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Abstract: Platinum-based chemotherapy, such as cisplatin, oxaliplatin, and carboplatin, is one 

of the most widely utilized classes of cancer therapeutics. While highly effective, the clinical 

applications of platinum-based drugs are limited by their toxicity profiles as well as suboptimal 

pharmacokinetic properties. Therefore, one of the key research areas in oncology has been to 

develop novel platinum analog drugs and engineer new platinum drug formulations to improve 

the therapeutic ratio further. Such efforts have led to the development of platinum analogs 

including nedaplatin, heptaplatin, and lobaplatin. Moreover, reformulating platinum drugs using 

liposomes has resulted in the development of L-NDPP (Aroplatin™), SPI-77, Lipoplatin™, 

Lipoxal™, and LiPlaCis®. Liposomes possess several attractive biological activities, including 

biocompatibility, high drug loading, and improved pharmacokinetics, that are well suited for 

platinum drug delivery. In this review, we discuss the various platinum drugs and their delivery 

using liposome-based drug delivery vehicles. We compare and contrast the different liposome 

platforms as well as speculate on the future of platinum drug delivery research.
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Introduction
Platinum-based chemotherapy is one of the most widely used classes of cancer 

therapeutics. Today, there are three platinum chemotherapeutics approved by the US 

Food and Drug Administration, cisplatin, carboplatin, and oxaliplatin. Together, these 

drugs are used to treat a wide variety of cancers, including non-small and small cell 

lung, breast, colorectal, gastric, esophageal, testicular, cervical, and ovarian cancers, 

and non-Hodgkin’s lymphoma.1 Although the compound cis-[Pt(NH
3
)

2
(Cl)

2
] was 

described in the 1840s, its ability to inhibit cell division (in Escherichia coli) was not 

discovered until 1965.2 Subsequent clinical development of cis-dichloro-diammine-

platinum (II), or cisplatin, eventually led to its approval for the treatment of testicular 

and ovarian cancers in 1978.1 The efficacy of cisplatin in testicular cancer was dramatic, 

with improvement in the cure rate from 5%–10% to 75%–80%.3 Following the clini-

cal development of cisplatin, carboplatin was developed in the 1980s and oxaliplatin 

was developed in the 1990s. Carboplatin is used to treat similar types of cancers as 

cisplatin, although its toxicity, especially nephrotoxicity, is much lower than that of 

cisplatin. Oxaliplatin, on the other hand, has been shown to be effective against most 

gastrointestinal cancers, including colorectal, pancreatic, and gastric cancers.4

The mechanism of action of platinum chemotherapeutics is through DNA damage.5 

For example, cisplatin undergoes aquation to form more reactive [Pt(NH
3
)

2
Cl(OH

2
)]+ 

and [Pt(NH
3
)

2
(OH

2
)

2
]2+ species after being internalized into cells. The more reactive 
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platinum species then bind to their primary biological target,  

DNA, by forming coordination bonds with purine bases 

at the N7 positions. Such a reaction results in primarily 

1,2-intrastrand or 1,3-intrastrand crosslinks and few inter-

strand crosslinks or adducts.6 These adducts can cause 

bending of the DNA duplex and facilitate binding of various 

proteins, such as high-mobility group box proteins. Protein-

bound DNA adducts induce a number of cellular responses, 

including cell cycle arrest, inhibition of DNA replication and 

the transcription process, and cell apoptosis and necrosis. 

