomarker-based approach since the biomarkers were 

chosen only to discriminate known subcategories. In this 

paper, we call this approach devoid of group identification 

a “nongroup approach.” The nongroup approach, which is 

based on pattern match or regression instead of classifi-

cation or clustering for biomarker selection, uses a large 

number of multitype features for pattern matching in order 

to identify previous cases with high genomic similarity to 

a particular patient.

While we acknowledge the strength of the cancer 

 subcategory-based approach, in this study, we investigated the 

feasibilities of the nongroup approach for predicting survival 

based on machine learning of whole genome gene expres-

sion profiles or cancer pathway gene expression  profiles. We 

present some interesting genes identified through the analyses 

of whole-genome gene expression profiles and cancer path-

way gene expression profiles, and we will make the point 

that using a set of genes selected by preexisting biological 

knowledge might be better as an input of a feature selection 

algorithm for survival modeling.

Material and methods
TCGA glioblastoma gene expression data
Although it is generally accepted that next generation sequenc-

ing can produce more accurate data with higher sensitivity, we 

decided to use available microarray data in our studies because 

of the availability of a larger number of samples, which were 

downloaded from The Cancer Genome Atlas (TCGA) data 

portal (https://tcga-data.nci.nih.gov/tcga/). A total of 560 gene 

expression profiles were retrieved from the Broad Institute 

HT_HG-U133A platform (Affymetrix, Santa Clara, CA, 

USA). The total number of unique patients was 544. Each gene 

expression profile had gene expression data for 12,042 genes. 

Normal and control samples were excluded. All genes had 

expression data available across all samples. Samples that did 

not have actual gene expression values were excluded, as were 

samples when the corresponding patient did not have survival 

information. After these filtering steps, 538 tumor samples were 

used in downstream analyses.

Survival modeling
One can consider a classification problem that can separate 

a shorter survival group and a longer survival group; this 

approach is well established. Refined classification accuracy 

can be obtained from feature selection, so it is more relevant 

to a cancer category-based approach where it is necessary 

to define subcategories (classes) before this classification 

 process. However, it is possible that the gene expression pro-

file of a patient does not share similarities with any of the gene 

expression profiles of predefined disease subcategories. Our 

interest in this study focuses on this special case, for which 

we studied the following survival modeling methods.

Nearest neighbor survival prediction method
One plausible method for predicting survival with whole-

genome gene expression data is the 1-nearest neighbor 

(1-NN) approach. Once a gene expression profile of a patient 

A has been established, another patient B’s gene expression 

profile that is most similar to patient A will be identified, 

and patient A’s survival will be predicted as the (known) 

survival of patient B. The 1-NN approach is based on pattern 

matching with Pearson’s correlation coefficients. There is no 

concern for over-fitting in the training phase since there is 

no training phase. This approach depends on a large dataset, 

and does not perform well when the number of patients in the 

database is not sufficiently large, especially when detecting 

two patients with similar gene expression profiles. In order 

to assess whether the 1-NN method can capture signals in 

spite of high noise, we compared it with a control method 

(ie, random patient selection).

Random patient selection
Whenever a patient A’s gene expression profile is given, the 

random patient selection method randomly chooses a patient 

C in the database, and returns her/his survival time. Although 

it is based on random patient selection, this method is stronger 

than completely random survival generation since it at least 

considers the distribution of survivals. When the number of 

patients with longer survivals is smaller, the chance to pre-

dict longer survival is also smaller; the larger the number of 

patients within a range of survivals, the larger the  probability 
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of predicting a number within that range of survivals. For 

each test sample, the method randomly chooses a patient 

and uses her/his survival as a prediction. The random patient 

selection process excludes the patient of the test sample for 

fair prediction simulations.

Regression-based survival prediction
Another approach is based on regression,4 using k-fold cross-

validation (CV) in order to reduce over-fitting. However, the 

regression approach faces the curse-of-dimensionality due 

to the nature of the problem: the number of genes is much 

larger than the number of samples.5 In order to handle this 

issue, one may try to apply two different types of dimen-

sion reduction: feature selection and feature extraction. 

Machine learning with feature selection does not use whole 

genome gene expression profiles, but uses the expression 

profiles of selected genes, which is more relevant to the 

current biomarker approach to personalized medicine. 

