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Background: Predictive modeling of the biological effects of nanomaterials is critical for 

industry and policymakers to assess the potential hazards resulting from the application of 

engineered nanomaterials.

Methods: We generated an experimental dataset on the toxic effects experienced by embryonic 

zebrafish due to exposure to nanomaterials. Several nanomaterials were studied, such as metal 

nanoparticles, dendrimer, metal oxide, and polymeric materials. The embryonic zebrafish metric 

(EZ Metric) was used as a screening-level measurement representative of adverse effects. Using 

the dataset, we developed a data mining approach to model the toxic endpoints and the overall 

biological impact of nanomaterials. Data mining techniques, such as numerical prediction, can 

assist analysts in developing risk assessment models for nanomaterials.

Results: We found several important attributes that contribute to the 24 hours post-fertilization 

(hpf) mortality, such as dosage concentration, shell composition, and surface charge. These 

findings concur with previous studies on nanomaterial toxicity using embryonic zebrafish. We 

conducted case studies on modeling the overall effect/impact of nanomaterials and the specific 

toxic endpoints such as mortality, delayed development, and morphological malformations. 

The results show that we can achieve high prediction accuracy for certain biological effects, 

such as 24 hpf mortality, 120 hpf mortality, and 120 hpf heart malformation. The results also 

show that the weighting scheme for individual biological effects has a significant influence on 

modeling the overall impact of nanomaterials. Sample prediction models can be found at http://

neiminer.i-a-i.com/nei_models.

Conclusion: The EZ Metric-based data mining approach has been shown to have predictive 

power. The results provide valuable insights into the modeling and understanding of nanomate-

rial exposure effects.

Keywords: nanomaterial exposure effects, biological response, toxicity, embryonic zebrafish, 

data mining, numerical prediction

Introduction
Nanobiotechnology is an interdisciplinary field at the intersection of nanoscience, 

biology, and engineering.1 There has been a rapid proliferation of different types of 

nanomaterials with novel properties, offering extraordinary opportunities in various 

applications such as in vivo cancer diagnosis,2 implantable devices,3 drug delivery 

systems,4,5 and gene delivery systems.6,7 Such rapid growth of nanobiotechnology will 

obviously result in increased exposure of humans and the environment to nanomaterials. 

Hence, there is a need to systematically investigate the potential biological and 

environmental impacts of newly emerging nanomaterials.

Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
31

O ri  g inal     R esearch     

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/IJN.S40742

In
te

rn
at

io
na

l J
ou

rn
al

 o
f N

an
om

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

mailto:xliu09@gmail.com
http://neiminer.i-a-i.com/nei_models
http://neiminer.i-a-i.com/nei_models
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/IJN.S40742


International Journal of Nanomedicine 2013:8 (Suppl 1)

The nanotechnology community began to evaluate the 

effects of exposure to nanomaterials in the early 1990s.8 Many 

studies have focused on respiratory system exposure to assess 

the bioeffects of engineered nanomaterials such as metal oxide 

nanomaterials9,10 and carbon-based nanomaterials.11 The results 

suggest that the hazard potential depends on a combination of 

material properties such as particle shape, size, solubility, and 

crystalline phase.10 Other exposure routes that have been studied 

include gastrointestinal system, cardiovascular system, central 

nervous system, and skin.12 So far, nanomaterials have been 

mainly tested with in vitro toxicity assays that analyze cellular 

parameters such as cell viability, oxidative stress, genotoxicity, 

and inflammatory response.10 In comparison to animal models, 

in vitro studies allow for a more efficient determination of 

toxicity endpoints. However, the results from in vitro studies 

may mislead safety assessment efforts and will require further 

verification from in vivo animal experiments.10,12

The biological activity of nanomaterials depends on 

inherent physicochemical properties not routinely considered 

in toxicity studies. Nanomaterials can have distinct health 

effects compared with bulk materials of the same chemical 

composition.12,13 For example, studies have shown that nano-

copper particles induce toxicological effects and injuries on 

the kidney, liver, and spleen of mice while micro-copper 

particles do not.13 Thus, the existing knowledge of safety 

evaluation for bulk materials may not apply to the safety 

assessment of nanomaterials.

Information currently being acquired on the bioeffects 

of nanomaterials is extremely diverse, including a multitude 

of widely varying nanomaterials that are being tested in a 

broad array of in vivo animal systems and in vitro assays.8–13 

Knowledge of nanomaterial–biological interactions requires 

the inclusion and consideration of the entire body of data pro-

duced from global efforts in this research area. Compilation 

of this data will allow for the determination of nanomaterial 

structure–activity relationships. Such mathematical repre-

sentations can be used to predict nanomaterial properties 

and activity in the absence of empirical data. Since nano-

technology fundamentally allows manipulation of matter at 

the atomic level, toxic interactions could potentially be mini-

mized by creative design once we have sufficient knowledge 

of how nanomaterials interact with biological systems.