Cisplatin-bound DNA can also be recognized by repair pro-

teins, such as xeroderma pigmentosum group A, xeroderma 

pigmentosum group F, and DNA excision repair protein 

ERCC1, leading to lesion removal and DNA recovery.7,8 

Although the exact mechanisms and pathways that lead to 

cell death still require further investigation, the nucleotide 

excision repair pathway and several signal transduction path-

ways which control the ultimate fate of tumor cells, includ-

ing those of the AKT, c-ABL, p53, and mitogen-activated 

protein/Jun N-terminal kinase/ extracellular signal-regulated 

kinase pathways, are well documented and summarized in 

the literature.9

Despite being one of the most effective classes of che-

motherapeutics, platinum drugs do have several significant 

shortcomings. First, all of the platinum chemotherapeutics 

are neurotoxic. The toxicity to the peripheral nervous system 

is one of the key dose-limiting toxicities.10 All three drugs 

also have relatively short blood circulation times, resulting in 

suboptimal pharmacokinetics. For cisplatin, nephrotoxicity 

as well as nausea and vomiting have significantly limited 

its clinical use.11 Although carboplatin has less toxicity than 

cisplatin, it is also much less potent.4,12 Myelotoxicity is also 

more profound with carboplatin, which is a dose-limiting 

toxicity.13 Because of these limitations, there has been 

strong interest in the development of novel platinum-based 

therapeutics to not only lower toxicity but also improve 

therapeutic efficacy. Two main strategies are employed. One 

is to develop new platinum analog drugs and the other is to 

utilize drug delivery technologies to engineer novel platinum 

drug formulations.14

Over the past several decades, researchers have developed 

over 3,000 platinum analogs or formulations. Unfortunately, 

only about 35 compounds exhibit adequate biological and 

pharmacologic activity to justify further preclinical and 

clinical investigations.12 Besides carboplatin and oxalipla-

tin, several other platinum analogs have been approved or 

entered clinical trials in some countries (structures are shown 

in Table 1).15 Nedaplatin has been registered in Japan for the 

treatment of head and neck, testicular, lung, ovarian, cervical, 

and non-small cell lung cancers. Heptaplatin (SKI2053R), 

which shows less anticancer activity than cisplatin in gastric 

cancer, has also been approved in South Korea because of its 

decreased toxicity profile. Lobaplatin has been used to treat 

chronic myelogenous leukemia and inoperable metastatic 

breast and small cell lung cancer in the People’s Republic 

of China.

Liposomal nanocarriers  
in drug delivery
Another strategy to improve the platinum drugs has been 

to improve the delivery of platinum therapeutics to tumors 

by use of nanoparticle drug delivery technology. A key 

challenge in cancer therapy is to deliver anticancer drugs 

and other chemotherapeutics selectively to tumors while 

minimizing accumulation in normal tissues. Such targeted 

delivery can improve therapeutic efficacy while reducing 

toxicity. Although such differential drug delivery is generally 

not possible with small molecular drugs, nanocarrier-based 

delivery can overcome this challenge via the enhanced per-

meability and retention effect.16,17 A distinct feature of tumor 

tissue compared with normal tissue is its rapid formation of 

vasculature triggered by vascular endothelial growth factor 

and other growth factors overexpressed in various cancer-

ous cells. These newly formed vessels do not have a smooth 

muscle layer so are defective and have a wider lumen, leading 

to irregular and leaky boundaries. The other key feature of 

tumor tissue is dysfunctional lymphatic drainage, resulting 

in ineffective clearance of extravascular proteins, particles, 

and white blood cells.18 Due to their large size, nanocarriers 

are not able to penetrate through the normal vasculature, but 

can penetrate through the leaky vasculature around tumor 

regions. Together with ineffective lymphatic drainage of 

tumor tissues, differential delivery/accumulation could be 

realized.19 Thus, incorporation of small molecular drugs into 

a nanoplatform could lead to improved efficacy due to their 

favorable pharmacokinetic profiles.

Liposomes were engineered in 1965,20 and were soon 

appreciated by pioneers such as Gregory Gregoriadis as 

promising drug delivery vehicles.21 Liposomes are spherical 

vesicles with an aqueous interior surrounded by one or more 

concentric bilayers (called lamellae) of phospholipids with a 

diameter ranging from 30 nm to several microns. Liposomes 

can be divided into several subtypes according to their size 

and layered structures. Multilamellar liposomes usually 

have a diameter ranging from 500 to 10,000 nm, while small 

unilamellar liposomes normally have a diameter smaller 
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than 50 nm and large unilamellar liposomes have a diameter 

greater than 50 nm. Liposomes are formed when a thin 

lipid film is hydrated with aqueous buffer solution, and are 

typically sonicated or repeatedly extruded through a 100 nm 

polycarbonate membrane to reduce their size and narrow 

their size distribution to afford small or large unilamellar 

liposomes, respectively.22 The physical and chemical proper-

ties of liposomes, such as surface charge, size, and stability, 

can be tuned using different lipid compositions. For instance, 

cationic, neutral, or anionic lipids can be used to control the 

surface charge of liposomes.23 Unsaturated phosphatidylcho-

line from natural sources (egg or soybean) generally produces 

less stable liposomes when compared with liposomes con-

structed using saturated phospholipids with long acyl chains, 

such as dipalmitoylphosphatidylcholine. Liposomes are bio-

compatible and can encapsulate hydrophilic and hydrophobic 

pharmaceutical agents in their internal water compartment 

and membrane, respectively. Encapsulation of hydrophobic 

drugs inside liposomes significantly increases their solubility 

in aqueous solution. The size, charge, and surface properties 

of liposomes that influence the pharmacokinetic profile of 

the encapsulated drug can be easily manipulated by add-

ing other ingredients to the lipid mixture before liposome 

preparation and/or by altering preparation parameters.24 It 

is thus possible to prolong the half-life of a cytotoxic drug 

in the systemic circulation and alter its biodistribution pat-

tern, leading to elevated accumulation in tumor tissue and a 

decreased dose to normal tissues. Formulation of therapeu-

tics with liposomes can significantly reduce their side effect 

profile by avoiding non-targeted systemic drug exposure in 

the body. Upon accumulation at tumor sites, liposomes can 

also provide a unique opportunity to facilitate drug uptake 

into targeted cells or even localize the drugs to specific cel-

lular compartments.