Feature extraction produces new features generated from 

the original features, which are not easily interpreted in 

biomedical language.

In the case of high-dimensional predictors with a small 

number of samples, the traditional Cox regression model 

cannot be directly applied, and some genes are highly 

 correlated.5 Ridge regression with L
2
-penalty and the least 

absolute shrinkage, as well as selection operator (LASSO) 

with L
1
-penalty can handle the collinearity problem.6 The 

LASSO was applied for variable selection in the Cox model.7 

The computationally more efficient least angle regression 

algorithm was used to obtain the solution of the Cox model.5,8 

In order to take advantage of both L
1
 and L

2
 penalties, an 

elastic net was developed.9 More recently, the optimal appli-

cation of these penalized regression methods to genomic 

data has been studied,10 which showed that elastic net with 

two-dimensional tuning (λ
1
 + λ

2
) can perform comparably in 

both ridge regression-favoring simulation data and LASSO-

favoring simulation data.

Friedman et al11 developed an efficient algorithm for 

LASSO and elastic net regularized generalized linear 

models based on cyclical coordinate descent for linear, 

two-class logistic, and multinomial regression models with 

L
1
 (LASSO) and L

2
 (ridge regression), and a mixture of the 

two norms (elastic net) in 2010. Simon et al12 developed 

an efficient procedure for the regularized Cox regression 

model (Coxnet) based on GLMnet in 2011. We used the R 

package of Coxnet for computing LASSO solutions with 

whole genome gene expression profiles and cancer pathway 

gene expression profiles,12,13 since computing efficiency was 

essential for our experiments to perform nested CV where 

an inner CV loop was used for parameter determination, 

and an outer CV loop was used to estimate the prediction 

accuracy (ie, CV rate).

Prediction accuracy assessment
The accuracy of a prediction was measured as the absolute 

difference between observed survival and predicted survival. 

In order to compare the 1-NN and the random patient selec-

tion methods, we defined the overall prediction error as the 

mean absolute difference (MAD) of survival days:

 MAD |s i s io p
i

n

= −
=
∑1

1
n

( ) ( ) |

 

(1)

where s
o
(i) and s

p
(i) are the observed and predicted survival 

days of i-th sample, and n is the number of predictions. 

Observed survivals were obtained from days to death in 

the TCGA clinical data. Although the Cox model-based 

approach is capable of handling censored data (patient 

followed and alive), we did not include censored cases for 

better comparison of methods since the 1-NN method cannot 

be applied to these cases. To compare the performances of 

1-NN and Cox-based methods, two Pearson’s correlation 

coefficients were used: the first correlation coefficient (r
1
) 

between observed survival and predicted survival for the 

1-NN model; and the second correlation coefficient (r
2
) 

between observed survival and relative risks obtained from 

the Cox model. Since r
2
 is a negative value, we compared 

the absolute values of r
1
 and r

2
.

Results
As for the 1-NN method for each sample, we found the clos-

est gene expression profile and predicted survival. The MAD 

measure (Equation 1) was used to demonstrate how good the 

predictions were. By repeating this process for all samples, 

we were able to compute the MAD value. The random patient 

selection method can show different results with different 

series of random numbers. In order to avoid the bias effect 

of special sequences of random numbers in the random 

patient selection method, we repeated its prediction process 

100 times and reported the average of the MAD values.

Some samples belong to the same patients, which con-

founds the analysis towards the higher probability to select 

another sample from the same patient. In order to simulate 

predictions in the database, we ignored the closest samples 

of the same patient, and instead selected the closest sample 

observed from a different patient.
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Comparison between 1-NN and random 
selection methods
Table 1 shows the mean absolute survival difference values 

between observed survival and the survival predicted by 

both the 1-NN and random patient selection methods. The 

MAD value of the 1-NN method was 386.2, whereas the 

average MAD value of the random patient selection method 

was 455.8. The lower prediction error of the 1-NN method 

compared to the random selection method illustrates that 

the 1-NN method can readily predict patient survival based 

on whole genome gene expression profiles, warranting 

further investigation of its prediction power in relation to 

regression-based predictions. Figure 1 shows the histogram 

of the absolute difference between observed survival and the 

survival predicted by the 1-NN method. Of note, the 1-NN 

method very accurately predicted the survival for more than 

80 samples.