Our research goal is to organize and analyze data and 

compare results across research platforms in an effort to 

model robust structure–activity relationships. Instead of an ad 

hoc approach to building models, we leverage a nanomaterial 

environmental impact (NEI) modeling framework to guide 

the development of various models. This NEI modeling 

framework is based on the most recent innovation in NEI 

assessment and provides a foundation for the development 

of the key components of data collection, model discovery, 

and model composition.14,15

Figure 1 shows a schematic diagram of the NEI modeling 

framework. The scope covers physical and chemical proper-

ties of nanomaterials, exposure and study scenarios, environ-

mental and ecosystem responses, biological responses, and 

their interactions. Physical and chemical properties describe 

the “structure” of the material, while exposure and study sce-

narios, environmental and ecosystem responses, and biologi-

cal responses describe or are relevant to the “activity” of the 

material in different contexts. Structure–activity relationships 

are mathematical descriptions of the relationships between 

structural features (here we argue that complex descriptors 

such as 3D molecular simulation models could be used to 

describe structure) and the activity, which would represent 

diverse data on fate, transport, biological impacts, and 

ecosystem impacts. Exposure and study scenarios describe 

the “exposure” (the fate and update of the materials), while 

environmental and ecosystem, and biological responses 

describe the “response.” The interaction between exposure 

and response can be used to define risk. Because measured 

responses are related to nanomaterial structural properties, 

risk is also related to these properties.

The NEI modeling framework (shown in Figure  1) 

provides guidance for developing various models. In the 

present research, we focus on modeling potential biological 

impacts of engineered nanomaterials. Given the identification 

of the elements related to biological impact modeling, we 

have developed a data mining approach to parameterizing 

nanomaterial biological impact models based on experimen-

tal data. Data mining techniques, such as numerical predic-

tion, can assist analysts in discovering risk assessment models 

for nanomaterials. These techniques provide an in-depth 

knowledge for each biological effect and facilitate quantita-

tive structure–activity relationships modeling.

Several methods have been proposed in the literature to 

predict adverse effects of nanomaterials (the output) from 

chemical and biological information (the input). These methods 

use different ways to measure toxicological effects. Some focus 

on predicting cytotoxic effects examined in different human cell 

lines (eg, lung, liver, or kidney) employing different assays.16 

Others focus on predicting rodent acute toxicity measured by 

median lethal dose (LD50) values.17 These methods are based 

on an ad hoc approach pertinent to specific applications only. 

They do not support comprehensive evaluation of nanomateri-

als at multiple levels of biological organization.
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Compared with existing work on NEI modeling, our 

approach has several key advantages. First, our NEI modeling 

supports the evaluations for biocompatibility using a rapid 

in vivo system (embryonic zebrafish) to assess the biological 

activity and toxic potential of nanomaterials at multiple levels 

of biological organization (ie, molecular, cellular, systems, 

and organismal). Previous studies have shown that the embry-

onic zebrafish model is an efficient and powerful model in 

toxicity testing.18–22 Second, our modeling is integrated with 

the Nanomaterial–Biological Interactions (NBI) Knowl-

edgebase,23 which provides comprehensive information on 

the effects of nanomaterial exposure on biological systems. 

In addition to the embryonic zebrafish experiments, the NBI 

Knowledgebase is expanding its data sources by including 

data from other animal systems and in vitro assays. System-

atic analysis of disparate data on nanomaterial–biological 

interactions will provide capabilities to identify structure 

and design principles of high-performance, environmen-

tally-benign nanomaterials. Third, our modeling leverages 

Intelligent Automation, Inc. (IAI) internal agent-based data 

mining framework (ABMiner, Intelligent Automation, Inc., 

Rockville, MD, USA)24,25 to build models for predicting 

toxicity or biological impact measures of interest. ABMiner 

incorporates hundreds of algorithms for both supervised and 

unsupervised learning. This wide range of algorithms will 

provide greater flexibility in meeting the needs of building 

different models for different exposure contexts. ABMiner 

also provides an optimization engine that can help find the 

best algorithm (eg, highest accuracy or lowest false positive 

rate) for a given problem based on optimization theory.

In this study, we investigate adverse effects based on a 

novel metric representative of adverse effects (toxicity) in 

embryonic zebrafish.26 The novelty of our approach compared 

to existing methods is the ability to systematically predict 

individual exposure effects (eg, mortality, delayed develop-

ment, or organ malformations) and the overall exposure 

effect/impact of nanomaterials. The rest of the paper is orga-

nized as follows. We first describe materials and methods for 

modeling the effects of nanomaterial exposure on biological 

systems. Then we present results to demonstrate the analysis 

capability of our data-mining-based modeling framework. 

Next we discuss the results and their implications. Finally, 

we conclude the paper and outline future research.