The efficacy of liposomal drugs has been further enhanced 

using a number of innovative strategies, such as remote 

drug loading,25–27 extrusion for homogeneous size,28 long-

circulating (PEGylated) liposomes,29,30 triggered-release 

liposomes,31–34 and ligand-targeted liposomes.35–37 These 

advanced techniques have indeed led to several liposomal 

Table 1 Platinum-based anticancer drugs used in the clinic

Molecular formula  
and structure

Manufacturer/distributor Dose-limiting toxicity Clinical status and indications

Cisplatin H6Cl2N2Pt Generic Nephrotoxicity Approved worldwide 
(sarcomas, small cell lung cancer, 
ovarian cancer, lymphomas, and 
germ cell tumors)

Carboplatin C6H12N2O4Pt Generic Myelosuppression Approved worldwide 
(ovarian carcinoma, lung, head and 
neck cancers)

Oxaliplatin C8H14N2O4Pt Sanofi S.A., Paris, France Neurotoxicity Approved worldwide 
(colorectal cancer, advanced gastric 
and ovarian cancers)

Nedaplatin C2H8N2O3Pt Shionogi Pharmaceuticals,  
Osaka, Japan

Myelosuppression Approved in Japan (head and neck, 
lung small cell, bladder, ovary, 
esophagus and cervix cancer)

Heptaplatin C11H20N2O6Pt SK Chemicals Life Sciences,  
Seongnam, South Korea

Nephrotoxicity, 
intra-abdominal bleeding

Approved in Korea (gastric cancer)

Lobaplatin C9H18N2O3Pt Asta-Medica GmbH,  
Dresden, Germany

Thrombocytopenia Approved in the People’s Republic 
of China (chronic myelogenous 
leukemia, inoperable, metastatic 
breast, small cell lung cancer)
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formulations in clinical use, with AmBisome® (Astellas 

Pharma US Inc, Northbrook, IL, USA) and Doxil® (Johnson 

and Johnson, New Brunswick, NJ, USA) being the most suc-

cessful examples. Doxil, a pegylated liposomal formulation 

of doxorubicin, is the first liposomal anticancer formulation 

approved by the US Food and Drug Administration. In 

human studies, Doxil was found to have pharmacokinetics 

dramatically different to those of doxorubicin. Doxil has a 

half-life of approximately 90 hours, whereas doxorubicin has 

an initial distribution half-life of approximately 5 minutes 

followed by a terminal half-life of 20–48 hours. The area 

under the concentration-time curve (AUC) after a dose of 

50 mg/m2 is about 300-fold greater with Doxil than with 

doxorubicin. More importantly, as the very first proof of 

the enhanced permeability and retention effect observed in 

humans, Doxil was found to accumulate preferentially in 

tumor tissue through passive targeting.38 The differential 

pharmacokinetic profiles between Doxil and doxorubicin 

also led to differing toxicity profiles. Doxil has significantly 

reduced cardiotoxicity, which is a dose-limiting toxicity 

using doxorubicin.39 On the other hand, Doxil causes more 

pronounced palmar-plantar erythrodysesthesia (hand-foot 

syndrome) than doxorubicin.40 The lower cardiotoxicity of 

Doxil is significant, because it allows prolonged and repeated 

treatments with Doxil that were previously not possible with 

doxorubicin. In addition to optimized biodistribution, tumor 

accumulation, and reduced cardiac toxicity, superior efficacy 

was observed in Kaposi’s sarcoma associated with acquired 

immune deficiency syndrome and recurrent ovarian cancer, 

and equivalent efficacy was observed in metastatic breast 

cancer and multiple myeloma.41 The most recent liposomal 

drug to be approved (in August 2012) by the US Food and 

Drug Administration is Marqibo® (Talon Therapeutics Inc, 

South San Francisco, CA, USA), a liposomal formula-

tion of vincristine for treatment of relapsed Philadelphia 

chromosome-negative acute lymphoblastic leukemia.42

Clinically evaluated liposomal 
formulations for platinum  
drug delivery
In this section, we review several liposome particles that have 

been evaluated clinically (see Table 2). We compare their 

lipid compositions, physical properties, loading methods, and 

drug-to-lipid ratios. We also discuss their pharmacokinetics, 

biodistribution, toxicity profiles, and therapeutic efficacy, 

both in preclinical animal models and in patients.