Comparison between 1-NN  
and Cox-based methods
The correlation coefficient (r

1
) between observed survival and 

predicted survival obtained from the 1-NN method was 0.18 

with a P-value of 0.00018. The Cox-based approach was per-

formed with nested tenfold CV, where an inner loop was used 

for LASSO parameter determination. The average correlation 

coefficient (r2) was obtained from a series of correlation coef-

ficients (r
2
) between observed survival days and relative risks. 

When we used whole genome gene expression profiles, the 

average correlation coefficient (r2) was –0.22, with the absolute 

value being larger than r
1
 (see Table 2). A reason for the higher 

prediction power of the Cox-based method compared to the 

1-NN method could be due to the fact that the earlier method 

removes many genes unrelated to survival prediction by the 

LASSO optimization strategy. Only 164 genes among 12,042 

total genes were used as an input to build models in the CV 

step due to the feature selection function of LASSO regres-

sion. The 164 genes included SLC25A20, CLEC5A, ZNF208, 

C13orf18, NYX, PCNXL2, RBP1, EFEMP2, HIST3H2A, 

ELA2B, and RPS28.

We then used a more focused gene input consisting of 

cancer pathway genes obtained from the Molecular Sig-

natures Database (MSigDB) version 3.0,14 and the Kyoto 

Encyclopedia of Genes and Genomes database.15 Even 

though gene expression profiles of only 300 cancer genes 

were used as an input of LASSO optimization, the average 

correlation coefficient (r2 ) was -0.24, thus generating a bet-

ter result than the same method using whole genome gene 

expression profiles. This result implies that the preselection 

of genes based on biological knowledge is still helpful even 

in the setting of LASSO, which is capable of sophisticated 

gene selection for more generalized fitting. Only 88 genes 

among 300 cancer genes were used for  building the mod-

els in the CV step. These genes included FZD7, MAPK8, 
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Figure 1 Histogram of absolute difference between observed survival (in days) and 
survival (in days) predicted by the 1-NN method.
Abbreviation: 1-NN, 1-nearest neighbor survival prediction method.

Table 1 Survival prediction comparison between the 1-NN survival 
prediction method and the random patient selection method

Measure Type of prediction

1-NN survival prediction Random patient selection

MAD 386.2 455.8a

Note: aThe average of MAD values for the random patient selection method was 
computed by repeating the simulation of survival prediction 100 times.
Abbreviations: 1-NN, 1-nearest neighbor survival prediction method; MAD, 
mean absolute difference between observed survival (in days) and predicted 
survival (in days).

Table 2 Survival prediction comparisons based on Pearson’s 
correlation coefficient

Measure Type of prediction

1-NN survival  
prediction

Coxnet  
with whole  
genome

Coxnet with  
cancer pathway  
genes

Correlation 0.18a -0.22b -0.24b

Notes: aPearson’s correlation coefficient between observed survival and predicted 
survival; bPearson’s correlation coefficient between observed survival and predicted 
relative risks for nested tenfold cross-validation, where an inner loop was used for 
LASSO parameter determination.
Abbreviations: 1-NN, 1-nearest neighbor survival prediction method; Coxnet, 
regularized Cox regression.12
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algorithms that do not rely on cancer subclassification 

lend themselves to assist clinicians with difficult clinical 

decision-making. Such risk estimation is substantially easier 

to use and more adaptable to study tailored therapeutic 

options for individual cancer patients. Cancer subclassifi-

cation and associated risk groupings provide only average 

predictions, limiting the  ability to estimate the survival and 

risk of individual patients. As mentioned, cancer subtyping 

is inherently prone to fail in identifying and subgrouping 

patients with rare disease characteristics.

