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Abstract: The inhibitors of apoptosis (IAPs) constitute a family of proteins involved in 

the regulation of various cellular processes, including cell death, immune and inflammatory 

responses, cell proliferation, cell differentiation, and cell motility. There is accumulating evidence 

supporting IAP-targeting in tumors: IAPs regulate various cellular processes that contribute to 

tumor development, such as cell death, cell proliferation, and cell migration; their expression 

is increased in a number of human tumor samples, and IAP overexpression has been correlated 

with tumor growth, and poor prognosis or low response to treatment; and IAP expression can 

be rapidly induced in response to chemotherapy or radiotherapy because of the presence of an 

internal ribosome entry site (IRES)-dependent mechanism of translation initiation, which could 

contribute to resistance to antitumor therapy. The development of IAP antagonists is an important 

challenge and was subject to intense research over the past decade. Six molecules are currently 

in clinical trials. This review focuses on the role of IAPs in tumors and the development of 

IAP-targeting molecules for anticancer therapy.
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Introduction: IAP family of proteins
The inhibitors of apoptosis (IAPs) constitute a family of proteins highly conserved 

throughout evolution. IAPs were initially discovered in baculoviruses two decades ago,1 

as potent inhibitors of apoptosis in infected insect cells. The first human homologous 

neuronal apoptosis inhibitory protein (NAIP) and cellular IAP 1 and 2 (cIAP1 and 

cIAP2) were characterized 2 years later,2,3 followed by X-chromosome linked IAP 

(XIAP),4,5 survivin,6 Apollon (also called BRUCE),7 melanoma IAP (ML-IAP) (also 

called Livin),8 and IAP-like protein 2 (ILP2).9 The IAP family is defined by the 

presence of one to three conserved protein motifs named a baculoviral IAP repeat 

(BIR). Most of them form a surface hydrophobic groove that specifically binds a 

conserved tetrapeptide motif, called IAP binding motif (IBM), found in the active 

subunits of apoptotic protease caspase-3, -7, and -9 and in cellular IAP antagonists, 

such as the second mitochondria-derived activator of caspases (Smac) (also named 

direct IAP-binding protein with low isoelectric point (pI) [DIABLO])10–13 and the high 

temperature requirement protein A2 (HtrA2)12,14 (Figure 1). The first BIR of XIAP and 

cIAPs does not bind IBM but rather, the signaling molecule transforming growth factor 

beta (TGFβ)-activated kinase 1-binding protein 1 (TAB1)15 or the tumor necrosis factor 

(TNF) receptor (TNFR) associated factors (TRAFs),16–18 connecting XIAP and cIAPs 

with the TGF and TNF signaling pathways, respectively. In addition to the BIRs, cIAPs, 

XIAP, ML-IAP and ILP2 also possess a C-terminal RING (really interesting new gene) 
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domain conferring an E3 ligase activity in the ubiquitination 

or neddylation19 reactions (for review,20,21).

Numerous partners of IAPs have been identif ied, 

including some caspases,22–24 some signaling molecules,25,26 

some regulators of the NF-κB: nuclear factor of kappa-light 

polypeptide gene enhancer in B-cell activating pathways,25 some 

regulators of the actin cytoskeleton,27 and some transcriptional 

regulators.28,29 Thus, although they were initially characterized 

as inhibitors of apoptosis, IAPs display additional nonapoptotic 

functions in the regulation of cell proliferation, cell division, 

cell differentiation, cell motility, and in proinflammatory and 

immune response (for review,25,26),which could contribute to 

oncogenesis.

Expression of IAPs in tumors
The expression of IAPs or cellular IAP antagonists 

such as Smac,11 HtrA2, or the septin-like mitochondrial 

protein, ARTS,30,31 were shown to be altered in a number 

of human tumor samples (Table  1). Overexpression of 

IAPs or downregulation of the cellular IAP antagonists 

have been correlated with advanced progressive disease, 

aggressiveness, and poor prognosis or low response to 

treatment (Supplementary Table S1). The alterations of IAP 

expression can be associated or not, with gene mutations. 

The baculoviral IAP repeat containing  protein (BIRC)2 and 

BIRC3 genes, encoding cIAP1 and cIAP2, respectively, are 

located on chromosome 11q21-22, a region found amplified 

in human hepatocarcinoma,32 mammary carcinoma,33 

medulloblastoma,34 and in pancreatic,35 cervical,36 lung,37 oral 

squamous cell,38 and esophageal39 carcinomas. Some (30%) 

mucosa-associated lymphoid tissue (MALT) lymphoma are 

associated with the chromosomal translocation t(11;18)

(q21;q21) generating a chimeric protein composed of the 

N-terminal sequences of cIAP2 fused to the C-terminal 

sequence of MALT1.17,40 Conversely, IAPs can also display 

antitumoral properties in lymphocytes. The BIRC2 and/or 
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Figure 1 The inhibition of caspases by XIAP and the regulation by Smac and Smac mimetics.
Notes: (A) Among IAPs, XIAP is a potent caspase inhibitor. XIAP is composed of three BIR domains, one UBA domain (which binds ubiquitin chains), and one C-terminal 
RING domain, which confers to XIAP an E3-ubiquitin ligase activity. The first BIR (BIR1) can bind to TAB1, connecting XIAP to the TGFβ signaling pathway. The BIR2 and 
BIR3 contain a surface hydrophobic groove allowing the interaction with IBM found in caspase-3, -7, and -9 active subunits and in IAP antagonists, such as Smac or HtrA2. 
Moreover, the linker region upstream of BIR2 binds across the substrate binding pocket of caspase-3 and -7, and BIR3 binds the dimer interface of caspase-9, which hinder 
substrate accessibility and hide the catalytic residue of caspase. Smac is released from the mitochondria into the cytosol during apoptosis, after a maturation process that 
removes the N-terminal mitochondrial import signal and exposes the IBM to the N-extremity of the protein. Once cytosolic, Smac forms a symmetric dimer and binds 
the BIR2 and BIR3 IBM grooves of XIAP, preventing them from binding caspases. In a similar manner, monovalent and bivalent Smac mimetics efficiently bind the BIR2 and 
BIR3 surface hydrophobic grooves and abrogate XIAP-mediated caspase inhibition. (B−D) Comparison of the XIAP-BIR3 (blue) bound to the IBM of caspase-9 (ATPFQ) 
(orange) (pdb 1nw9): (B) The IBM (AVPI tetrapeptide) of Smac (red) (pdb 2opz); (C) The monovalent Smac mimetic SM-130 (green) (pdb 2 jk7); and (D) The BIR domains 
of IAPs are organized in four α-helices and three β-strand sheets maintained by a zinc ion (yellow). IBMs interact with the surface hydrophobic groove of BIRs (constructed 
using The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC, New York, NY, USA).
Abbreviations: AVPI, Smac N-terminal tetrapeptide; BIR, baculoviral IAP repeat; HtrA2, high temperature requirement protein A2; IAPs, inhibitors of apoptosis; IBM, 
IAP binding motif; RING, really interesting new gene; SM, Smac mimetic; Smac, second mitochondria-derived activator of caspases; TAB1, TGFβ-activated kinase 1-binding 
protein 1; TGFβ, transforming growth factor beta; UBA, ubiquitin associated; XIAP, X-chromosome linked IAP; APAF-1, apoptotic peptidase activating factor.
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Table 1 Expression of IAPs and IAP antagonists in human tumors