Materials and methods
Materials
Nanomaterial exposure effects can be based on whole animal 

evaluations, cellular-level evaluations, or molecular-level 

evaluations. For example, whole animal evaluations could 

provide screening-level measurement using species of rat, 
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Figure 1 The scope of modeling nanomaterial environmental impact.
Abbreviation: SARs, structure–activity relationships.
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mouse, zebrafish, and other animal models; cellular-level 

evaluations could have measures of different types of cell 

death; and molecular-level evaluations could include global 

gene expression, gene localization, and function.26 In the 

present study, we focus on whole animal evaluations using 

the embryonic zebrafish model. The embryonic zebrafish 

metric (EZ Metric) is a screening-level measurement 

representative of adverse effects (toxicity) in embryonic 

zebrafish.26,27 Specific biological effects, such as mortality, 

delayed development, or malformations, are measured after 

embryonic exposure to nanomaterials. The measure of a 

specific biological effect E
i
 is defined as:

	 E
N

T
ii

i= =( , , , )1 2 3 … � (1)

where i is the index of a biological effect, N
i
 is the number of 

zebrafish embryos having effect i, and T is the total number 

of zebrafish embryos tested.

To measure the overall adverse effect, individual biologi-

cal effects (toxic endpoints) are summed to generate a single 

additive EZ Metric score:

	 Additive EZ = ∑ ( )Eii

n

=0
� (2)

where i is the index of a biological effect, E
i
 is the measure 

of the ith biological effect, and n is the total number of 

biological effects.

To consider the potential impact of the different bio-

logical effects that are noted following exposure, individual 

endpoint frequencies are weighted against their likely bio-

logical importance and then summed up to represent a single 

weighted EZ Metric score:

	 Weighted EZ *=
=∑ w Ei ii

n
( )

0
 � (3)

where w
i
 is the weight factor for the ith biological effect E

i
. 

The weighting factors used for individual biological effects 

to calculate the overall weighted EZ Metric score are shown 

in Table 1.

To explore the process of building risk assessment models 

for nanomaterials, we utilize the EZ Metric experimental data 

housed in Oregon State University’s NBI knowledge base23 to 

build prediction models. The dataset contains data fields on 

nanomaterial characterization (purity, size, shape, charge, com-

position, functionalization, and agglomeration state), synthesis 

methods, and nanomaterial–biological interactions (beneficial, 

benign, or deleterious) defined at multiple levels of biological 

organizations (molecular, cellular, and organismal). Currently, 

there are a total of 82 experiments conducted to test the biologi-

cal interactions using nanomaterials with different properties 

and dosage concentrations. Based on the knowledge of domain 

experts, impact values are calculated for each experiment.

Figure 2 shows a sample experimental dataset with 24 

zebrafish embryos exposed to the nanomaterial STARBURST® 

poly(amido amine) (PAMAM) Dendrimer DNT-107  in the 

concentration range of 0–250 parts per million (ppm). The 

primary exposure route is dermal, and the primary exposure 

delivery is waterborne. The 24 hours post-fertilization (hpf) 

evaluations include mortality, development progression/

delayed development, spontaneous movement, and notochord 

malformation. The 120 hpf evaluations include mortality, 

yolk sac edema, axis malformation, eye malformation, 

snout malformation, jaw malformation, otic malformation, 

heart malformation, brain malformation, somite malforma-

tion, pectoral fin malformation, caudal fin malformation, 

pigmentation, circulation, trunk malformation, swim bladder, 

and touch response. For every dosage, the 24 hpf and 120 hpf 

toxicity evaluations are aggregated to calculate the additive 

and weighted EZ Metric scores using Equations 2 and 3.

Methods
Data mining approach to NEI modeling
Data mining techniques allow us to model important 

parameters related to NEI and to build predictive models for 

Table 1 Weight scheme for individual biological effects

Time period Abbreviation Biological effect Weight

24 hpf DP Developmental progression  
(delayed development)

0.3

24 hpf M Mortality 1
24 hpf N Notochord malformation 0.4
24 hpf SM Spontaneous movement 0.2
120 hpf A Axis malformation 0.4
120 hpf B Brain malformation 0.6
120 hpf C Circulation 0.2
120 hpf CF Caudal fin malformation 0.1
120 hpf E Eye malformation 0.2
120 hpf H Heart malformation 0.6
120 hpf J Jaw malformation 0.2
120 hpf M Mortality 0.95
120 hpf O Otic malformation 0.1
120 hpf P Pigmentation 0.1
120 hpf PF Pectoral fin malformation 0.1
120 hpf SB Swim bladder 0.1
120 hpf Sn Snout malformation 0.1
120 hpf So Somite malformation 0.1
120 hpf T Trunk malformation 0.3
120 hpf TR Touch response 0.1
120 hpf Y Yolk sac edema 0.5

