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Abstract: Foot and mouth disease virus (FMDV), with its seven serotypes, is a highly 

contagious virus infecting mainly cloven-hoofed animals. The serotype Asia1 occurs mainly 

in Asian regions. An in-silico approach was taken to reveal the antigenic heterogeneities within 

the capsid protein VP1 of Asia1. A total of 47 VP1 sequences of Asia1 isolates from different 

countries of South Asian regions were selected, retrieved from database, and were aligned. The 

structure of VP1 protein was modeled using a homology modeling approach. Several antigenic 

sites were identified and mapped onto the three-dimensional protein structure. Variations at 

these antigenic sites were analyzed by calculating the protein variability index and finding 

mutation combinations. The data suggested that vaccine escape mutants have derived from 

only few mutations at several antigenic sites. Five antigenic peptides have been identified as 

the least variable epitopes, with just fewer amino acid substitutions. Only a limited number of 

serotype Asia1 antigenic variants were found to be circulated within the South Asian region. 

This emphasizes a possibility of formulating synthetic vaccines for controlling foot-and-mouth 

disease by Asia1 serotypes.
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Introduction
Foot and mouth disease (FMD) is a highly contagious, economically devastating 

epidemic disease of cloven-hoofed animals, affecting up to 70 domesticated and 

wild species.1 The etiological agent, foot-and-mouth disease virus (FMDV), is a 

nonenveloped ribonucleic acid (RNA) virus belonging to the Aphthovirus genus 

within the family Picornaviridae.2 The virus is composed of a positive-sense, 

single-stranded RNA genome of about 8.3 kb, enclosed within a protein capsid. 

This capsid is composed of 60 copies of four different structural polypeptides; the 

VP1, VP2, and VP3 proteins are surface exposed, while VP4 is entirely internal. 

The coding sequence for the VP1 protein has been extensively used for molecular 

epidemiological studies.3−6

VP1 is the major antigen of FMDV capsid protein that contains the major B-cell 

epitope, which is the major immunodominant epitope eliciting protective humoral 

immunity, and antigenic variants of FMDV can be screened by the presence of 

specific antibodies against VP1.7,8

The virus exists in seven distinct serotypes: O, A, C, Asia-1, and Southern African 

Territories (SAT) 1–3.9,10 Among the seven serotypes, serotypes O, A, and C mainly 

occur in Europe, South America, Africa, and Asia; SAT 1, SAT 2, and SAT 3 are 
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generally restricted to sub-Saharan Africa; and Asia1 occurs 

only in Asia.11 In Bangladesh, the emerging FMDV serotypes 

are mainly O and A.12

The high rate of mutation, the quasispecies dynamics, 

and recombination are responsible for the wide antigenic 

diversity of the virus.13,14 Genetic heterogeneity within 

FMDV may arise as a result of normal genetic drift15 due to 

selection pressure16,17 or as a result of recombination between 

different FMDV genomes.13 Therefore, in addition to its 

serotypic diversity, the antigenic shift and drift, wide host 

range, and its virulence potential to infect animals with a 

small infectious dose make it difficult to prevent the disease 

by vaccination.18−20 The study of antigenic variability is thus 

important for proper vaccine design and to prevent obstacles 

in control of the disease.21

Currently, the rapid expansion of biologic databases 

and computational programs facilitate more elaborate 

research in postgenomic sequence analysis, characteriza-

tion of sequence variability, and especially, the mapping of 

epitopes and computer-aided rational vaccine design.22,23 

Nucleotide and protein sequences of VP1 from a number of 

FMDV strains/isolates are now available in public domain 

repositories. A wide variety of computational programs 

and algorithms have been recently developed in that can 

be effectively used for postgenomic sequence analysis and 

computer-aided conformational epitope prediction.23−25 The 

time and effort required for screening potential epitopes can 

be reduced by up to 95% by using computational immu-

nology methods.26 The development of more effective and 

accurate procedures and algorithms in the last few years 

allows more accurate prediction of major histocompatibility 

complex (MHC) binding affinity. Many web-based tools 

are publicly used for predicting T-cell and B-cell epitopes 

from protein sequences.27 For the induction of humoral- or 

cell-mediated immunity using synthetic peptides, under-

standing the nature of T and B cell epitopes may play an 

important role.28−30

In the present study, bioinformatic analyses of the FMDV 

major capsid protein VP1 of the serotype Asia1 were done to 

map conformational epitopes and to characterize antigenic 

variability. It is known that the patterns, which are apparently 

hidden at the sequence level, become evident when mapped 

into a structure. Experimentally derived three-dimensional 

(3D) structure data of the VP1 protein of the serotype Asia1 

virus were not already available. Therefore, an attempt was 

made to predict its 3D structure, using a knowledge-based 

homology modeling approach. The structure of the VP1 

protein of FMDV serotype Asia1 was modeled and used to 

determine the conformational epitopes, and each epitopes 

were analyzed in the context of observed mutations.