IAPs and cellular IAP antagonists Tumors

IAPs:
  XIAP overexpression Acute myeloid leukemia,138 B-cell chronic lymphocytic leukemia,139,140 bladder carcinoma,141  

breast carcinoma,142 cervical carcinoma,143 colorectal cancer,144,145 hepatocarcinoma,146,147 
melanoma,148 non-small cell lung cancer,149,150 ovarian cancer,119 prostate carcinoma,151,152  
renal carcinoma,153-155 thyroid carcinoma156

 � cIAP1 and cIAP2 overexpression 
(amplicon 11q21-22)

Cervical cancer,36 esophageal squamous cell carcinoma,39 hepatocarcinoma,32 medulloblastoma,34 
non-small and small cell lung cancer,37,150 oral squamous cell carcinoma,38 pancreatic cancer157

 � cIAP1 overexpression  
independently from amplicon  
11q21-22

B-cell chronic lymphocytic leukemia,139,158,159 bladder carcinoma,83 cervical carcinoma,143,36 
chronic lymphocytic leukemia,139 colorectal cancer,160 head and neck squamous cell carcinoma,82  
non-small and small cell lung cancer,150prostate carcinoma,152 squamous carcinoma of tongue161

 � cIAP2 overexpression 
independently from amplicon  
11q21-22

Breast cancer,162 cervical carcinoma,143 chronic lymphocytic leukemia,139,159 colorectal 
carcinoma,160 prostate carcinoma152

 � cIAP2/MALT chimeric protein t(11,18)(q21, q21) MALT myeloma163,164

 � cIAP1/cIAP2 inactivation Multiple myeloma41,165

 � ML-IAP overexpression Acute myeloid leukemia,166 childhood acute lymphoblastic leukemia,167 bladder carcinoma,168 
colorectal carcinoma,169 gastric cancer,170 melanoma,171 neuroblastoma,172 osteosarcoma,173  
renal cell carcinoma,174,175 testicular cancer176

cIAP antagonists:
 � Smac downregulation Acute myeloid leukemia,177 bladder carcinoma,178 breast carcinoma,179 cervical carcinoma180 

chronic lymphocytic leukemia,139 colorectal carcinoma,181 endometrioid endometrial cancer,182 
esophageal carcinoma,112 lung cancer,183 rectal adenocarcinoma,145

 � Smac overexpression Bladder cancer,184 gastric adenocarcinoma,185 renal adenocarcinoma,154,176,186

 � HtrA2 overexpression Endometrial cancer,187 ovarian cancer,188 prostate carcinoma,189,190  
renal carcinoma,186 stomach cancer,191 thyroid cancer192

 � HtrA2 downregulation Endometrial cancer,187,193 ovarian cancer,194 testicular cancer
 � ARTS overexpression Astrocytoma195

 � ARTS downregulation Acute myeloid leukemia196

Ratio IAP/IAP antagonists:
 � Increased XIAP/Smac Renal adenocarcinoma154

 � Reduced XIAP/Smac Gastric carcinoma185

 � Increased cIAP1/HtrA2 and cIAP1/Smac Chronic lymphocytic leukemia139

Abbreviations: ARTS, septin-like mitochondrial protein; cIAP, cellular IAP; HtrA2, high temperature requirement protein A2; IAPs, inhibitors of apoptosis; MALT,  
mucosa-associated lymphoid tissue; ML-IAP, melanoma IAP; Smac, second mitochondria-derived activator of caspases; XIAP, X-chromosome linked IAP.

BIRC3 genes were found to be mutated in some multiple 

myeloma samples,41,42 and the BIRC4 encoding XIAP in 

X-linked lymphoproliferative disease.43 The expression 

and functions of the atypical IAP survivin in tumors, and 

the development of specific survivin-targeted therapy were 

recently reviewed by Coumar et al44 and won’t be discussed 

here.

Role of IAPs in cancer
IAPs as apoptotic regulators
IAPs were first characterized as inhibitors of apoptosis because 