L-NDDP (Aroplatin™, Antigenics Inc, Lexington, 

MA, USA) was the first liposomal formulation studied 

in the clinic for the delivery of a cisplatin analog (cis-

bis-neodecanoato-trans-R,R-1,2-diaminocyclohexane 

platinum II, NDDP). Multilamellar liposomes encapsulat-

ing NDDP are formed after reconstitution using a mixture 

of 1,2- dimyristoylphosphatidylcholine (DMPC) and 1,2-

 dimyristoylphosphatidylglycerol (DMPG) lipids with acidi-

fied saline solution.4 Preclinical data showed that L-NDDP had 

a dramatically different biodistribution from that of NDDP, 

with accumulation of platinum in major organs, such as the 

liver, spleen, and lymph nodes.43,44 In a preclinical toxicology 

and antitumor activity study, it was found that L-NDDP did 

not induce nephrotoxicity, but myelosuppression was the 

Table 2 Clinically evaluated liposomal formulations of platinum drugs

Formulation L-NDDP SPI-77 Lipoplatin Lipoxal LiPlaCis

encapsulated drug NDDP Cisplatin Cisplatin Oxaliplatin Cisplatin
Lipid composition DMPC/DMPG HSPC/cholesterol/

DSPe-PeG2000
HSPC/DPPG/DSPe-PeG2000 NA DSPC/DSPG/ 

DSPe-PeG2000
Particle size 1–5 μm 110 nm 110 nm NA NA

Drug-to-lipid weight ratio 1:15 1:70 1:10 NA NA
Half-life in animals (hours) NA 16 7 NA NA
Half-life in humans (hours) t1/2α, 0.8–21 min 

t1/2β, 14–36
80–145 60–117 24–35 t1/2α, 3–5.5 

t1/2β, 80–141
MTD (mg/m2) 312.5 420 300 300 120
Clinical status Phase II Phase II Phase II, III Phase I Phase I
Indications Colorectal cancer,  

malignant pleural  
mesothelioma

Ovarian, non-small  
cell lung, and head  
and neck cancer

Pancreatic cancer, head and neck  
cancer, mesothelioma, breast,  
gastric and non-small cell lung

Advanced 
gastrointestinal  
tract cancer

NA

References 43–50 52–58 59–66 67 68

Abbreviations: MTD, maximum tolerated dose; NDDP, cis-bis-neodecanoato-trans-R,R-1,2-diaminocyclohexane platinum (II); DMPC, 1,2-dimyristoyl-sn-glycero-3-
phosphocholine; DMPG, 1,2-dimyristoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt); HSPC, hydrogenated soy phosphatidylcholine; DSPe-PeG2000, 1,2-distearoyl-sn-
glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt); DPPG, 1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt); NA, not 
available; DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine; DSPG, 1,2-distearoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt); min, minutes.
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major toxicity in mice. However, in canine models, L-NDDP 

also caused diffuse hemorrhagic syndrome.45–47 L-NDDP was 

found to be more active against liver and spleen metastases 

of M5076 reticulosarcoma and RAW 117 H-10 lymphoma in 

mice.48 A Phase I study of L-NDDP was performed using a 

single intravenous injection every 4 weeks.49 The maximum 

tolerated dose of L-NDDP was found to be 312.5 mg/m2 and 

the dose-limiting toxicity to be myelosuppression. A two-

compartment pharmacokinetic model was found at lower 

doses but a single-compartment model at the maximum toler-

ated dose, suggesting that saturation occurs in the organs of 

the reticuloendothelial system. A Phase II study explored the 

antitumor activity and tolerability of L-NDDP in patients with 

refractory advanced colorectal carcinoma.50 The response was 

modest, with 5.6% having a partial response, 16.7% achieving 

stable disease, and 77.8% developing disease progression. 

L-NDDP was found to be well tolerated, and 9/20 patients 

(45%) were able to receive an escalated dose of 375 mg/m2 

during the course of their treatment.

Studies using non-PEGylated multilamellar DMPC/

DMPG liposomes showed accumulation of these particles 

in the liver, which limits their clinical utility. In order to 

avoid particle uptake by organs of the reticuloendothelial 

system, Mori et al formulated NDDP-containing unilamellar 

 phosphatidylcholine/cholesterol-based liposomes with either 

monosialoganglioside (G
M1

) or polyethylene glycol (PEG)-

phosphatidylethanolamine as the surface coating.51 Indeed, 

these long-circulating NDDP-containing liposomes showed 

an approximately three-fold increase in tumor accumula-

tion as compared with conventional  phosphatidylcholine/

cholesterol-based liposomes. In vitro cytotoxicity studies 

using RIF-1 fibrosarcoma tumor cells showed that the 

presence of PEG-phosphatidylethanolamine, but not G
M1

, 

significantly enhanced the cytotoxicity of liposomal NDDP. 