Abbreviation: hpf, hours post-fertilization.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

34

Liu et al

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2013:8 (Suppl 1)
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Figure 2 Sample nanomaterial–biological interaction data.
Abbreviations: A, axis malformation; B, brain malformation; C, circulation; CF, caudal fin malformation; DP, developmental progression; E, eye malformation; EZ Metric, 
embryonic zebrafish metric; H, heart malformation; hpf, hours post-fertilization; J, jaw malformation; M, mortality; N, notochord malformation; O, otic malformation; 
P, pigmentation; PF, pectoral fin malformation; SB, swim bladder; SM, spontaneous movement; Sn, snout malformation; So, somite malformation; T, trunk malformation; 
TR, touch response; Y, yolk sac edema.

various biological effects of nanomaterials. Data mining can 

be addressed from different perspectives, such as classifica-

tion and numerical prediction. In a classification problem, a 

model or classifier is constructed to predict categorical labels, 

such as “Yes” or “No,” and “safe” or “risky.” A numerical 

prediction problem is similar to a classification problem. Both 

of them model the relationship between multiple independent 

variables (the input) and one dependent variable (the output). 

Instead of having a nominal dependent variable, a numeri-

cal prediction problem has a numerical dependent variable. 

Both classification and numerical prediction are two-step 

processes. In the first step, training data are analyzed by a 

machine learning algorithm to build a model. In the second 

step, test data are used to estimate the accuracy or perfor-

mance of the model.

In this study, we treat NEI modeling as a numerical pre-

diction problem, where the input variables are nanomaterial 

properties (eg, material type, particle size distribution, shape, 

structure, surface charge, water solubility, etc) and exposure 

scenarios (eg, duration, continuity, exposure route, number 

of nanoparticles, etc) and the output variable is a numerical 

measure of a target biological effect. We can build predic-

tion models to predict specific biological effects using the 

individual measured endpoints or we can build prediction 

models to predict the overall biological effect/impact using 

the additive or weighted EZ Metric scores.

Data mining is a generic approach and can be applied to 

different types of data on nanomaterial–biological interac-

tions, as long as the input and output variables are appropri-

ately defined. In addition to processing embryonic zebrafish 

experimental data, our modeling approach can be expanded 

to other types of biological systems as well. For example, 

we can build prediction models to predict the toxicological 

effects of cobalt nanoparticles in different human cell lines 
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analyzed by in vitro assays.16 We can also predict the toxic-

ity of copper nanoparticles in vivo measured by the median 

lethal dose (LD50) of mice.13 The information on predicting 

toxicity across data sources and organisms is also described 

in the Discussion section.

NEI model discovery
We developed a data mining solution for NEI modeling by 

leveraging IAI’s data mining tool ABMiner.24,25 ABMiner 

supports the full data mining cycle, including data set prepa-

ration, model discovery, and model deployment. For data 

set preparation, ABMiner provides an interface which helps 

the user to load data from various sources (eg, CVS files, 

and relational databases). For model discovery, ABMiner 

provides more than 400 machine learning algorithms (eg, 

classification and clustering algorithms) aggregated from 

IAI’s machine learning projects and open sources librar-

ies such as Weka.28 These algorithms allow users to build 

various prediction models (eg, classification and numerical 

prediction models). ABMiner provides a dynamical visual 

representation of the model building process and the per-

formance (eg, accuracy) of each model. Figure 3 shows a 

screenshot of ABMiner.

Given a dataset on nanomaterial–biological interactions 

(eg, embryonic zebrafish experimental dataset), we apply 

numerical prediction algorithms to the data to derive the 

mathematical models that can predict biological effects of 

interest from nanomaterial properties and exposure scenarios. 

Sample numerical prediction algorithms in ABMiner 

include:

•	 IBK – IBK is a K-nearest neighbor predictor. It assigns 

an input (eg, a nanomaterial and a corresponding 

exposure scenario) to the output label (eg, toxicity) most 

common amongst its K nearest neighbors. The predic-

tor can select the appropriate number of K based on 

cross-validation. When K is selected by cross-validation 

for numeric class attributes (labels), it minimizes mean 

squared error or mean absolute error.29

•	 Bagging – Bagging is a meta-learning algorithm for gen-

erating multiple versions of a predictor and using these 

to get an aggregated predictor.30 The multiple versions 

are formed by making bootstrap replicates of the dataset 

and using these as new learning sets. The default base 

predictor is REPTree,31 a fast decision tree learner.

•	 M5P – M5P is a tree algorithm that implements base 

routines for generating M5 Model trees and rules. The 

original algorithm, M5, was invented by Quinlan32 and 

Wang and Witten made improvements.33

•	 KStar – KStar is an instance-based classifier where the 

class of a test instance is based upon the class of those 

training instances similar to it.34 KStar differs from other 

instance-based learners in that it uses an entropy-based 

distance function.