of their ability to bind caspases. Indeed, cIAPs, XIAP and 

ML-IAP can bind caspase-3, -7, and -9 via the BIRs10,11,45,46 

and can induce their ubiquitination or neddylation via the 

RING domain.19,22–24 The influence of the ubiquitination 

is still not very well established, triggering degradative or 

nondegradative consequences,22–24 while the neddylation of 

caspase-7, by XIAP, inhibits its activity.19 In addition, XIAP 

is able to directly inhibit the enzymatic activity of caspases 

(Figure  1). The XIAP BIR3 binds the dimer interface of 

caspase-9, and the linker region upstream of BIR2 binds 

across the substrate binding pocket of caspase-3 and -7, which 

hinder substrate accessibility and hide the catalytic residue of 

caspases.47–49 The capacity of XIAP to inhibit caspase activity 

could account for the resistance of cancer cells to antitumor 

therapy. Indeed, DNA-damaging treatments, such as ionizing 

irradiations, induce a translational upregulation of XIAP as 

a consequence of the presence of an internal ribosome entry 

site (IRES)-dependent translation mechanism, which results 

in the resistance of carcinoma cells to radiation-induced 

apoptosis.50,51

IAPs can also inhibit cell death at an earlier step, 

preventing the assembly of caspase-8- or -10-activating 

platforms. Caspase-8 and -10 are initiator caspases recruited 
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Figure 2 Mechanisms of action of Smac mimetics.
Notes: IAPs are important regulators of NF-κB-activating signaling pathways. Upon TNFα stimulation, cIAPs and RIP1 are recruited to TNFR1 via the adaptors TRADD and 
TRAF2. cIAPs trigger self-ubiquitination and ubiquitination of RIP1. These ubiquitin chains serve as a scaffold for the recruitment of IKK, TAK, and LUBAC. Once activated, 
IKK complex triggers phosphorylation of IκBα, which is then degraded by the UPS and releases NF-κB dimer, which promotes the transcription of target genes. In the 
noncanonical pathway of NF-κB activation, cIAPs promote the degradative ubiquitination of NIK and associated TRAF proteins and prevent the activation the IKK complex 
required for transcription factor activation. On the other hand, cIAPs and XIAP prevent the assembly of RIP1-containing initiator caspase-activating complexes, named 
complex-II and Ripoptosome; and XIAP inhibits, through a direct interaction via BIR2 and BIR3, the activity of caspase-3, -7, and -9. SMs bind to the BIR domains of cIAPs and 
stimulate their E3-ubiquitine ligase activity. This results first, in the ubiquitination of RIP1, leading to the canonical NF-κB activation, and second, in the rapid autoubiquitination 
and subsequent proteasome-mediated degradation of cIAPs. Depletion of cIAPs releases NIK, resulting in the noncanonical activation of NF-κB, and NF-κB target gene 
expression, including TNFα, MCP-1, and IL-6. TNFα engages TNFR1 via an autocrine pathway. In the absence of cIAP1, stimulation of TNFR1 triggers the assembly of the 
secondary RIP1-containing cytoplasmic complex (complex II), leading to cell death. SM-mediated IAP depletion can also favor the formation of the Ripoptosome, leading to 
cell death.
Abbreviations: BIR, baculoviral IAP repeat; cIAP, cellular IAP; IκBα, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha; IAPs, inhibitors of 
apoptosis; IL, interleukin; IKK, IκB kinase complex; LUBAC, linear ubiquitin chain assembly complex; MCP-1, monocyte chemoattractant protein; NF-κB, nuclear factor 
kappa-light-chain-enhancer of activated B cells; NIK, NF-κB-inducing kinase; RIP1, receptor interacting protein 1; SM, Smac mimetic; Smac, second mitochondria-derived 
activator of caspases; TAK, TGFβ-activated kinase; TGFβ, transforming growth factor beta; TNF, tumor necrosis factor; TNFR1, tumor necrosis factor receptor 1; TRADD, 
TNFR1-associated death domain; TRAF, TNFR associated factor; UBA, ubiquitin proteasome system; XIAP, X-chromosome linked IAP; TAB,TAK1-binding partners; HOIL, 
heme-oxidized IRP2 ligase-1; HOIP, HOIL-1L-interaction protein; NEMO, nuclear factor-κB (NF-κB) essential modulator; UPS, ubiquitin-proteasome system.

by the adaptor Fas-associated death domain protein (FADD) 

in multiprotein complexes, which provide the proximity 

required for caspase homodimerization and self-activation 

(for review,52). These molecular platforms are assembled 

either in response to the engagement of death receptor from 

the TNFR superfamily (in which case, these are referred to as 

death-inducing signaling complex [DISC] and complex II)52,53 

or in response to genotoxic stress, tumor necrosis factor-like 

weak inducer of apoptosis (TWEAK) engagement, or toll-like 

receptor (TLR) 3 stimulation (in which case, they are referred 

to as Ripoptosome).54,55 Complex II50,51 and Ripoptosome52,53 

share, in addition to the caspase and the adaptor FADD, the 

serine/threonine kinase receptor interacting protein (RIP) 

(Figure 2). cIAPs and XIAP are potent regulators of proteins 

from the RIP family, catalyzing the conjugation of ubiquitin 

chains that control either protein degradation or signal 

transduction pathways56–62 (Figure  2). In the absence of 

cIAPs, non-ubiquitinated RIP1 promotes (through its kinase 
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activity) the assembly of the caspase-activating platforms that 

leads to cell death56,62 (Figure 2). Thus, cIAPs inhibit RIP1-

containing caspase-activating platform assembly, either by 

promoting the ubiquitin-proteasome-mediated degradation 

of the components of the Ripoptosome54 or by inducing a 

nondegradative ubiquitination of RIP1, which inhibits the 

cell death complex assembly and promotes survival-signaling 

pathway transduction.56,59,63

IAPs as cell-signaling regulators
The role of IAPs in the regulation of the NF-κB-activating 

signaling pathways is well documented (for review,25,26). 

NF-κB is a transcription factor induced by the stimula-

tion of antigen or cytokine receptors, by the recognition of 

microbiological patterns by the TLRs, the nucleotide-binding 

oligomerization domain-containing proteins (NODs), or the 

NOD-like receptors (NLRs), or in response to intracellular 

injuries, such as DNA damage or reactive oxygen species. 

NF-κB contributes to the adaptive response of cells, by 

mediating the expression of the proinflammatory molecules 

that counter microbial invasion and by promoting the expres-

sion of genes involved in cell survival, cell differentiation, 

and cell proliferation.64 The transcription factor consists of 

heterodimers formed by one Rel subunit (RelA [also called 

p65], RelB, or c-Rel) and one NF-κB subunit (the p50 sub-

unit of NF-κB1 or the p52 subunit of NF-κB2). In resting 

cells, the p50/RelA dimer is sequestered into the cytoplasm 

by the inhibitor of κB (IκB) proteins. Upon stimulation of 

the cell surface or intracellular receptors, or DNA damage, 

p50/RelA is released as a consequence of the degradation 

of NF-kappa-B inhibitor alpha (IκB-α) and translocated into 

the nucleus to stimulate proinflammatory gene transcription 

(Figure 2). Degradation of IκB-α requires its phosphoryla-

tion by the IκB kinase (IKK) complex, which is activated by 

ubiquitination by the linear ubiquitin chain assembly complex 

(LUBAC) and by phosphorylation by TGFβ-activated protein 

kinase 1 (TAK1)64 (Figure 2). cIAPs and XIAP promote the 

steric proximity of TAK1, LUBAC, and IKK complex. In 

the TNF-R1-signaling pathway, cIAPs are recruited along 

with RIP1 to the receptor61 and trigger self-ubiquitination 

and the nondegradative polyubiquitination of RIP156,57,66 

(Figure 2), and in NOD2-mediated inflammatory signaling, 

XIAP and cIAPs mediate the conjugation of ubiquitin chains 

to RIP2.67–69 These ubiquitin chains serve as a scaffold for the 

recruitment and activation of the signaling complexes leading 

to IKK activation56,61,68,70 (Figure 2). cIAPs can also modulate 

NF-κB activation by catalyzing the monoubiquitination of 

the IKK component NF-κB essential modulator (NEMO), 

which is required for IKK activation,71,72 and XIAP promotes 

the activation of TAK1 and the steric proximity of TAK1 and 

IKK complex71 during TGFβ and myelin basic protein (MBP) 

receptor signaling, or in response to DNA damage.15,71,73–75 

A second NF-κB-activating signaling pathway, named the 

noncanonical pathway, involves NF-κB-inducing kinase 

(NIK), which catalyzes the phosphorylation of IKKα. In 

turn, IKKα induces the phosphorylation of the p100 NF-κB2 

precursor, leading to its proteolytic activation into active 

p52  NF-κB2 (Figure  2). cIAPs prevent the noncanonical 

activation of NF-κB by mediating the ubiquitination and the 

proteasomal-mediated degradation of NIK70,76–79 (Figure 2). 

