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Abstract: Agonists of the transmembrane intestinal receptor guanylyl cyclase C (GCC) have 

recently attracted interest as promising human therapeutics. Peptide ligands that can specifically 

induce GCC signaling in the intestine include endogenous hormones guanylin and uroguanylin, 

diarrheagenic bacterial enterotoxins (ST), and synthetic drugs linaclotide, plecanatide, and 

SP-333. These agonists bind to GCC at intestinal epithelial surfaces and activate the receptor’s 

intracellular catalytic domain, an event initiating discrete biological responses upon conversion 

of guanosine-5′-triphosphate to cyclic guanosine monophosphate. A principal action of GCC 

agonists in the colon is the promotion of mucosal homeostasis and its dependent barrier func-

tion. Herein, GCC agonists are being developed as new medications to treat inflammatory bowel 

diseases, pathological conditions characterized by mucosal barrier hyperpermeability, abnormal 

immune reactions, and chronic local inflammation. This review will present important concepts 

underlying the pharmacology and therapeutic utility of GCC agonists for patients with ulcerative 

colitis, one of the most prevalent inflammatory bowel disease disorders.
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Introduction
Ulcerative colitis (UC) is a major clinical syndrome of inflammatory bowel diseases 

(IBDs) and is characterized by chronic mucosal inflammation of the colon. Recurrent 

bloody diarrhea, tenesmus and rectal urgency are the most common symptoms for UC, 

but extraintestinal manifestations may also occur.1 Diagnosis of UC is mainly based 

on intestinal mucosa examination and tissue histopathology following colonoscopy 

and biopsy.1 The worldwide annual incidence of UC is 0.5–25 per 100,000 persons, 

with the highest rates in Western countries and the lowest in the developing world.2 

UC distributes equally among men and women, with a typical onset between 15 and 

40 years of age.1,2 Although the exact pathogenetic mechanism remains unclear, it is 

now apparent that both environmental and genetic factors play relevant etiological roles 

in UC, comprising heterogeneous, multifactorial combinations giving rise to almost 

identical clinical syndromes.3,4 Specifically, any perturbation of the delicate balance 

between commensal bacteria, epithelial barrier functions, and host innate and adaptive 

immunity may result in chronic colonic inflammation.5,6 In the US, about 500,000 

persons are affected by UC, with an annual incidence of 2–7 per 100,000 persons, 

representing a major clinical challenge for the absence of curative pharmacological 

therapies.1

Selective ligands for guanylyl cyclase C (GCC) (Figure 1) include pathological 

agents (heat-stable bacterial enterotoxins; herein referred to as ST), endogenous 
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toxin.7,16 ST causes secretory diarrhea in exposed individuals 

by overactivating the signaling pathway of the intestinal 

receptor GCC, the only confirmed molecular target for ST in 

humans.17 Accordingly, disruption of the gene encoding for 

GCC in mice resulted in resistance to ST-induced intestinal 

secretion and diarrhea.18,19 There is a general consensus 

that after colonizing the intestine of humans or animals 

for survival and growth, bacteria secrete ST to exploit 

the host GCC signaling and disseminate into the external 

environment. Infectious diarrhea caused by ST-producing 

bacteria is a major morbidity factor in areas of poor sanitation 

and crowded conditions, and remains a principal cause of 

travelers’ diarrhea and infant mortality in developing nations.20 

Despite improved mechanistic understanding, the frequency 

of these diarrheal diseases has not significantly changed 

during the past decades.20 Provocatively, the worldwide risk of 

travelers’ diarrhea inversely correlates with the incidence of 

colon cancer, and developing countries appear to be protected 

from colorectal transformation.21 This cancer resistance has 

been suggested to reflect, in part, longitudinal exposure of 

endemic populations to enterotoxigenic infections22 and the 

ability of ST to regulate the cell cycle transition, and suppress 

proliferation of intestinal epithelial cells.21,23 In this model, 

ST and the host GCC represent an evolutionary-conserved 

symbiotic system conferring mutual beneficial effects to 

microbes and mammals.