ABMiner employs a k-fold cross validation method to 

evaluate models. For numerical prediction, common evalu-

ation criteria include root mean squared error, absolute error, 

relative error, and accuracy measured by the correlation 

between the actual label and predicted label. In k-fold cross 

validation, the data set is divided into k subsets. Each time, 

one of the k subsets is used as the test set and the other k – 

1 subsets are put together to form a training set. Then the 

average performance across all k trials is computed. The 

advantage of this method is that it matters less how the data 

gets divided. Every data point is included in a test set exactly 

once, and is included in a training set k – 1 times. The vari-

ance of the resulting estimate is reduced as k is increased. 

Based on the cross validation results, users can compare the 

models and select the best model (eg, the model with the 

highest accuracy) for deployment.

NEI model deployment
ABMiner provides a model base component25 that enables 

a well-trained NEI model, together with its underlying data 

set and performance metrics, to be wrapped up and acces-

sible across various platforms. There are two unique features 

of the model base. First, the model base is able to host the 

datasets and knowledge models from data mining activi-

ties, which are obtained by using IAI ABMiner integrated 

development environment. Second, the model base is able to 

expose these data mining outcomes (ie, predictive models) Figure 3 ABMiner screenshot.
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to the community through a model deployment interface. By 

accessing the model base, users can browse NEI knowledge 

models, and view the dataset associated with a knowledge 

model and query the knowledge model itself. This will 

offer industry, academia, and regulatory agencies a tool to 

rationally inquire about nanomaterial exposure effects in 

biological systems.

Results
Data preparation
EZ Metric impact measurements are located in separate 

datasets within the NBI. To get a comprehensive dataset for 

modeling biological effects, we developed an algorithm to 

integrate all the experimental data (spreadsheet files) into a 

dataset with all the nanomaterial properties, experimental 

design parameters, dosage, and impact measurements. The 

dataset contains test results on 82 nanomaterials including 

metal nanoparticles, dendrimer, metal oxide, polymeric, 

and others. Each nanomaterial is tested at eight different 

dosage concentrations. Therefore, there are 656 test results 

(samples) in the data.

We performed data cleaning to remove trivial attributes 

(those that have the same values for all experiments) in the 

data. After this step, we had 21 attributes: 20 input attributes 

and one output attribute for modeling. The 20 input attributes 

included: material type, synthesis precursors, purity, primary 

particle size: average (nm), primary particle size: minimum 

(nm), primary particle size: maximum (nm), core shape, core 

structure, core atomic composition, number of core atoms, 

mass core atoms (ng), shell composition, outermost surface 

functional groups, minimum number of ligands, surface 

charge: (positive, negative, or neutral), solubility/dispersity 

medium, primary exposure route, material zeta potential in 

media (mV), stable average agglomerate size in media (nm), 

and dosage concentrations used (ppm). The output attribute 

is the prediction label: it can be the measure of specific 

biological effects (eg, 24 hpf mortality Metric score) or the 

measure of aggregated overall effect/impact (eg, additive 

EZ Metric score).

Specific effect modeling
This modeling focuses on the impact of nanomaterials 

measured by specific responses or effects, including the 

24 hpf evaluation such as mortality, delayed development, 

spontaneous movement, notochord malformation, and the 

120 hpf evaluation such as mortality, yolk sac edema, axis 

malformation, eye malformation, and many other effects. 

This kind of modeling allows us to examine biological effects 

at a high resolution.

To model a specific effect, we first load the corresponding 

data into ABMiner. For example, Figure 4 shows the metadata 

of the 24 hpf mortality data. The data has one prediction label 

(relative 24 hpf M) and 20 input attributes. We can evaluate 

the worth of an input attribute using an algorithm called 

RELIEF.35 The key idea of RELIEF is to estimate attributes 

according to how well their values distinguish among the 

instances that are near each other. The rationale is that good 

attributes should differentiate between instances from dif-

ferent classes and should have the same value for instances 

from the same class. Specifically, the weight for each attribute 

W
a
 is defined as:

	
W P different value of a different class

P different value of a
a =

−
( | )

( || )same class
�

(4)

Figure 4 Metadata of the integrated data set.
Abbreviations: Avg, average; Max, maximum; Min, minimum.
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Figure 5 Attribute weights with respect to the 24 hpf mortality.
Abbreviation: hpf, hours post-fertilization.