Mutations in cIAP-encoding genes leading to NIK stabili-

zation and chronic NF-kB activation could facilitate B cell 

malignancy and lymphomagenesis, as observed in some 

multiple myelomas that harbor mutations in the cIAP1- or 

cIAP2-encoding genes41,42 and as observed in MALT lym-

phoma that is associated with a chromosomal translocation 

t(11;18)(q21;q21), generating a chimeric protein composed 

of the N-terminal sequence of cIAP2 fused to the C-terminal 

sequence of MALT1.17,40,80

Cell proliferation and migration
cIAPs are positive regulators of cell proliferation, a function 

correlated with the nuclear localization of the proteins.29,81 

Interestingly, the nuclear expression of cIAP1 has been 

associated with advanced disease stages and poor patient 

prognosis in human cervical and esophageal squamous 

cell carcinomas and bladder cancers36,82,83 (Supplementary 

Table S1). The influence of IAPs on cell proliferation can 

be explained by their capacity to stimulate the activity of the 

c-Myc and E2F1 transcription factors, which are important 

regulators of cell cycle progression and cell proliferation with 

oncogenic properties.28,29 IAPs have also been involved in the 

regulation of the invasive properties of mammalian cancer 

cells, as recently reviewed.84

Targeting IAPs in cancer therapy
Targeting IAPs in tumors is an important challenge and 

several strategies have been explored, including the use of 

antisense oligonucleotides and antagonist molecules. A syn-

thetic antisense oligonucleotide to XIAP, named AEG35156, 

was developed by Aegera Therapeutics Inc (Montreal, QC, 

Canada).85 It demonstrated promising efficiency in the pre-

clinical studies. It induced a decrease of XIAP expression 

in tumor cell lines and tumor xenograft models, and sensi-

tized cells to various standard chemotherapeutic agents and 

Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand 
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(TRAIL) receptor agonists.86 AEG35156 entered into clinical 

trials (http://www.clinicaltrials.gov/) in 2005, and to date, ten 

Phase 1,2, or 1/2 clinical trials have been completed in solid 

tumors and in acute myeloid leukemia (AML) (Table 2) (for 

review,86,87). In the trials, AEG35156 appeared to accumu-

late in the liver and to have efficiently downregulated XIAP 

messenger ribonucleic acid (mRNA) in peripheral blood 

mononuclear cells and hepatocytes. AEG35156 is generally 

well tolerated except when administered in repeated high 

doses. Promising results were obtained with AEG35156 used 

as a single agent in solid tumors88 and in combination with 

cytarabine and idarubicin in AML89 in the Phase 1 studies, 

but it failed to show any significant antitumoral activity in the 

randomized Phase 2 studies in pancreatic adenocarcinoma, 

when combined with Gemcitabine,90 or in AML, when it was 

given in combination with cytarabine and idarubicin.91

The structural characterization of the interaction of 

XIAP with caspases, or with Smac, or the drosophila Smac 

homologs has provided very potent tools for the design of 

synthetic IAP antagonists aiming to inhibit the capacity of 

XIAP to neutralize caspases.11,92–94 The surface hydrophobic 

groove of IAP BIRs binds the IBM found in the N-terminal 

of the active subunits of caspase-3, -7, and -9 and exposed 

by activating proteolytic processing.10,11 Cellular IAP 

antagonists also own an IBM.10–13 During the apoptotic 

process, the Smac IBM is exposed as a consequence of 

the cleavage of the mitochondria-targeting signal, and 

matured Smac is released from the mitochondria into the 

cytosol.10–12 The tetrapeptide Ala-Val-Pro-Ile (AVPI) IBM 

motif of Smac inserts into the XIAP BIR2 and BIR3-caspase 

interaction pocket and abrogates XIAP-mediated caspase 

inhibition93,95,96 (Figure 1). The Smac N-terminal peptide 

was also derived to produce cell permeable peptides and 

was shown to mimic the activity of Smac and to sensitize 

human cancer cell lines to diverse chemotherapeutic 

agents, including etoposide, teniposide, cisplatin, 

paclitaxel, 7-ethyl-10-hydroxycamptothecin (SN-38),  

and TRAIL agonists.97–100 In xenograft models, a Smac-

derived peptide, made permeable by linking to the shuttle 

peptide trans-activation of transcription (TAT) from HIV, 

enhanced the antitumoral effect of TRAIL in glioma,99 

and a polyarginine-conjugated Smac peptide was shown to 

sensitize non-small cell lung carcinoma cells to cisplatin,98 

with little toxicity to normal tissues. The pharmacological 

Table 2 AEG35156 XIAP antisense oligonucleotide in clinical trials (http://www.clinicaltrials.gov/)

Phase Drug 
combination

Start date Condition Observations Ref

Phase 1 Docetaxel 07/2006 Adult solid tumor
Phase 1/2 Cytarabine and 

idarubicin
08/2006 Refractory or relapsed acute myeloid 

leukemia 
(24 patients)

•  Generally well tolerated 
• � Toxicity included two cases of neuropathy  

in patients having received multiple  
AEG35316 doses

•  Achieved target knockdown 
•  Clinical evidence of antitumoral activity

89
197

Phase 1 Docetaxel 09/2006 Adult solid tumor
Phase 1 Single agent 10/2006 Advanced cancer 

(22 patients)
• W ell tolerated 
• � Evidence of efficiency (decreased XIAP mRNA  

in peripheral blood mononuclear cells)
• � Clinical evidence of antitumoral activity in  

patients with refractory lymphoma, melanoma,  
and breast cancer

88

Phase 1/2 Gemcitabine 11/2007 Metastatic pancreatic adenocarcinoma 
(14 patients)

• � Toxicities include neutropenia,  
thrombocytopenia, peripheral neuropathy,  
fatigue, ascites, and nausea/vomiting

•  Failed to show significant antitumoral activity

90

Phase 1/2 Paclitaxel 11/2007 Mammary carcinoma
Phase 1/2 Carboplatin and 

paclitaxel
11/2007 Non-small cell lung carcinoma

Phase 1/2 Single agent 10/2008 Refractory chronic lymphocytic leukemia 
and indolent B-cell lymphomas

Phase 1/2 Sorafenib 04/2009 Advanced hepatocellular carcinoma
Phase 2 Cytarabine and  

idarubicin
11/2009 Refractory or relapsed acute myeloid 

leukemia 
(27 patients)