Materials and methods
Compilation of datasets
This study was particularly focused on FMDV isolates of 

the South Asian regions. A total of 47 VP1 nucleotide and 

complementary protein sequence data were retrieved from 

the National Center for Biotechnology Information (NCBI) 

GenBank sequence database.31 Sequence choices were based 

on independently originated isolates from different South 

Asian countries over the past 12 years.

Sequence alignment and calculation  
of variability index
Retrieved sequences were aligned using the EBI ClustalW 

program32 and the Gonnet matrix. The Protein Variability 

Server (PVS) was used to calculate the protein variability 

index, using the Wu–Kabat variability coefficient.33 The 

variability coefficient was computed using the following 

formula:

	 Variability = N*k/n,	 (1)

where, N is the number of sequences in the alignment, k 

is the number of different amino acids at a given position, 

and n is the number of times that the most common amino 

acid at that position is present.34 The protein variability 

index was used to determine whether the predicted epitopes 

were positioned in the least variable, moderately variable, 

or hypervariable regions. A consensus sequence was also 

derived from this alignment, using the PVS server. The 

consensus sequence utilized a VP1 protein sequence that was 

derived from the most common amino acid residues occurring 

at each position. This consensus sequence was later used for 

modeling the VP1 protein 3D structure.

Prediction and evaluation  
of the protein 3D model
As there was no 3D structure of FMDV Asia1 in the Protein 

Data Bank (PDB), the 3D structure of Asia1 was determined 

using a homology modeling method. A consensus sequence, 

derived from the PVS server from ClustalW alignment, was 

used to generate the protein 3D structure, using the SWISS-

MODEL 3D server.35 The VP1 protein structure (PDB id: 

1fod) from the O serotype was selected as the template 

for maximum sequence identity and E value. The derived 

model was evaluated using a Ramachandran plot version 
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2.0  server.36 A Ramachandran plot was used to check the 

stereochemical properties of the structure. For model com-

parison, the SuperPose server was used.37 Using SuperPose, 

two VP1 structures were superimposed onto one another to 

find the divergent region, as the RMSD (root mean square 

deviation) value. For each loop region, a RMSD value was 

calculated.

Antigenic site detection
Different bioinformatic algorithm and computational 

tools were used to predict antigenic sequences. The 

Disco Tope -1.238 server and ElliPro39 server with default 

parameter were used to predict antigenic fragments, using 

protein 3D structure. Disco Tope predicts discontinuous 

epitope, using protein 3D structural data. The method is 

based on amino acid statistics, spatial information, and 

surface accessibility from a compiled data set of discon-

tinuous epitopes determined by X-ray crystallography of 

antibody/antigen protein complexes. Disco Tope detects 

15.5% of residues located in discontinuous epitopes, with 

a specificity of 95%.38 ElliPro, is a web tool that applies 

Thornton’s method and, together with a residue cluster-

ing algorithm, the MODELLER program and the Jmol 

viewer, allows the prediction and visualization of antibody 

epitopes in a given protein sequence or structure. ElliPro 

has been tested on a benchmark dataset of discontinuous 

epitopes inferred from the 3D structures of antibody-

protein complexes.39

The BCPREDS server 1.0 and BepiPred 1.0b server 

with default threshold were used to predict epitopes of at 

least 12 mer lengths from input amino acid sequences.48,61 

BCPREDS utilizes a novel method – string kernels – for 

predicting linear B-cell epitopes. String kernels40−44 are a 

class of kernel methods that have been successfully used 

in many sequence classification tasks.42−47 In these appli-

cations, a protein sequence is viewed as a string defined 

on a finite alphabet of 20 amino acids. Four string kernels 

were explored: spectrum,42 mismatch,43 local alignment,44 

and subsequence,41 in predicting the linear B-cell epitopes. 

BepiPred predicts linear B-cell epitopes using a hidden 

Markov model. It uses three data sets of annotated linear 

B-cell epitopes. A data set was collected from the literature, 

another data set was extracted from the AntiJen database,62 

and a data set of the epitopes in the proteins of HIV was 

collected from the Los Alamos HIV database.48 Results 

from all the servers (Disco Tope, ElliPro, BCPREDS, 

BepiPred) were compared and combined to predict the 

antigenic regions.