We compared four different survival prediction  methods: 

(1) 1-NN survival prediction method; (2) random patient 

selection method, (3) Cox-based regression with LASSO 

optimization; with nested CV using whole-genome gene 

expression profiles; and (4) the same Cox-based regression 

method using gene expression profiles of cancer pathway 

genes. The 1-NN method used whole genome gene expres-

sion profiles for pattern matching, whereas the Cox-based 

regression method selected some genes for predicting rela-

tive risks based on LASSO optimization. We showed that the 

1-NN survival prediction method was better than the random 

patient selection method, although it does not include a fea-

ture selection step. This 1-NN method may thus represent 

a valuable approach to capture the genome of a tumor that 

was closest to that of a tumor that was not categorized into 

a subtype due to its low frequency in previous studies. This 

is related to the issue of determining the number of clusters 

when a similarity comparison based on a clustering algorithm 

is used for cancer subtype identification. In general, small 

clusters tend to be ignored in more or less subjective decisions 

on tumor subtypes. The current 1-NN method determined the 

closest gene expression profile based on Pearson’s correlation 

coefficient. We also tested Spearman’s rank correlation and 

Hoeffding’s D measure, but they did not show better results 

in terms of the MAD.

There is ongoing controversy as to the input of feature 

selection algorithms. If the feature selection is optimal, one 

may conclude that larger features should generate better 

results since the ideal feature selection would select the 

best set of genes. However, the practical situation is usually 

more complicated than the ideal situation. For example, the 

model parameter should be estimated by CV, but CV does 

not guarantee the identification of the actual best parameters; 

instead, it estimates good parameters that are close to the 

best parameters, primarily because the number of CVs and 

the step size of a grid parameter search are limited by avail-

able computing resources. We showed that the Cox-based 

regression method performed better when using 300 cancer 

Table 3 Annotation to biological pathways of the top 32 genes 
(among 300 preselected cancer genes) used for building the 
models selected by Coxnet12

Pathway Genes selected by Coxnet

Wnt pathwaya FZD7, CTNNB1, FZD8, DVL3
JNK pathway MAPK8, RAC3
Apoptosis CASP3
ECM receptor interaction LAMB4
ERBB pathwaya CCDC6, ETS1, IL8, EGF, FGF5,  

MET, TPM3
HIF pathway HIF1A, EGLN3, EPAS1
AKT pathway CBL
NFkB pathwaya NFKB1, NFKBIA, CHUK, TRAF3
Retinoic acid receptor RARB
Hedgehog pathwaya BMP4, GLI2, BMP2, SHH
Inflammation IL6
Resistance to chemotherapy MITF
Cell cycle RB1
Gene expression during myeloid  
and B-lymphoid cell development

SPI1

Note: aPathways with more than three genes selected by Coxnet.
Abbreviations: Coxnet, regularized Cox regression; JNK, C-Jan N-terminal kinase;  
ECM, extracellular matrix; HIF, hypoxia-inducible factor; NFkB, nuclear factor-kappa B;  
IL, interleukin; EGF, epidermal growth factor.

LAMB4, NCOA4, RAC3, CCDC6, CTNNB1, CBL, ETS1, 

NFKB1, RARB, IL8, HIF1A, CASP3, NFKBIA, FZD8, EGF, 

CHUK, FGF5, BMP4, IL6, MET, TPM3, MITF, DVL3, GLI2, 

RB1, EGLN3, BMP2, SHH, SPI1, TRAF3, and EPAS1, many 

of which have cancer-relevant functions. Table 3 shows the 

functional annotation of the top 32 genes selected by the 

regularized Cox regression to various biological pathways,12 

including the Wnt, ERBB, nuclear factor-kappaB, and 

Hedgehog pathways.

Discussion
When cancer subcategories are known, it is reasonable to 

identify biomarkers that can discriminate between these 

cancer subtypes. The identification of class-separable bio-

markers can be done via classification with feature selection. 

Even when cancer subcategories are not known, similarity 

comparisons using clustering algorithms can be applied to 

identify subcategories of cancers. However, rare subtypes of 

a cancer may not be captured due to small sample sizes. In 

this study, we focused on predicting patient survival based 

on gene expression profiles without grouping tumors into 

subtypes. The ability of this approach to predict individual 

patient survival represents a major advantage relative to 

the risk grouping of patient populations who share similar 

disease characteristics. Risk grouping classifies patients 

into distinct classes and tends to ignore the individual fate 

of each disease. Survival prediction and risk estimation 
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pathway genes that were preselected based on relevance to 

cancer biology rather than whole genomes (12,042 genes) 

as an input of the LASSO-based regression algorithm. This 

result implies that using preexisting biological knowledge 

for survival prediction is not only reasonable, but also ben-

eficial – unless the target problem is to identify completely 

unknown cancer genes from the survival prediction.
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