• W ell tolerated 
•  Did not improve rates of remission

91

Abbreviations: RNA, ribonucleic acid; XIAP, X-chromosome linked IAP; IAPs, inhibitors of apoptosis; mRNA, messenger RNA.
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properties of such Smac-derived peptides were not good 

enough to merit consideration of these molecules as 

therapeutic agents; however, they provided the bases for 

the structure-based design of IAP antagonists named Smac 

mimetics (SMs). Several approaches were used, including 

the screening of peptide or peptidomimetic libraries,101,102 

and the structure-based design of conformationally 

constrained SMs103,104 (Figure 3). Considerable efforts were 

invested to improve the affinity of the compounds to the 

IAP BIR domains, to improve their ability to antagonize 

IAPs,104–107 to improve cellular delivery and activity 

(ie, their capacity to induce apoptosis or to sensitize to 

apoptotic agents), and to improve their in vivo stability 

and bioavailability. The preclinical assays demonstrated 

their capacity to inhibit tumor growth in multiple solid 

tumors,102,107,108 acute lymphoblastic leukemia (ALL),108 and 

multiple myeloma109 xenograft models and to sensitize cells 

to TRAIL, proteasome inhibitors, B-cell lymphoma protein 2 

(Bcl-2) family-targeting compounds, and more conventional 

therapeutic agents, such as radiation, melphalan, or 

cisplatin.103,109–114 Importantly, these compounds were well 

tolerated by animals and did not display toxicity against 

normal lymphocytes and bone marrow stromal cells109 

or normal mammary epithelial cells.115 The analysis of 

binding affinity revealed that similarly to Smac,93,95,96 SMs 

can bind to XIAP-BIR2, preventing XIAP-caspase-7 and -3 

binding, and to XIAP-BIR3, abrogating the XIAP-mediated 

inhibition of caspase-9. Structural and biochemical studies 

of the apoptotic activity of Smac cellular protein revealed, 

first, that it forms a symmetric dimer;93,94 second, that 

N
NH2N

O
O

O

O

O

O

HN
NH NH

O

O

O
O

O

O

O O

O

OH

OH

O O
(S)

(S)
(S)

(S)

(S)
(S)

(S)

(R)

(R)

(S)
(S)

H
N

H
N

H
N

HN

N
H

N
H

N
H

H
N

N
H

NH

NH FS

S

F

F

N

N

N

N N

N

N

N

N

H

AA

Smac N-terminal tetrapeptides AVPI

GDC-0152
Genentech Inc

LCL-161; LCL161
Novartis Pharmaceuticals

Birinapant (TL-32711)
TetraLogic Pharmaceuticals

AT-406 (SM-406)
Ascenta Therapeutics, Inc

Figure 3 Structure of the Smac N-terminal tetrapeptide (AVPI) and SMs used in clinical trials.
Notes: AT-406: CAS RN 1071992-99-8; GDC-0152: CAS RN 873652-48-3; LCL161: CAS RN 1005342-46-0; and Birinapant: CAS RN 1260251-31-7.
Abbreviations: CAS RN, CAS Registry Number®; SM, Smac mimetic; Smac, second mitochondria-derived activator of caspases.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1291

IAPs in oncology

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


OncoTargets and Therapy 2013:6

T
ab

le
 3

 S
M

s 
in

 c
lin

ic
al

 t
ri

al
s

C
om

po
un

d
St

ru
ct

ur
e

P
re

cl
in

ic
al

 a
ss

ay
s 

in
 a

ni
m

al
s

C
lin

ic
al

 t
ri

al
C

on
di

ti
on

s

A
T

-4
06

  
(S

M
-4

06
 –

 D
eb

io
 1

14
3)

 
A

sc
en

ta
 

th
er

ap
eu

tic
s/

 
de

bi
op

ha
rm

 
SA

M
on

ov
al

en
t

• �
In

hi
bi

te
d 

tu
m

or
 g

ro
w

th
 a

nd
 s

en
si

tiz
ed

 c
el

ls
 t

o 
ca

rb
op

la
tin

  
in

 o
va

ri
an

 c
an

ce
r 

xe
no

gr
af

t 
m

od
el

11
9

• �
In

hi
bi

te
d 

tu
m

or
 g

ro
w

th
 in

 b
re

as
t 

tu
m

or
 x

en
og

ra
ft 

m
od

el
 w

ith
  

no
 s

ig
n 

of
 t

ox
ic

ity
12

0

• �
In

cr
ea

se
d 

ch
em

o-
 a

nd
 r

ad
io

th
er

ap
y 

se
ns

ib
ili

ty
 in

 h
ea

d 
an

d 
ne

ck
  

sq
ua

m
ou

s 
ce

ll 
ca

rc
in

om
a 

tu
m

or
 x

en
og

ra
ft 

m
od

el
22

1

Ph
as

e 
1

 Ph
as

e 
1

A
dv

an
ce

d 
so

lid
 t

um
or

s 
an

d 
ly

m
ph

om
a

 C
om

bi
na

tio
n 

w
ith

 d
au

no
ru

bi
ci

n 
an

d 
cy

ta
ra

bi
ne

 in
 p

at
ie

nt
s 

w
ith

 
po

or
-r

is
k 

ac
ut

e 
m

ye
lo

ge
no

us
 le

uk
em

ia

Bi
ri

na
pa

nt
  

(T
L-

32
71

1)
 