In an in vivo RIF-1 tumor model in mice, a significant reduc-

tion in tumor growth rate was observed when NDDP was 

formulated in phosphatidylcholine/cholesterol/PEG3000/

phosphatidylethanolamine liposomes. These results indicate 

the potential utility of long-circulating NDDP-containing 

liposomes for cancer treatment.

SPI-77 is a formulation of sterically stabilized, long-

circulating liposomes encapsulating cisplatin. Unlike cis-

platin, which has two-compartment pharmacokinetics with 

linear elimination, the pharmacokinetics of SPI-77 are best 

characterized according to a one-compartment model with 

nonlinear elimination. The half-life was estimated to be 

16 hours in mice, compared with cisplatin which has a half-

life of 0.24 hours. In addition to a longer blood circulation 

time, SPI-77 exhibits a 60-fold larger plasma AUC, three-fold 

higher peak plasma levels, a four-fold reduction in the amount 

of platinum delivered to the kidneys, and a 28-fold higher 

tumor AUC compared with cisplatin.52 SPI-77 was also 

shown to be more effective and better tolerated than free 

cisplatin in a variety of treatment schedules and cumulative 

doses in C26 and Lewis lung tumor xenograft models.52

Despite its superior pharmacokinetic properties, SPI-77 

did not demonstrate enhanced therapeutic efficacy over cis-

platin in preclinical experiments in a separate study of M-109 

lung carcinoma, J-6456 lymphoma, and A-375 melanoma.53 

In vitro release experiments showed that less than 10% of 

cisplatin was released from the liposomes, and a cytotoxic-

ity assay also indicated reduced cytotoxic activity of SPI-77 

in vitro when compared with cisplatin. It is believed that 

SPI-77 is delivered to tumor sites, but with extremely slow 

release kinetics. Similar results were obtained by Zamboni 

et al using microdialysis technology, showing that more 

SPI-77 distributes into tumors but releases less platinum into 

the extracellular tumoral fluid and forms fewer platinum-

DNA adducts than cisplatin.54

Not surprisingly, SPI-77 was shown to have a long 

circulation time, with a plasma circulation half-life as long 

as 145 ± 107 hours in patients given a 420 mg/m2 dose in a 

Phase I study.55 More importantly, SPI-77 did not induce any 

of the toxicities commonly associated with platinum-based 

chemotherapy, such as nephrotoxicity and neutropenia. The 

formulation was shown to be well tolerated in patients at a 

dose range of 40–420 mg/m2. Side effects include mild gas-

trointestinal toxicity and mild anemia and muscle weakness. 

However, SPI-77 did not produce significant clinical response 

rates in several Phase II studies of patients with inoperable 

head and neck cancer, advanced non-small-cell lung cancer, 

or platinum-sensitive recurrence of ovarian cancer.56–58 

The lack of therapeutic efficacy is likely due to slow and 

inefficient release of platinum from SPI-77, as shown in 

preclinical studies.

Lipoplatin™ (Regulon Inc, Mountain View, CA, USA) 

is another cisplatin-containing long-circulating liposomal 

formulation. It is composed of soy phosphatidylcholine, 

cholesterol, dipalmitoyl phosphatidyl glycerol, and methoxy-

PEG-distearoyl phosphatidylethanolamine.59 The Lipoplatin 

formulation differs from SPI-77 in several ways. First, the 

loading method used in Lipoplatin is based on formation of 

reverse micelles between cisplatin and dipalmitoyl phosphati-

dyl glycerol, while the mechanism of cisplatin encapsulation 

in SPI-77 is totally passive. Second, the Lipoplatin formula-

tion uses anionic dipalmitoyl phosphatidyl glycerol lipid and 
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neutral soy phosphatidylcholine lipid, whereas SPI-77 uses 