Table 2 Best algorithm for each biological effect

Biological  
effect

Best  
algorithm

Pearson correlation between 
the actual and predicted score

24 hpf M IBK 0.837
120 hpf M IBK 0.765
120 hpf H IBK 0.725
120 hpf J IBK 0.667
120 hpf T IBK 0.657
24 hpf DP IBK 0.591
120 hpf P IBK 0.565
120 hpf E IBK 0.544
120 hpf Sn IBK 0.486
120 hpf TR IBK 0.476
120 hpf CF IBK 0.441
120 hpf Y Bagging 0.439
120 hpf PF IBK 0.387
120 hpf SB M5P 0.380
120 hpf C IBK 0.368
120 hpf O IBK 0.331
120 hpf B IBK 0.297
120 hpf A IBK 0.294
120 hpf So Bagging 0.262
24 hpf N M5P 0.125
24 hpf SM Kstar −0.003

Abbreviations: A, axis malformation; B, brain malformation; C, circulation; 
CF, caudal fin malformation; DP, developmental progression; E, eye malformation; 
H, heart malformation; hpf, hours post-fertilization; J, jaw malformation; M, mortality; 
N, notochord malformation; O, otic malformation; P, pigmentation; PF, pectoral 
fin malformation; SB, swim bladder; SM, spontaneous movement; Sn, snout 
malformation; So, somite malformation; T, trunk malformation; TR, touch response; 
Y, yolk sac edema.

Table 3 Prediction results of overall effect modeling

Algorithm Pearson correlation between the actual 
and predicted overall effect

Overall effect measured  
by the “additive EZ  
Metric score”

Overall effect measured 
by the “weighted EZ 
Metric score”

IBK 0.640 0.792
Bagging 0.653 0.792
M5P 0.542 0.766
KStar 0.548 0.685

Abbreviation: EZ Metric, embryonic zebrafish metric.

where a is an attribute and P is the probability. RELIEF 

can operate on both discrete and continuous class labels. 

Figure 5 shows the attribute weights calculated by RELIEF 

for the 24 hpf mortality data. In this case, dosage, shell com-

position, outermost surface functional groups, purity, core 

structure, and surface charge are significant attributes for 

predicting the 24 hpf mortality. In high-dimensional data min-

ing, we can select a small number of attributes with relatively 

high weights. Here, the embryonic zebrafish data has 20 input 

attributes and 656 examples. Since the number of attributes is 

not large, we use all 20 attributes for model building.

ABMiner lists a set of applicable algorithms for numeri-

cal prediction. We can conveniently select algorithms and 

start building models using the selected algorithms. In this 

scenario, four algorithms are selected for model building, 

including IBK, Bagging, M5P, and KStar. Using ABMiner, 

we compare the performance of different learning algorithms 

for modeling each specific effect measured by EZ Metric 

score. Table  2  shows the best performance algorithm for 

modeling each specific effect. Here the best performance 

algorithm means the algorithm which generates the high-

est correlation between the actual and predicted EZ Metric 

score.

The results show that we have different modeling accura-

cies for different biological effects. For example, we achieve 
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Figure 6 Correlation result of algorithm Bagging.
Abbreviation: EZ Metric, embryonic zebrafish metric.

a high correlation of 0.837 for modeling 24 hpf mortality, 

while we only achieve a correlation of −0.003 for modeling 

24 hpf spontaneous movement. In most cases, IBK achieves 

the highest correlation among all algorithms. However, IBK 

is not the best algorithm for modeling certain effects such as 

24 hpf spontaneous movement, 24 hpf notochord malforma-

tion, 120 hpf yolk sac edema, 120 hpf somite malformation, 

and 120 hpf swim bladder.

Overall effect modeling
This modeling focuses on the general impact of exposure 

to nanomaterials on biological responses measured by the 

additive EZ Metric score and the weighted EZ Metric score. 

Using ABMiner, we compare the performance of different 

algorithms for modeling the overall impact.

Table 3 shows the prediction results. The algorithm of 

Bagging offers the best performance with a correlation of 

0.653 between the actual and predicted additive EZ Metric 

score. IBK and Bagging both have the best performance 

with a correlation of 0.792 between the actual and predicted 

weighted EZ Metric score. Figure 6  shows a sample cor-

relation map for the weighted EZ Metric score case by the 

Bagging algorithm. In general, the results show that using 

the weighted EZ Metric score achieves better prediction 

performance than using the additive EZ Metric score.

Model base
To make the prediction models more generally available, 

we implemented a model base of NEI prediction models. 

The model base is able to host and manage the datasets and 

NEI models built by different algorithms. Users can gain 

information from the NEI models and datasets to inform 

the nanomaterial design process in creating benign materials 

and processes.

To illustrate the concept, we have trained several NEI 

models and deposited them into a sample Model Base at 

http://neiminer.i-a-i.com/nei_models. The model base inter-

face allows the user to select a model from the list, view and 

edit the model description, visualize the dataset used to train 

the model, and query the model for predictive information 

about the target biological effect.

Model query
To demonstrate the utility of data-mining-based predic-

tive modeling, we built an interface for biological effect 

assessment by invoking the underlying prediction models. 

Figure  7  shows the interface for querying the prediction 

model of 24 hpf mortality built using the M5P algorithm. 