T
et

ra
Lo

gi
c 

ph
ar

m
ac

eu
tic

al
s

Bi
va

le
nt

• �
T

um
or

 g
ro

w
th

 a
rr

es
t 

or
 in

hi
bi

tio
n 

in
 p

at
ie

nt
-d

er
iv

ed
 p

ri
m

ar
y 

 
pa

nc
re

at
ic

 c
an

ce
r 

ex
pl

an
t 

m
od

el
19

9

• �
R

em
is

si
on

 in
 a

cu
te

 ly
m

ph
ob

la
st

ic
 le

uk
em

ia
 x

en
og

ra
ft 

m
od

el
s20

0

  • �
D

el
ay

ed
 t

he
 t

um
or

 g
ro

w
th

 a
nd

 in
cr

ea
se

s 
su

rv
iv

al
 in

 c
om

bi
na

tio
n 

 
w

ith
 io

ni
zi

ng
 r

ad
ia

tio
n 

in
 a

 g
lio

bl
as

to
m

a 
m

ul
tif

or
m

 m
od

el
 in

 m
ic

e20
1

 • �
In

hi
bi

te
d 

tu
m

or
 g

ro
w

th
 in

 c
om

bi
na

tio
n 

w
ith

 t
he

 im
m

un
om

od
ul

at
or

y 
 

ag
en

ts
 IF

N
α 

or
 G

M
-C

SF
 in

 a
 k

id
ne

y 
ca

rc
in

om
a 

xe
no

gr
af

t 
m

od
el

20
2

Ph
as

e 
1

    Ph
as

e 
1/

2
  Ph

as
e 

1/
2

 Ph
as

e 
1

 Ph
as

e 
2

Ph
as

e 
1/

2

R
ef

ra
ct

or
y 

so
lid

 t
um

or
s 

or
 ly

m
ph

om
a 


 �W

el
l t

ol
er

at
ed

 w
ith

 n
o 

do
se

 li
m

iti
ng

 t
ox

ic
iti

es
, p

ot
en

t 
an

d 
su

st
ai

ne
d 

ta
rg

et
 in

hi
bi

tio
n,

 a
po

pt
ot

ic
 p

at
hw

ay
 a

ct
iv

at
io

n 
in

 t
um

or
 a

nd
 a

nt
itu

m
or

al
 a

ct
iv

ity
 in

 c
ol

on
 c

an
ce

r 
an

d 
m

el
an

om
a20

3

C
om

bi
na

tio
n 

ch
em

ot
he

ra
py

 (d
ox

or
ub

ic
in

, p
ac

lit
ax

el
, c

ar
bo

pl
at

in
, 

ge
m

ci
ta

bi
ne

, ir
in

ot
ec

an
, d

oc
et

ax
el

) i
n 

ad
va

nc
ed

 a
nd

 m
et

as
ta

tic
 

so
lid

 tu
m

or
s

A
cu

te
 m

ye
lo

ge
no

us
 le

uk
em

ia
, m

ye
lo

dy
sp

la
st

ic
 s

yn
dr

om
e 

an
d 

ac
ut

e 
ly

m
ph

ob
la

st
ic

 le
uk

em
ia

C
om

bi
na

tio
n 

w
ith

 g
em

ci
ta

bi
ne

 in
 p

at
ie

nt
s 

w
ith

 a
dv

an
ce

d 
so

lid
 

tu
m

or
A

dv
an

ce
d 

ov
ar

ia
n,

 fa
llo

pi
an

 t
ub

e 
an

d 
pe

ri
to

ne
al

 c
an

ce
rs

C
om

bi
na

tio
n 

w
ith

 5
-a

za
cy

tid
in

e 
in

 m
ye

lo
dy

sp
la

st
ic

 s
yn

dr
om

e
G

D
C

-0
91

7 
G

en
en

te
ch

M
on

ov
al

en
t

Ph
as

e 
1

R
ef

ra
ct

or
y 

so
lid

 t
um

or
s 

or
 ly

m
ph

om
a

G
D

C
-0

15
2 

G
en

en
te

ch
M

on
ov

al
en

t
• �

In
hi

bi
ts

 t
um

or
 g

ro
w

th
 in

 b
re

as
t 

ca
nc

er
 x

en
og

ra
ft 

w
ith

ou
t 

af
fe

ct
in

g 
 

no
rm

al
 m

am
m

ar
y 

ep
ith

el
ia

l c
el

ls
20

4

 • �
In

du
ce

s 
an

 in
cr

ea
se

d 
sy

st
em

ic
 le

ve
l o

f c
yt

ok
in

es
 a

nd
 c

he
m

ok
in

es
  

(T
N

Fα
 a

nd
 M

C
P-

1)
, a

 s
ys

te
m

ic
 in

fla
m

m
at

or
y 

re
sp

on
se

 a
nd

 h
ep

at
ic

 in
ju

ry
  

w
he

n 
IV

 a
dm

in
is

te
re

d 
in

 d
og

s;
20

5  s
uc

h 
ef

fe
ct

s 
w

er
e 

no
t 

ob
se

rv
ed

 in
 h

um
an

13
3

Ph
as

e 
1

Lo
ca

lly
 a

dv
an

ce
d 

or
 m

et
as

ta
tic

 s
ol

id
 m

al
ig

na
nc

ie
s,

 o
r 

no
n-

H
od

gk
in

’s
 ly

m
ph

om
a 

w
ith

ou
t 

le
uk

em
ic

 p
ha

se
 


 �W

el
l t

ol
er

at
ed

, n
o 

sig
ns

 o
f a

 s
ys

te
m

ic
 in

fla
m

m
at

or
y 

re
sp

on
se

H
G

S1
02

9 
(A

EG
-4

08
26

) 
H

um
an

 G
en

om
e 

Sc
ie

nc
es

Bi
va

le
nt

Ph
as

e 
1

Ph
as

e 
1

A
dv

an
ce

d 
so

lid
 t

um
or

s 
an

d 
re

fr
ac

to
ry

 ly
m

ph
oi

d 
m

al
ig

na
nc

ie
s

R
el

ap
se

d 
or

 r
ef

ra
ct

or
y 

ly
m

ph
oi

d 
m

al
ig

na
nc

ie
s

LC
L1

61
 

N
ov

ar
tis

 
ph

ar
m

ac
eu

tic
al

s

M
on

ov
al

en
t

• �
D

el
ay

s 
tu

m
or

 g
ro

w
th

 in
 m

ul
tip

le
 s

ol
id

 t
um

or
 x

en
og

ra
ft 

m
od

el
s 

as
 a

 s
in

gl
e 

 
ag

en
t 

bu
t 

is
 in

ef
fe

ct
iv

e 
in

 a
cu

te
 ly

m
ph

ob
la

st
ic

 le
uk

em
ia

 x
en

og
ra

ft 
m

od
el

s10
8

• �
A

nt
itu

m
or

 a
ct

iv
ity

 in
 c

om
bi

na
tio

n 
w

ith
 c

he
m

ot
he

ra
py

 a
ga

in
st

 a
 r

an
ge

 o
f s

ol
id

  
tu

m
or

s 
in

cl
ud

in
g 

pr
im

ar
y 

m
od

el
s 

of
 b

re
as

t 
ca

nc
er

 (
N

ov
ar

tis
 w

eb
si

te
)*

• �
In

hi
bi

ts
 t

um
or

 g
ro

w
th

 in
 c

om
bi

na
tio

n 
w

ith
 a

 B
cl

-2
 in

hi
bi

to
r 

in
 h

ep
at

oc
el

lu
la

r 
 

ca
rc

in
om

a 
xe

no
gr

af
t 

m
od

el
s11

0

• �
In

hi
bi

ts
 t

um
or

 g
ro

w
th

 a
nd

 p
ro

lo
ng

s 
su

rv
iv

al
 in

 c
om

bi
na

tio
n 

w
ith

 a
de

no
-  

as
so

ci
at

ed
 v

ir
us

 b
ac

te
ri

op
ha

ge
-T

N
Fα

 in
 m

el
an

om
a 

xe
no

gr
af

t 
m

od
el

s11
1

Ph
as

e 
1

 Ph
as

e 
1

 Ph
as

e 
2

So
lid

 t
um

or
s 


 W

el
l t

ol
er

at
ed

13
5

C
om

bi
na

tio
n 

w
ith

 w
ee

kl
y 

pa
cl

ita
xe

l i
n 

pa
tie

nt
s 

w
ith

 a
dv

an
ce

d 
so

lid
 t

um
or

C
om

bi
na

tio
n 

w
ith

 w
ee

kl
y 

pa
cl

ita
xe

l i
n 

pa
tie

nt
s 

w
ith

  
br

ea
st

 c
an

ce
r

N
ot

e:
 *

N
ov

ar
tis

 w
eb

si
te

: h
tt

p:
//w

w
w

.n
ov

ar
tis

on
co

lo
gy

.u
s/

re
se

ar
ch

/p
ip

el
in

e/
lc

l1
61

.js
p

A
bb

re
vi

at
io

ns
: 