only neutral lipids. Third, the cisplatin to total lipid ratio is 

around 1:10 in the case of Lipoplatin, but SPI-77 has a much 

lower drug-to-lipid ratio of 1:70.60

Preclinical studies of Lipoplatin have shown lower 

nephrotoxicity and other side effects in mice and rats when 

compared with free cisplatin but with higher antitumor 

activity in breast MCF-7 and prostate LNCaP human tumor 

xenograft models.61,62 Treatment of dogs with Lipoplatin led 

to the conclusion that the drug can be safely administered to 

healthy dogs at dosages of up to 150 mg/m2 without the need 

for concurrent hydration protocols.63 In several Phase I, II, 

and III studies, Lipoplatin was shown to reduce renal toxic-

ity, peripheral neuropathy, ototoxicity, and myelotoxicity 

substantially but with enhanced or comparable efficacy to 

cisplatin.64 A 10–200-fold higher accumulation of Lipoplatin 

in solid tumors compared with adjacent normal tissues was 

found in patients.65 A Phase II study showed that Lipoplatin 

has lower renal toxicity as well as higher efficacy than cispla-

tin when combined with gemcitabine in advanced non-small 

cell lung cancer. A statistically significant higher response 

rate was also observed for a combination of Lipoplatin and 

paclitaxel when compared with the combination of cisplatin 

and paclitaxel in advanced non-small cell lung cancer in one 

randomized trial.66 However, there was no significant increase 

in survival. Lipoplatin has also been tested in a number of 

malignancies in several Phase II and III trials, including pan-

creatic cancer, head and neck cancer, and breast and gastric 

cancer, and preliminary results collected from these studies 

seem encouraging.59

Like Lipoplatin, Lipoxal™ is a liposomal formulation that 

carries oxaliplatin. In a Phase I study using six Lipoxal dose 

levels (100, 150, 200, 250, 300, and 350 mg/m2), no serious 

side effects were observed at doses of 100–250 mg/m2. Mild 

myelotoxicity, nausea, and grade 2–3 peripheral neuropathy 

were observed at doses of 300–350 mg/m2.67 With the reduc-

tion of many of the side effects of oxaliplatin, including 

myelotoxicity and gastrointestinal tract toxicity, and adequate 

antitumor activity, further clinical tests are warranted to dem-

onstrate the superiority of Lipoxal over free oxaliplatin.

The lack of antitumor activity of SPI-77 in clinical tri-

als suggests that hydrophilic chemotherapeutic agents like 

cisplatin cannot pass readily through the lipid membrane. 

The release of encapsulated drugs from liposome carriers 

upon their deposition in tumor tissues is critical to confer 

antitumor activity. LiPlaCis®, a novel liposomal formulation 

of cisplatin, is designed to be degraded by secretory phospho-

lipase A
2
. Given that secretory phospholipase A

2
 is relatively 

abundant in tumor sites, triggered drug release in tumor tissue 

is expected. As shown in a Phase I study, the pharmacokinetic 

profile of LiPlaCis could be best fitted into a two-compartment 

model with the initial half-life (t
1/2

α) reflecting the half-life 

of the intact liposome, and the secondary half-life (t
1/2

β) 

reflecting the half-life of plasma protein-bound platinum.68 

Although LiPlaCis was designed to be decomposed by secre-

tory phospholipase A
2
 specifically, other factors also contrib-

uted to the degradation of the particles because no correlation 

between the baseline levels of secretory phospholipase A
2
 

and the initial half-life of LiPlaCis was observed in patients. 

In addition, renal toxicity was not prevented by treatment by 

LiPlaCis and acute infusion reactions were observed in many 

patients even with premedication. The poor safety profile of 

LiPlaCis led to early cessation of this particular formulation 

in the Phase I stage and LiPlaCis requires reformulation to 

enable further development.

Preclinical liposomal formulations 
of platinum drugs with enhanced 
loading efficiency and active 
targeting capability
The clinical promise of liposomes in platinum drug delivery 

has encouraged many researchers to explore other possibili-

ties to enhance delivery efficiency further. New technologies 

and novel systems with improved encapsulation efficiency, 

drug loading capacity, and active targeting capability have 

been reported. Although many of these platforms are still in 

the early development stage, their in vitro and in vivo data 

show great promise for further clinical evaluations. Here we 

review several of these platforms.

By repeated freezing and thawing of a concentrated 

solution of cisplatin, Burger et al achieved significantly 

more efficient cisplatin encapsulation in liposomes.69 Their 

method involves hydration of a dry lipid film composed 

of equimolar amounts of dioleoyl-phosphatidylserine and 

dioleoyl- phosphatidylcholine with a buffered solution of 

5 mM cisplatin, followed by ten freeze-thaw cycles. This 

method generated nanocapsules with an unprecedented 

drug-to-lipid molar ratio of 0.5 ± 0.1, corresponding to about 

30 mM cisplatin, which far exceeded the solubility limit of 

cisplatin (8 mM). More impressively, in vitro cytotoxicity up 

to 1000-fold higher than that of the free drug was observed 

in human-derived ovarian (IGROV-1) tumor cells (Figure 1A 

and B). The authors attributed the formation of nanocapsules 

mainly to the solubility differences among neutral and charged 

aquo species of cisplatin, formation of ice phase during the 
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freeze-thaw cycles, and electrostatic interactions between cis-

platin aggregates and negatively charged lipids (Figure 1C).