Users can make “what if ” queries on the model by varying the 

values of the input attributes. For example, we can simulate 

a scenario by setting the desired values of the nanomaterial 

properties (eg, shell composition, outermost surface func-

tion groups, or core structure) and exposure conditions (eg, 

dosage concentrations used or primary exposure route). The 

interface will automatically display the predicted EZ Metric 

score of 24 hpf mortality for the simulated scenario. The 

predicted EZ Metric score provides valuable information on 

the toxic potential of the target nanomaterial. For example, if 

the EZ Metric score is smaller than the lower-level threshold 

of acceptable mortality rate (eg, 0.2), the material can be 

interpreted as “likely benign;” if the EZ Metric score is larger 

than the upper-level threshold of unacceptable mortality rate 

(eg, 0.625), the material can be interpreted as having high 

toxic potential and requires further testing; if the EZ Metric 

score is between the lower-level and upper-level thresholds, 

the material can be interpreted as suspect nanomaterial having 

moderate toxic potential.26

Discussion
Our present study focuses on the evaluations for biocom-

patibility using the embryonic zebrafish system to assess 

the biological activity and toxic potential of nanomaterials. 

Zebrafish exhibit remarkable similarity to other high-order 

vertebrates including humans in their molecular signaling 

pathways, cellular structure, and physiology.18 The embryonic 

zebrafish assay is increasingly being used in studies of toxic-

ity of nanomaterials. Examples include the use of zebrafish 

embryos for testing zinc oxide,19 silver nanoparticles,20 gold 

nanoparticles,21 and carbon fullerenes.22 Most of these stud-

ies focus on the evaluation of one type of nanomaterial. To 

enable systematic assessment of the embryonic zebrafish as 

a useful predictive model in nanomaterial toxicity, we aim to 
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quantify the adverse effects in zebrafish embryos on exposure 

to different kinds of nanomaterials (eg, metal nanoparticles, 

dendrimer, metal oxide, and polymeric).

Specif ically, we developed a generic data mining 

approach to build predictive models for assessing the unin-

tended biological effects of different types of nanomaterials. 

Data mining supports different perspectives of modeling, 

such as classification and numerical prediction. When the 

biological effect is measured by nominal values, classification 

models can be built to predict the nominal labels. When the 

biological effect is measured by numerical values, numerical 

prediction models can be built to predict the numerical labels. 

Here, we focus on predicting the biological effects measured 

by numerical EZ Metric scores. Specific biological effects, 

such as mortality, delayed development, or malformations, 

can be predicted by models built using different learning 

algorithms, such as a nearest neighbor algorithm and a tree 

algorithm. These algorithms can also be used to build models 

that predict the overall biological effect measured by the 

additive or weighted EZ Metric scores.

The dataset used for data mining included 20  input 

attributes that described the properties of nanomaterials and 

exposure scenarios. The output is either a specific biologi-

cal effect or the overall biological effect. We used a feature 

evaluation algorithm called RELIEF to evaluate the weight of 

an input attribute with respect to the output. We found several 

important attributes that contribute to the 24 hpf mortality, 

including dosage concentration, shell composition, outer-

most surface functional groups, purity, core structure, and 

surface charge. Previous studies also showed that these attri-

butes are strong indicators of mortality and malformations. 

For example, one study reported a concentration-dependent 

increase in mortality in silver nanoparticle treated zebrafish 

embryos.20 Another study showed that nanoparticle surface 

charge significantly influences mortality and malformations 

in zebrafish embryos exposed to gold nanoparticles.21

The results of specific biological effect modeling show 

that we can achieve high prediction accuracy for certain 

biological effects (refer to Table  2). For example, we 

achieved a correlation of 0.837 for modeling 24 hpf mortality, 

Figure 7 Query interface for 24 hpf mortality.
Notes: The underlying model is built using the M5P algorithm. The model can dynamically predict the 24 hpf mortality value for different combinations of attribute values.
Abbreviations: Avg, average; hpf, hours post-fertilization; M, mortality.
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a correlation of 0.765 for modeling 120 hpf mortality, and a 

correlation of 0.725 for modeling 120 hpf heart malformation. 

However, some biological effects cannot be accurately 

predicted. For example, we only achieved a correlation 

of −0.003 for modeling 24 hpf spontaneous movement. The 

results suggest that different biological effects may have 

different modeling accuracy given the same set of algorithms. 

We need to further explore the best algorithm for modeling 

each specific effect.

Our results on overall impact modeling show that using 

the weighted EZ Metric score generally achieves better 

prediction performance than using the additive EZ Metric 

score (refer to Table 3). For example, the M5P algorithm 

only generated a correlation of 0.542 between the actual 

and predicted unweighted overall scores, but it generated 

a much higher correlation of 0.766 between the actual and 

predicted overall scores using the initial weighting scheme. 