Endogenous hormones
After ST, two endogenous peptide ligands for GCC with 

primary amino acid sequences similar to the enterotoxin were 

identified. First, a substance from rat intestinal extracts that 

stimulated GCC signaling in human colon adenocarcinoma 

cells was isolated and named guanylin.24 Subsequently, 

a guanylin-like peptide was isolated from the urine and 

intestine of opossum and humans and named uroguanylin.25,26 

Guanylin and uroguanylin are principally synthesized in 

the intestine, circulate in the bloodstream, are excreted in 

the urine, and induce diuresis, natriuresis, and kaliuresis, 

suggesting they act as endocrine hormones of an enteric-renal 

system regulating salt and water homeostasis.27 Importantly, 

these peptides, exhibiting 15 (guanylin) or 16 (uroguanylin) 

residues and two intrachain disulfide bridges (Figure  1), 

selectively bind and activate GCC in apical brush-border 

membranes of intestinal epithelial cells, although with less 

potency than ST.8,25,26 They are encoded by genes organized 

in a tail-to-tail configuration on human chromosome 1p, and 

secreted by intestinal mucosal cells as proforms, which are 

activated upon carboxyl terminus cleavage.8,28 Intriguingly, 

NSSNYCCELCCNPNSSNYCCELCCNP CCEYCCNPCCEYCCNP
AA AA

AAAA

AA

YCGTCYCGTC YCGTCYCGTC

LCGTCLCGTC LCGTCLCGTC

CGTCCGTC

NDDCELCVNVNDDCELCVNV NDECELCVNVNDECELCVNV

PGTCEICAYAPGTCEICAYA

ST Linaclotide

PlecanatideUroguanylin

Guanylin

Figure 1 The guanylyl cyclase C agonists. 
Notes: Known primary amino acid structures of the agonists of guanylyl 
cyclase C. Residues shown in green on the structures on the right indicate amino 
acid substitutions in synthetic ligands compared with respective biological homologs. 
The amino acid sequence for ST reflects that of the heat-stable enterotoxin isoform 
STh produced by Escherichia coli.

hormones (guanylin and uroguanylin) and, most importantly 

for this review, therapeutic drugs (linaclotide, plecanatide, 

and SP-333).7–10 Mostly short peptides of 14–19 amino acids, 

these GCC agonists share close structural and functional 

similarities, including intrachain disulfide bonds required 

for biological activity, pH stability, protease resistance, 

and poor systemic bioavailability when administered 

orally. ST and its artificial analog, linaclotide, contain three 

disulfide bonds and are considered super-agonists for GCC, 

as they maximally activate the receptor-dependent signal 

transduction machinery.9,11,12 Plecanatide and SP-333, in turn, 

are synthetic analogs of the endogenous agonist uroguanylin, 

and together with guanylin, exhibit only two intrachain 

disulfide bonds.8,10 Recently, the utility of GCC agonists 

as IBD therapeutics has been proposed,13,14 and SP-333 is 

currently being developed for the treatment of UC.10 This 

review will discuss the pharmacological potential of GCC 

agonists as promising novel drugs for patients with UC.

Pharmacological agonists of GCC
Bacterial enterotoxins
The f irst GCC ligand identif ied was the heat-stable 

enterotoxin ST (Figure 1), a diarrheagenic agent produced 

by intestinal pathogens such as Escherichia coli, Klebsiella 

sp., and Yersinia enterocolitica.15 ST comprises a family of 

small peptides (ranging from 17 to 53 amino acids) sharing 

a conserved carboxyl terminal region of 13 residues, with 

six cysteines forming three disulphide bridges that define 

the tertiary structure and physicochemical properties of the 
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ligand effects appear to depend on extracellular pH, and 