Khiati et al reported another approach to encapsulating 

cisplatin efficiently into nucleoside lipids.70 Nucleoside lipids 

were used in this case to enhance the electrostatic interactions 

between negatively charged phospholipids and positively 

charged aquated platinum species in order to control and 

guide the precipitation and self-assembly process to form 

highly loaded and stable nanoparticles. This method involved 

a two-step layer-by-layer strategy, as shown in Figure 2A, 

where encapsulation of cisplatin was achieved via an anionic 

nucleotide lipid, diC
16

-3′-dT (thymidine 3′-[1,2-dipalmitoyl-

sn-glycero-3-phosphate]) and further stabilization of the 

resulting anionic nanoparticles was realized by another 

bilayer of a cationic nucleoside lipid, DOTAU (2′,3′-dioleyl-

5′-deoxy-5′-trimethylammoniumuridine). It was shown 

that these particles were more efficiently internalized and 

more potent against a variety of cancer cell lines in vitro 

(Figure 2D and E). The present nucleolipid-based multilayer 

nanoparticles can thus overcome some of the disadvantages 

or limitations associated with other loading techniques, such 

as low drug-to-lipid ratio and instability of the assembly.

Aryal et al reported a novel platform for delivery of 

platinum-based drugs by using a synthetic phospholipid-

like platinum compound to allow its self-assembly into a 

liposome-like nanostructure (the Ptsome).71 Two hydrophobic 

acyl chains were attached to the Pt(II) center to endow 

amphiphilic properties. The authors hypothesized that the 
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chloride and hydrazide moieties next to the platinum atom can 

readily form hydrogen bonds in aqueous solution to increase 

hydrophilicity. With the hydrophobic acyl chains, a liposomal 

structure should form with these compounds in a manner 

similar to the self-assembly of phospholipids into liposomes. 

After extruding the particle solution through a 100 nm pore 

size membrane, particles with a size of 100 nm in diameter was 

obtained. Scanning electron microscopic imaging confirmed 

formation of spherical Ptsomes with nearly uniform size. This 

delivery vehicle is unique in a sense, in that unlike other lipo-

somal delivery systems that utilize the aqueous space inside the 

liposome to store platinum drugs, the current study integrates 

drugs into the lipid composition, leading to an extremely high 

drug-to-lipid ratio. The Ptsome should also allow integration 

of other chemotherapeutics for combination therapy.

A novel chondroitin sulfate-binding cationic lipo-

some loaded with cisplatin was reported by Lee et al.72 

In their study, a new formulation of long-circulating 

PEG-coated liposomes comprising a new cationic lipid 

(3, 5- dipentadecycloxybenzamidine hydrochloride, TRX-20) 

was evaluated in vitro and in vivo against highly metastatic 

tumor cells expressing an increased level of chondroitin 

sulfate. It was shown that PEG-coated TRX-20 liposomes 

bound preferentially to certain chondroitin sulfates, such 

as B, D, and E. Confocal microscopy revealed efficient 

internalization of TRX-20 liposomes but not plain PEG lipo-

somes by human ACHN renal adenocarcinoma and murine 

LM8G5 osteosarcoma cells. The cisplatin-loaded TRX-20 

liposomes had higher cellular toxicity in vitro compared with 

cisplatin-PEG liposomes without TRX-20. Cisplatin-loaded 

TRX-20 liposomes, after intravenous injection, preferen-

tially accumulated in the liver and tumor region, inhibited 

tumor growth, and suppressed metastasis to the liver more 

effectively than plain cisplatin-loaded PEG liposomes or free 

cisplatin in an LM8G5 liver metastasis model. These novel 

cationic liposomes thus provide a promising vehicle to deliver 

many other anticancer drugs to solid tumors and metastases 

with enhanced expression of chondroitin sulfate.

Suzuki et al developed a transferrin-conjugated PEG lipo-

some formulation for tumor-selective delivery of oxaliplatin 

(L-OHP).73 This delivery system achieved a significantly 

longer blood circulation time compared with free oxaliplatin 

and higher L-OHP concentration in tumors compared with 

liposomes modified by PEG (Figure 3A and B). In a murine 

colon-26 tumor model, intravenous injection of L-OHP encap-

sulated within transferrin-conjugated PEG liposomes (L-OHP 

5 mg/kg) suppressed tumor growth more effectively than PEG 

liposomes, bare liposomes, and free L-OHP (Figure 3C). Given 

that transferrin receptors are overexpressed in various types 

of tumors, this targeting strategy should allow more efficient 

delivery of active agents to tumor sites through both passive 

targeting and active targeting pathways.