Antigenic heterogenicity analysis
The predicted epitopes were further checked for location in 

the 3D structure, presence of mutations among other isolates, 

and for possible combination of mutations. The average 

Wu–Kabat protein variability index34 was calculated for each 

of the predicted sites.

Results
Alignment of sequences and calculation 
of protein variability index
Retrieved sequences were aligned using the EBI ClustalW 

program.32 Multiple sequence alignment of the VP1 sequences 

of Asia1 (shown in Figure 1) was done using a Gonnet matrix. 

A protein variability plot was derived from the PVS server, 

using Wu–Kabat as the variability coefficient.33 (Figure 2). 

The consensus sequence (TTTTGESADPVTTTVENYG 

GETQTARRLHTDVAFVLDRFVKLTAPKNTQTLDL 

M Q I P S H T LVG A L L R S AT Y Y F S D L E VA LV H T G 

PVTWVPNGSPKDALDNQTNPTAYQKQPITRLA 

L P Y TA P H RV L AT V Y N G K T T Y G E T T S R R G D 

MAALAQRLSGRLPTSFNYGAVKAETITELLIRMK 

RAETYCPRPLLALDTTQDRRKQEIIAPEKQMM) of the 

VP1 protein was derived from the multiple sequence align-

ment, using the PVS server.

Protein modeling and model evaluation
The modeling process involved several steps, such as target-

template selection and alignment, model building, and model 

evaluation. The accuracy of the models increased along with 

the increase in the numbers of known protein structures 

and the improvement in protein model software.49 Since the 

FMDV VP1 3D structure for serotype Asia1 was not found 

on a database and since there exists a substantial difference 

in the VP1 sequence and conformational epitopes among the 

different serotypes of FMDV,13,14 it was necessary to model 

the FMDV Asia1 VP1 sequence prior to epitope design. The 

model was built using SWISS-MODEL (Figure 3A and B). 

The PDB id: 1fod (2.60 Å) was used as a template for the 

model build up. This was selected due to its relatively bet-

ter sequence identity (72.857%) and highly significant E 

value (6.56e-78).50 A Ramachandran plot was found for the 

3D model (Figure 4), which showed that the quality of the 

designed model was acceptable. The Ramachandran plot 

showed that model had most residues in the most favorable 

region and had overall good quality.

Using ClustalW multiple sequence alignment and the 

PyMOL visualization tool, each loop of the model was 
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Figure 1 Multiple alignment of 47 VP1 sequences of the deduced 211 amino acids of Asia1 FMDV.
Notes: Dots represent the sequence identity with the consensus; amino acid changes relative to the consensus are indicated using single letter codes; asterisks represent 
missing amino acids; gaps and “x” in the sequence indicates region not sequenced.
Abbreviation: FMDV, foot-and-mouth disease virus.
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Figure 2 Wu–Kabat protein variability index for each of the 211 amino acid residues of VP1 protein of the FMDV serotype Asia1.
Abbreviation: FMDV, foot-and-mouth disease virus.
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HI loop
DE loop

FG loop

EF loop

BC loop

GH loop

N terminus

C terminus

A B

Figure 3 (A) Protein three-dimensional (3D) model of the VP1 protein of serotype Asia1, shown as a ribbon. Each of the important loops was detected using ClustalW 
alignment with the template VP1 structure and using the PyMOL visualization tool. Each loop is indicated in this figure. (B) Superimposed model and template (PDB id: 1fod). 
Here, the protein model is shown as red-colored, and the template shown as cyan-colored.
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Figure 4 Ramachandran plot for the VP1 model of FMDV serotype Asia1, showing that most residues were located in favorable regions.
Abbreviation: FMDV, foot-and-mouth disease virus.

identified (Figure 3A). They were the C terminus, FG loop, 

DE loop, HI loop, EF loop, BC loop, GH loop, and the 

N terminus. To find structural distinction with the template 

1fod, a RMSD value for the whole model and for all loops of 

the VP1 region was calculated, using the SuperPose server.37 

It was found that the RMSD value was the highest for the GH 

loop and the C terminus. The data are shown in Table 1.

Mapping of antigenic sites
B cell epitopes were predicted using both sequence data 

and 3D modeling of the FMDV Asia1 serotype. Several 

epitopes were first predicted by BCPREDS and BepiPred, 

but only those epitopes that were fully or mostly overlapped 

with the Disco Tope and ElliPro prediction were chosen 

as the final epitope candidates. Thus, six predicted B-cell 

epitopes were common to all four programs (Table  2). 