The results imply that the weighting scheme for individual 

biological effects does have an influence on the performance 

of predicting the general exposure impact.

To demonstrate the utility of prediction models, we 

implemented a model base with a model deployment or 

query interface. The model base is a host of NEI models 

and associated datasets. The model query interface utilizes 

predictive information gained from the prediction mod-

els to provide valuable information on the toxic potential 

of the target nanomaterial. The user can adjust the input 

attributes (nanomaterial properties, exposure scenarios) 

to predict potential biological impacts of unsynthesized 

nanomaterials.

The current dataset to which the NEI model was applied 

is comprised of multiple morphological, developmental, 

and behavioral endpoints; which means that expanding the 

model to include additional endpoints is easily achievable, 

and in fact, is the next step in model development. The goal 

of the NEI modeling is to be inclusive of different types of 

hazard data relative to nanomaterials with the aim to integrate 

toxicological data across disparate organisms, under varied 

exposure scenarios, and assimilate weight-of-the-evidence 

hazard rankings that are more robust than traditional indi-

vidual metrics. It is envisioned that consensus modeling36 can 

be implemented within this model framework where endpoints 

are found to be representative of similar effects (eg, mortality 

in zebrafish embryos, cytotoxicity measures in various cell 

types). Where significant variance is found between/among 

comparable measures, data mining allows for more detailed 

analysis with statistical validity. In summary, NEI modeling 

allows for differential inclusion of data within the framework 

and consensus modeling approaches allow cross-comparison 

of the hazard ranking across laboratories and organisms.

In addition to building exposure effect/toxicity models, 

data mining techniques (eg, classification, clustering, or 

numerical prediction) support the development of other 

types of models related to the source, transport, and exposure 

routes of nanomaterials. Sample models include air quality 

models, hazardous air pollutant exposure models, consensus 

transport models, bioavailability, biomagnifications, and 

exposure assessment models.37 We can apply model com-

position techniques14 to form more comprehensive models 

and predictability.

Conclusion
Nanobiotechnology is most likely to gain acceptance if envi-

ronmental and human health considerations are investigated 

systematically. Modeling NEI is critical to the understanding 

of the biological effects and health impact of exposure to 

nanomaterials. To address this critical need, we have devel-

oped a data mining approach to NEI modeling. Specifically, 

we treated NEI modeling as a numerical prediction problem, 

where the inputs are nanomaterial properties and exposure 

scenarios, and the outputs are numerical measures of bio-

logical effects. We utilized learning algorithms, such as IBK 

(a nearest neighbor predictor), M5P (a decision tree predictor), 

and Bagging (a bootstrapping meta-learning algorithm), to 

train biological effect prediction models from labeled data.

We generated an embryonic zebrafish experimental 

dataset with 656 test results (samples) across nanomaterials 

at different dosage concentrations. We evaluated the weights 

of input attributes (nanomaterial properties and exposure 

scenarios) with respect to the output (toxic endpoints). We 

found several important indicators of the 24 hpf mortality, 

including dosage concentration, shell composition, outermost 

surface functional groups, purity, core structure, and surface 

charge. These findings are consistent with the results of 

previous studies on nanomaterial toxicity using embryonic 

zebrafish.21,22,27,39,40

Using the experimental data set, we conducted case stud-

ies of specific biological effect modeling, as well as overall 

impact modeling. Our study clearly demonstrated that we can 

achieve high prediction accuracy for certain biological effects 

such as 24 hpf mortality, 120 hpf mortality, and 120 hpf heart 

malformation. Our study also showed that the weighting 

scheme for different biological effects is an important factor 

for predicting the overall effect/impact of nanomaterials. This 

demonstrates the predictive power of our EZ Metric-based 

data mining approach.
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To make the prediction models more generally available, 

we developed a model base component. The model base is 

able to host and manage NEI models and associated datasets. 

It provides a query interface to inform the nanomaterial 

design process for benign materials and processes. This will 

offer a tool to industry, academia, and regulatory agencies 

to rationally investigate the adverse effects of nanomaterials 

in biological systems.

Taken together, our modeling results provide insights into 

the understanding and modeling of the effects of nanomate-

rial exposure on biological systems. For future work, we will 

enhance the NEI modeling framework by collaborating with 

domain experts in the following areas: (1) acquiring more 

data to refine and expand the impact prediction models; 

(2) developing models on nanomaterial structure–activity 

relationships using large-scale experimental databases of 

reasonable diversity (eg, heterogeneous nanoparticles and 

biological receptors); (3) expanding the scope of nanomate-

rial biological impact to include various elements in four 

different layers of the FRAMES framework: source, trans-

port, food chain, and exposure/risk; (4) developing model 

composition techniques to form more comprehensive models 

and predictability; and (5) adopting ideas from the recent 

NanoInformatics 2020 Roadmap38 to develop innovative 

nanoinformatics applications.
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