Lin and coworkers have developed a novel platform 

based on a nanoscale metal-organic framework or nanoscale 

coordination polymer for cancer-specific imaging and drug 

delivery.74–80 A nanoscale coordination polymer formulation 

based on a cisplatin prodrug, disuccinatocisplatin, and a 

La3+ metal ion was recently designed for targeted delivery 

to non-small cell lung cancer cell lines.81 The nanoscale 

coordination polymer particles were stabilized with a 

cholesterol/dioleoyl-phosphatidylcholine/1,2-distearoyl-

sn-glycero-3-phosphoethanolamine-PEG lipid coating and 

further doped with a DSPE-PEG-anisamide conjugate to 

render them cancer-specific. This formulation showed higher 

potency than free cisplatin against non-small cell lung cancer 

cell lines, and enhanced uptake was confirmed by confocal 

microscopy and a competitive binding assay. The nanoscale 

coordination polymer delivery strategy is general and should 

allow incorporation of many other chemotherapeutics and 

imaging agents for cancer diagnosis and therapy.
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Concluding remarks  
and perspectives
Nearly half a century of clinical research on platinum ana-

logs has yielded remarkable anticancer agents. However, of 

the thousands of platinum compounds, only a very small 

fraction has shown sufficient promise during preclinical 

evaluation to enter human clinical trials. Harnessing their 

potency while reducing unwanted side effects and expand-

ing the activity spectrum of platinum drugs while avoiding 

cross-resistance are important goals for the near future. A 

detailed understanding of how platinum drugs induce DNA 

damage, how the signals of DNA damage are transduced, how 

cell cycle arrest occurs, and how DNA repair and apoptosis 

are activated provide us with invaluable knowledge. With a 

better understanding of the mechanism of action, improved 

designs of new platinum-based compounds are expected. 

Among several emerging chemogenotherapeutic strategies, 

disruptions of certain pathways by RNA interference that 

modulate cellular sensitivity to platinum drugs are likely to 

lead to clinical benefits. The combination of platinum analogs 

and other chemotherapeutics, such as gemcitabine, paclitaxel, 

doxorubicin, and 5-fluorouracil, will also contribute to the 

increased spectrum of activity and anticancer efficacy.

At the same time, targeted delivery of platinum drugs 

with long-circulating liposomes also provides another 

efficient strategy to improve platinum drug efficacy with 

reduced toxicity. Liposomal drugs are highlighted for their 

abilities to “passively” accumulate at tumor sites via the 

enhanced permeability and retention effect and to reduce 

the side effects of encapsulated drugs by lowering unspecific 

cytotoxic drug distribution in normal tissues. These two fea-

tures endow liposomal drugs with an increased therapeutic 

ratio. The current liposomal formulations have primarily 

taken advantage of reduced systemic toxicity rather than 

increased efficacy. For example, the irreversible cardio-

toxicity induced by free doxorubicin could be significantly 

alleviated by entrapping the drug in liposomes.82,83 In order 

to increase drug bioavailability further and improve drug 

biodistribution at tumor sites, drug-loaded liposomes have 

been further modified with internalizing receptors, such as 

small molecules,84 sugar molecules,85 and antibodies86 or 

antibody fragments.87 However, liposomal formulations with 

active-targeting groups have yet to enter the clinic, owing to 

the high development costs (manufacturing, source of good, 

intellectual property) and batch-to-batch variation.

Despite the numerous successes in overcoming barri-

ers to liposomal drug delivery, it is still difficult to achieve 

an optimized balance between high and specific drug 

bioavailability in tumor tissue and prolonged liposome stabil-

ity in systemic circulation. Drug release from stable formula-

tions such as the Stealth® formulation is at best slow.88 The 

release of hydrophilic drugs such as cisplatin is dependent 

on degradation of the liposome vehicle. Therefore, a long 

systemic circulation and minimal side effects of chemotherapy 

could be achieved at the expense of lowered efficacy in vivo. 

More detailed knowledge is needed in order to reach a balance 

between obtaining stable formulations with long circulation 

times to minimize undesired systemic exposure and adequate 

drug release kinetics in order to achieve enhanced chemother-

apeutic efficacy.89 The development of liposomes from which 

drug release can be actively triggered is therefore of crucial 

importance for guiding liposomal drug delivery technologies 

to wide clinical applications in the treatment of cancer.
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