It was found that among the six predicted epitopes, two 

epitopes were located in the N terminus, one in the EF 

loop, one between the EF and FG loops, one in the GH 

loop, and one in the C terminus. The predicted epitopes 

were mapped onto a protein 3D structure using PyMOL, 

as shown in Figure 5.
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Variability study
For each of the predicted antigenic peptides, the average vari-

ability index was calculated, mutation types were identified, 

and all possible combinations of mutations were identified 

from multiple sequence alignment (Table 3). From this data, 

it was found that, epitope 
132

(GKTTYGETTSRR)
143

 located 

in GH loop region showed a higher variability index than 

did the other regions. A very minimal number of muta-

tion combinations were found in the terminal regions of 

N and C. Three antigenic peptides predicted at these two 

regions, (
1
(TTTTGESADPVT)

12
, 

10
(PVTTTVENYGGE)

21
, 

and 
194

(TTQDRRKQEIIA)
205

), showed only two mutation 

combinations. Here, for position 135, the TA substitution 

was found to occur at higher rates (ten times or 21.27% 

cases), and for position 140, the TP substitution was also 

found to occur at elevated rates (12 times or 25.53% cases). 

This indicates a mutation proneness of specific bases at these 

two sites. Significant mutation proneness was also found for 

position 93 (occurred at S93A eight times), 96 (occurred at 

D96T eight times), 141 (occurred at S141P nine times) and 

141 (occurred at S141A nine times). This mutation proneness 

of specific amino acid bases lowered the antigenic variability 

towards a minimum mutation combination, which could 

otherwise be more variable.

Discussion
In this work, VP1 protein sequences of the FMDV serotype 

Asia1 of South Asian origin were targeted and analyzed for 

an antigenic variability study. Several prediction methods 

were used to predict the antigenic sites. Both sequence-based 

and structure-based algorithm methods of epitope prediction 

were applied to identify the antigenic sites of VP1 protein. 

As this study combines the results from four different epitope 

prediction servers, the results were homologous and were 

expected to be correct. In a previous study of FMDV serotype 

Asia1,51 experiments using Western blot and enzyme-linked 

immunosorbent assay (ELISA) demonstrated three potential 

B-cell epitopes located in VP1 region. It was found that two 

of our predicted B-cell epitopes, (VP1 
16

ENYGGETQSARR
28

) 

and (VP1
193

TTHDRRKQEIIA
205

), were located in regions 

that were significantly antigenic, as determined by Zhang 

et al,51 which validated this prediction. The present study also 

revealed two additional antigenic sites that were predictably 

antigenic located on the EF loop and between the EF and 

FG loop regions. Previous studies have showed that major 

antigenic sites are located on the GH loop.52,53 This study also 

showed epitope 
132

(GKTTYGETTSRR)
143

 to be located in the 

GH loop, but here variability was comparatively higher than 

for the others. Five other epitopes located in the N terminus, 

C terminus, EF loop, and between the EF and FG loops had 

lower antigenic variability and are therefore suggested for con-

sideration in vaccine design. These had only a limited number 

of mutations, and these mutations were biased towards specific 

amino acid bases. This bias limits their antigenic variability, 

which could otherwise be more divergent.

Most studies illustrate that FMDV is a highly variable 

single-stranded RNA virus13,14,18 that is genetically very 

diverse, but its variability can be lower than expected and vac-

Table 1 Comparison of RMSD values of type O and type Asia1, 
for different positions

Region/ 
loop

Residues RMSD value (A°)

Alpha  
carbons

Back bone All

VP1 model All 0.77  
(208 atoms)

0.77  
(832 atoms)

0.95  
(1,501 atoms)

GH loop 136-150 3.53  
(15 atoms)

3.38  
(60 atoms)

4.76  
(86 atoms)

BC loop 45-65 0.10  
(21 atoms)

0.12  
(84 atoms)

0.35  
(146 atoms)

FG loop 103-113 0.07  
(11 atoms)

0.11  
(44 atoms)

0.33  
(80 atoms)

EF loop 87-102 0.10  
(16 atoms)

0.12  
(64 atoms)

0.22  
(113 atoms)

C terminus 184-210 5.27  
(25 atoms)

5.07  
(100 atoms)

5.72  
(147 atoms)

N terminus 1-32 0.08  
(32 atoms)

0.11  
(128 atoms)

0.34  
(231 atoms)

Abbreviation: RMSD, root mean square deviation.