G
M

-C
SF

, g
ra

nu
lo

cy
te

-m
ac

ro
ph

ag
e 

co
lo

ny
-s

tim
ul

at
in

g 
fa

ct
or

; I
FN

, i
nt

er
fe

ro
n;

 I
V

, i
nt

ra
ve

no
us

; T
N

F,
 t

um
or

 n
ec

ro
si

s 
fa

ct
or

; M
C

P-
1,

 m
on

oc
yt

e 
ch

em
oa

tt
ra

ct
an

t 
pr

ot
ei

n;
 S

m
ac

, s
ec

on
d 

m
ito

ch
on

dr
ia

-d
er

iv
ed

 a
ct

iv
at

or
 o

f 
ca

sp
as

es
; S

M
s,

 S
m

ac
 m

im
et

ic
s;

 B
cl

-2
, B

-c
el

l l
ym

ph
om

a 
2.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1292

Dubrez et al

Powered by TCPDF (www.tcpdf.org)

http://www.novartisoncology.us/research/pipeline/lcl161.jsp
www.dovepress.com
www.dovepress.com
www.dovepress.com


OncoTargets and Therapy 2013:6

dimerization is essential for Smac function;93,116 and third, 

that the capacity of Smac to abrogate XIAP-mediated 

caspase inhibition required the binding to both BIR2 and 

BIR3.95 Overall, these observations support the conclusion 

that compounds targeting both BIR domains could be more 

efficient as XIAP antagonists and lead to the development 

of bivalent small molecules containing two Smac AVPI IBM 

motif mimetics.117 As expected, these compounds appeared 

to be more potent than their monovalent counterparts, in 

antagonizing XIAP and in activating caspases.104,117,118 

Like the monovalent versions, the bivalent molecules 

either inhibited tumor growth or sensitized cells to both 

conventional and nonconventional anticancer therapies 

in the preclinical assays and did not display toxicity to 

normal human primary cells;104,117–121 however, unlike the 

monovalent molecules, the bivalent SMs are not orally 

bioavailable. To date, more than 50 applications for patents 

related to IAP antagonists have been filed (for review,122), 

and six SMs have entered human clinical trials (http://www.

clinicaltrials.gov/) for the treatment of cancer (described 

in Table 3).

Mechanisms of action of SMs
As expected, SMs abrogate XIAP-mediated caspase 

inhibition and therefore increase caspase-3 and -7 activities 

(Figure  1). However, in addition to binding XIAP BIRs, 

SMs also bind the BIR domains of ML-IAP, cIAP1 and 

cIAP2.56,104,105,115,118 SMs stimulate the E3-ubiquitine ligase 

activity of cIAPs, which results in the ubiquitination of RIP1, 

leading in turn, to canonical NF-κB activation and the rapid 

autoubiquitination and subsequent proteasome-mediated 

degradation of cIAPs123–126 (Figure 2). Depletion of cIAPs 

abolishes the cIAP-mediated ubiquitination and degradation 

of NIK and induces canonical activation of NF-κB. In 

turn, NF-κB induces the expression of proinflammatory 

cytokines and chemokines, including TNFα, which 

can trigger cell death by an autocrine pathway.66,125–127 

Furthermore, depletion of cIAPs favors the assembly of the 

RIP1-containing cytoplasmic cell death complexes, such 

as complex II and Ripoptosome, resulting in cell death in 

some sensitive cancer cells, or in the sensitization to TNFα 

or DNA-damaging chemotherapeutic agents54,55 (Figure 2). 

SMs exert their activity through XIAP and cIAPs and 

both effects are required for their maximal antitumoral 

activity.128–130 Indeed, IAP antagonists displaying a high and 

selective affinity for cIAPs over XIAP appeared less potent 

than pan-IAP antagonists in promoting cancer cell death129 

and in sensitizing cancer cells to TRAIL.131

As a consequence of cIAP degradation and NF-κB 

activation, the administration of SMs such as LCL161, 

GDC-0152, and HGS1029, resulted in the upregulation of 

cytokines and chemokines,132–134 including TNFα, monocyte 

chemoattractant protein (MCP)-1, interleukin (IL)-7, IL-6, 

and interferon (IFN)γ.134 MCP-1 was used as a clinical 

biomarker for SMs efficiency in clinical programs.133,135 

The analysis of the proinflammatory characteristics 

of cellular Smac-induced cell death suggests that the 

proinflammatory response elicited by SMs could activate 

the adaptive antitumor immune response in cancers.136 In 

dogs, intravenous (IV) administration of GDC-0152 induced 

an acute systemic inflammatory response with lung and 

hepatic injury, which are consistent with TNF-α mediated 

toxicity;134 however, a similar TNF-α-driven inflammatory 

response was not observed in humans.133 Although the first 

clinical trials did not reveal extensive toxicity of SMs when 

orally or intravenously administered, additional analysis of 

the consequences of cytokine and chemokine secretion are 

required. Because osteoclast differentiation and function 

are stimulated by activation of the noncanonical NF-κB 

pathway and because osteoclasts are susceptible to TNF-

mediated death, Yang et al analyzed the influence of SMs 

on bone metastasis and demonstrated that SMs stimulated 

osteoporosis and specif ically enhanced metastasis in 

bone.137

Conclusion
SMs are a very promising new class of anticancer 

therapeutics. Results from preclinical studies have 

demonstrated an acceptable safety profile and some signs 

of antitumoral activity, in their use as a single agent or 

in combination with conventional or nonconventional 

therapies, such as dead receptor agonists, Bcl-2, or kinase-

targeting therapies. The first clinical trials demonstrated 

a good tolerance and target inhibition. Ongoing and 

future clinical trials will determine the safety, appropriate 

indications, and drugs combinations. It will be important 

to determine the level and the site of production of TNFα 

and other cytokines and the consequences of cytokine 

production for  tumoral and non-tumoral cells. Since IAPs 

are involved in the regulation of various cellular functions, 

it will be interesting to target specific IAP functions in 

order to limit possible adverse impacts. The consequences 

of SMs on the immune system in vivo and the use of 

cIAPs as potential therapeutic targets for inflammatory or 

immune disorders are still important questions that need 

to be addressed.
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Supplementary material 