uroguanylin is 100-fold more potent than guanylin at acidic 

pH (5.0–5.5), while guanylin is fourfold more potent than 

uroguanylin at basic pH (8.0).29 Both endogenous GCC 

ligands exhibit a crypt-to-villus gradient of expression, 

which is maximal in small intestinal villi and superficial 

epithelial cells of the colon.28,30,31 However, uroguanylin is 

more abundant in the proximal tracts of the intestine, while 

guanylin is highly expressed in the colon and rectum.28,30,31 

Also, guanylin and uroguanylin expression undergoes 

circadian rhythm (highest at night),32 is induced by osmotic 

stress33 and zinc deficiency,34 and is downregulated by low 

salt intake.35 These regulatory mechanisms and distribution 

patterns of expression suggest a complex, spatially distinct 

role for these peptides in the intestine. In this context, 

guanylin and uroguanylin are considered autocrine/

paracrine hormones, which control local fluid balance and 

the homeostasis of the intestinal mucosa, including crypt 

renewal dynamics, cell differentiation and metabolism, 

and epithelial barrier function (Figure 2).17,36 Their crucial 

function as promoters of the normal intestinal epithelial cell 

phenotype is further underscored by the GCC ligandopenia 

characterizing early colorectal carcinogenesis,37,38 and the 

anticancer activity of oral replacement therapy with GCC 

agonists in the gut.22

Therapeutic drugs
As our understanding of the number of critical physiological 

functions played by the biological ligands grows significantly 

(Figure 2), it is becoming apparent that GCC agonists possess 

great translational potential for human intestinal diseases. 

Currently, three artificial GCC ligands are being exploited 

as oral therapeutics for chronic idiopathic constipation, 

constipation-predominant irritable bowel syndrome and 

IBD. The first synthetic GCC agonist entering the clinic has 

been linaclotide (Ironwood Pharmaceuticals Inc, Boston, 

MA, USA and Forest Laboratories Inc, New York, NY, USA), 

an ST analog cyclopeptide of 14 amino acids (Figure 1) 

which increases intestinal motility and fluid secretion, 

while decreasing visceral pain in preclinical models.9 

Linaclotide is converted in vivo by carboxypeptidase A 

into the active 13mer metabolite MM-419447, which 

contributes to linaclotide’s pharmacodynamics.39 Recently, 

linaclotide has been approved in the US for the treatment 

of patients with chronic idiopathic constipation and 

irritable bowel syndrome with constipation, wherein this 

GCC agonist is behaving as a safe, reliable, and effective 

drug in improving disease-specific abdominal and bowel 

symptoms.39–42 In that context, a 26-week Phase III trial 

in 804 patients with constipation-predominant irritable 

bowel syndrome demonstrated that linaclotide (N of treated 

patients, 401) significantly ameliorated constipation and 

disease severity (clinical responders: linaclotide group, 

33.7% versus placebo group, 13.9%), while inducing 

significant, sustained improvement of worst abdominal 

pain and abdominal discomfort, fullness, cramping, and 

bloating.42 Of note, with the exception of diarrhea (mostly 

of mild/moderate intensity; linaclotide group, 19.7% versus 

placebo group, 2.5%), which is an expected extension of 

linaclotide pharmacology, the incidence of adverse events 

was not significantly different in linaclotide-treated patients 

compared with the placebo controls.42 After linaclotide, two 

additional artificial GCC agonists, plecanatide (a 16mer) 

(Figure 1) and SP-333 (Synergy Pharmaceuticals Inc, New 

York, NY, USA), have entered the drug developmental 

stage.10 Both synthetic analogs of uroguanylin, but of 

superior potency, plecanatide and SP-333 are exhibiting 

promises as gastrointestinal therapeutics.10 Plecanatide 

is in clinical development for the treatment of chronic 

idiopathic constipation (Phase IIb/III studies ongoing) 

and constipation-predominant irritable bowel syndrome 

(Phase I study planned).10 In the completed Phase I–II 

clinical trials, plecanatide significantly ameliorated patients’ 