Table 2 Predicted antigenic sites with prediction score and location in the three-dimensional (3D) structure

Sequence Position Location in loop  
region

BCPREDS score ElliPro score Disco Tope score 
(average)

BepiPred score 
(average)

TTTTGESADPVT 1-12 N terminus 0.866 0.830 -5.83 1.67
PVTTTVENYGGE 10-21 N terminus 0.515 0.830 -5.23 1.25
SPKDALDNQTNP 93-104 EF loop 0.542 0.642 -4.74 1.61
LDNQTNPTAYQK 98-109 EF, and FG loop 0.83 0.642 -5.753 1.44
GKTTYGETTSRR 132-143 GH loop 0.441 0.726 -4.14 1.23
TTQDRRKQEIIA 194-205 C terminus 0.95 0.810 -1.85 0.70
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Residue 194–205Residue 10–21

Residue 1–12

Residue 132–143

Residue 93–104 Residue 98–109

Figure 5 Predicted antigenic sites mapped onto the protein three-dimensional (3D) structure, using the PyMOL visualization tool.

Table 3 Average Wu-Kabat protein variability index, mutation type, and mutation combinations found for each predicted epitope

Peptide Variability index average Mutation type Mutation combinations

1(TTTTGESADPVT)12 1.27 D9Y Two combinations: 

1(TTTTGESADPVT)12 

1(TTTTGESAYPVT)12

10(PVTTTVENYGGE)21 1.08 D9Y, P10R Two combinations: 

10(PVTTTVENYGGE)21 

10(RVTTTVENYGGE)21

93(SPKDALDNQTNP)104 1.65 S93A*8, D96A*4, D96T*8, D99N*2, N100C*4,  
Q101H*2

Six combinations: 

93(SPKDALDNQTNP)104 

93(SPKAALDNQTNP)104 

93(SPKDALDNHTNP)104 

93(SPKDALNNQTNP)104 

93(APKTALDCQTNP)104 

93(APKTALDNQTNP)104

98(LDNQTNPTAYQK)109 1.37 D99N*2, N100C*4, Q101H*2, Q108P*3 Five combinations: 

98(LDNQTNPTAYQK)109 

98(LDNHTNPTAYQK)109 

98(LNNQTNPTAYQK)109 

98(LDCQTNPTAYQK)109 

98(LDNQTNPTAYPK)109

132(GKTTYGETTSRR)143 2.68 (hypervariable) T135A*10,E138D*2, E138A*4, T139P,  
T139A*2, T139E*4 
T140P*12, T140A*2 
S141T*5, S141P*9, S141A*9, S141E

Ten combinations: 

132(GKTTYGETTSRR)143 

132(GKTTYGETPSRR)143 

132(GKTTYGEPPSRR)143 

132(GKTTYGETPTRR)143 

132(GKTAYGDAAPRR)143 

132(GKTTYGETTARR)143 

132(GKTTYGETTERR)143 

132(GKTTYGETTPRR)143 

132(GKTAYGAETPRR)143 

132(GKTAYGETTTRR)143

194(TTQDRRKQEIIA)205 1.27 I203L Two combinations: 

194(TTQDRRKQEIIA)205 

194(TTQDRRKQELIA)205

Note: *Number indicates mutation occurring by times for that position.
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cine escape mutants can arise through only limited sequence 

variations at several antigenic sites.54,55 Our study supports 

this hypothesis.

Previous studies have shown that synthetic peptides can 

induce antibodies reactive to the cognate sequences within 

the associated proteins.56,63,64 Synthetic peptides that can be 

used as antigens are generally available through chemical 

synthesis. These peptides can produce potential immuno-

genic responses.56−58 Conventionally, these peptides are 

conjugated with known protein or synthetic polymer carri-

ers and are administered to laboratory animals to produce 

antibodies against these synthetic peptides.56,57 The use of 

a carrier is sometimes avoided through use of polymers of 

synthetic peptide antigens.58 A similar system, known as a 

multiple antigen peptide system (MAP), has been developed 

and used for the preparation of antipeptide antibodies and 

synthetic vaccines. The MAP system uses a small peptidyl 

core matrix bearing radially branching synthetic peptides as 

dendritic arms.59,60 For the FMDV VP1 protein, a convenient 

polypeptide could be designed, utilizing a core matrix of a 

heptalysine containing eight dendritic arms of 12-residue 

peptides in length.59

The predicted antigenic sites and mutation combinations 

that were identified through this study may be considered in 

the design of MAPs, in which each mutation combination is 

present at least once.

Conclusion
This study showed that in South Asian regions, most antigenic 

variations of the FMDV serotype Asia1 come from very 

few mutations at several antigenic sites. Using computa-

tional predictive methods, six epitopes were predicted to be 

present within the VP1 region. Among these, five epitopes 

were found to be less variable, with only few mutations. 

This underlines the possibility of devising better synthetic 

vaccines for controlling FMD in that region, by considering 

these mutation combination types and the need of further 

synthetic vaccine study.
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