Table S1 Role of IAPs in cancer

Cohort Observations

XIAP overexpression
AML 921 

782

Associated with poor cytogenetics1 
Inversely correlated with overall survival1,2

Correlated with sensitivity to anticancer drugs (cytarabine)2

BCLL 1003 
3014

Correlated with Ki-67 proliferation index and progressive disease; inverse correlation with overall survival3 
Associated with poor clinical outcome4

Bladder carcinoma 1765 Independent prognostic factor for early recurrence of invasive cancers 
Correlated with poor differentiation 
Inversely correlated with recurrence-free survival

Breast carcinoma 1026 Nuclear expression 
Independent negative prognostic factor for overall survival

Cervical carcinoma 777

Colorectal cancer 968 Cytoplasmic expression 
Independent negative prognostic factor 
Correlated with tumor dedifferentiation, invasion, stage, and lower disease-free and overall survival8

389 Correlated with resistance to irradiation9

Hepatocellular carcinoma 6910 Associated with shorter survival10,11 and increased risk of relapse and metastasis11

19211 The cytoplasmic expression is an independent negative prognostic factor11

Melanoma 5512 Correlated with advanced tumor stage and inversely correlated with patient survival
NSCLC 14413 Mainly expressed in the cytoplasm 

Independent positive prognostic factor for survival in resected patients 
Correlated with longer overall survival 
Inversely correlated with proliferation Ki-67 proliferation index

5514 Cytoplasmic expression 
No correlation with chemotherapy or radiotherapy

Ovarian cancer AT-406-induced apoptosis is correlated with its ability to downregulate XIAP expression15

Prostate carcinoma 226,16 69117 Deregulation of XIAP occurs early in the pathogenesis of prostate cancer17 
Independent predictor of tumor recurrence16

Renal carcinoma 14518 
6619 
10920

Independent negative prognostic factor18 
Correlated with tumor grade and advanced tumor stage18,19,20 
Inversely correlated with patient survival18,19,20

Thyroid carcinoma 7221

cIAP1 and cIAP2 overexpression associated with amplicon 11q21-22
Cervical cancer 7022 Nuclear expression correlated with low overall survival
ESC 4223 Correlated with resistance to cisplatin/campthotecin
Hepatocarcinoma 2524

Mammary carcinoma 25

Medulloblastoma 1726

NSCLC and SCLC 2527

5514 Cytoplasmic expression 
No correlation with chemotherapy or radiotherapy14

Pancreatic cancer 22,28 3329 Inversely correlated with patient survival
cIAP1 overexpression independent from 11q21-22 amplicon
AML Associated with resistance to several anticancer drugs2

B-cell CLL 22,30 3031 Correlated with resistance to irradiation30 
No correlation with fludarabine sensitivity31

Bladder cancer 10232 Nuclear expression correlated with proliferation index (Ki-67), tumor stage, and grade 
Inversely correlated with overall survival and recurrence free-survival

Cervical carcinoma 7022 Nuclear expression 
Correlated with the resistance to irradiation 
Inversely correlated with overall survival and recurrence-free survival

CLL 1003 Correlated with advanced tumor stage
Colorectal cancer 4633 Nuclear expression

(Continued )
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Table S1 (Continued)

Cohort Observations

HNSCC 5534 Nuclear expression correlated with metastasis, advanced stage, and poor patient prognosis
NSCLC and SCLC 5514 Nuclear expression 

No correlation with chemotherapy or radiotherapy
Prostate carcinoma 69117 Inversely correlated with refractory disease
Squamous carcinoma  
of tongue

7535 Nuclear and cytoplasmic expression 
Correlated with metastasis

cIAP1/cIAP2 inactivation
Multiple myeloma 15536,37

c-IAP1/ HtrA2 
c-IAP1/Smac DIABLO
CLL 1003 Correlated with a better response to treatment (cladribine, cyclophosphamide, fludarabine)
c-IAP2 overexpression independent of t(11q21)
Breast cancer 14438

Cervical carcinoma 777

CLL 1003 Associated with progressive disease
3031 Cytoplasmic expression 

No correlation with fludarabine sensitivity
Colorectal cancer 4633 Cytoplasmic expression
Prostate carcinoma 69117 Deregulation of c-IAP2 occurs early in the pathogenesis of prostate cancer 

Correlated with tumor stage and with refractory disease
c-IAP2/MALT chimeric protein t(11,18)(q21, q21)
MALT myeloma 539,40

ML-IAP overexpression
AML 3441 Inversely correlated with overall survival
Adults ALL 3441 Inverse correlation with relapse-free survival and overall survival
Childhood ALL 22242 Correlated with relapse-free survival
Bladder cancer 3043 Correlated with relapse-free survival
Colorectal cancer Correlated with resistance to etoposide, vincristine, 5-fluorouracil44

Gastric cancer 4045 Correlated with metastasis and dedifferentiation
Melanoma 2746 Resistance to etoposide
Neuroblastoma 6847 Associated with MYCN amplification  inversely correlated with patient survival
Osteosarcoma 2948 Nuclear expression: inverse correlation with overall survival
Renal cell carcinoma 152,49  

20450

Nuclear expression50

Testicular cancer 13151 Correlated with dedifferentiation
Smac downregulation
AML 7152 Correlated with response to chemotherapy
Bladder cancer 17353 

(serum)
Inversely correlated with advanced tumor stage and tumor grade

Breast cancer 6254 Inversely correlated with tumor stage
CLL 1003 Inversely correlated with advanced tumor stage
Cervical carcinoma 8655 Inversely correlated with local recurrence
Colorectal carcinoma 12156 Inversely correlated with metastasis and advanced tumor stage 

Correlated with patient survival
Endometrioid  
endometrial cancer

7657 Inversely correlated with tumor grade and correlated with longer disease-specific survival

Esophageal carcinoma 8658 Inversely correlated with chemoresistance
Lung cancer 8859 Inversely correlated with advanced tumor stage
Rectal adenocarcinoma 389 Correlated with resistance to irradiation
Smac overexpression
Bladder cancer 7560 Correlated with postoperative recurrence-free period
Gastric adenocarcinoma 4661 Correlated with advanced tumor stage
Renal carcinoma 66,19 8562 Correlated with advanced tumor stage
XIAP/ Smac
Gastric adenocarcinoma 4661 Low XIAP/ Smac ratio
Renal carcinoma 6619 High XIAP/ Smac ratio is correlated with advanced tumor stage
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