bowel movements and symptoms.10 In contrast, SP-333 is 

being investigated specifically for the treatment of IBD in 

patients with UC, and is currently in the preclinical stage 

of development.10 In studies employing animal models of 

IBD, SP-333 attenuated colitis-associated events through 

the downregulation of locally released autacoids mediating 

the inflammatory response.10

Biological
GCC ligands 

Differentiation
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Metabolic
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Migration
DNA damage
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Water and
electrolyte secretion
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Actin cytoskeletal
remodeling
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Figure  2 Physiological functions regulated by endogenous GCC agonists in the 
intestine. 
Notes: The diagram indicates the principal putative biological responses elicited by 
endogenous hormones guanylin and uroguanylin upon binding and activation of GCC 
on intestinal brush-border membranes.
Abbreviation: GCC, guanylyl cyclase C.
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Signal transduction mechanisms
The receptor
The principal pharmacological target for ST, guanylin, 

uroguanylin, and their synthetic analogs is GCC. Discovered 

as the “heat stable enterotoxin receptor,”15 GCC is encoded by 

the gene GUCY2C on human chromosome 12p12. GUCY2C 

homologs are widely conserved across species including 

mammals, reptiles, and birds, suggesting a fundamental role 

for GCC in organismal biology.43–45 Beyond discrete neuronal 

cells in the central nervous system,46,47 in mammals, GCC 

is uniquely expressed at apical, brush-border membranes of 

intestinal epithelial cells from the duodenum to the rectum, 

uniformly distributed in crypts, villi, and mucosal surfaces.17 

GCC, a member of membrane-bound guanylyl cyclases, 

is a homodimeric transmembrane enzyme exhibiting 

conserved functional domains (Figure  3A), including: 

(1) the extracellular domain for specific ligand binding; 

(2) a single transmembrane domain with an hydrophobic 

α-helix region; (3) a short juxtamembrane domain with a 

G-protein consensus sequence; (4) the kinase homology 

domain, which binds adenosine triphosphate and regulates 

ligand-receptor aff inity; (5) a hinge region, probably 

mediating catalytic subunit dimerization; (6) the catalytic 

domain, which mediates the conversion of guanosine 

triphosphate to cyclic guanosine monophosphate (cGMP); 

and (7) a carboxyl terminal tail with key regulatory functions, 

including modulation of cyclase activity, cytoskeletal 

anchoring, and receptor internalization.17 The extracellular 

domain of GCC possesses a unique amino acid sequence, 

and glycosylation and oligomerization sites, which affect the 

specificity, stability and efficacy of ligand-receptor binding.17 

In this context, upon agonist binding to the extracellular 

domain of GCC, an intramolecular conformational change 

is induced and transmitted along the transmembrane and 

cytoplasmic domains to the carboxyl terminal catalytic 

site, resulting in a manifold increase of intracellular cGMP 

concentration over the basal state.15,17

The downstream targets
Cyclic GMP represents the sole intracellular second 

messenger for GCC agonists. A variety of key cellular 

responses are mediated by cGMP,17 which regulates virtually 

all major cytoplasmic signaling networks.48 In intestinal 

epithelial cells, GCC is the principal source of cGMP, and 

ligand–GCC interactions in concert with distinct elimination 

mechanisms (phosphodiesterase-dependent hydrolysis; 

transporter-dependent efflux) define the type, intensity, 

and duration of cellular cGMP rises and effects. In this 

way, elegant spatio-terminal determinants regulate crucial 

physiological responses in intestine by imposing maximal 

cGMP signaling. Examples of these include the increased 

endogenous ligand expression at superficial epithelial 

compartments, which mediates maturation dynamics,28,31 and 

the GCC baso-apical expression gradient within cells, which 

ensures fluid regulation at luminal membrane borders.17

The functional consequences of GCC agonist-induced 

cGMP elevations in intestinal epithelial cells reflect the 

selective targeting of downstream molecular effectors 

(Figure 3B), exhibiting two evolutionarily distinct allosteric 

binding sites for cGMP. One cGMP binding site is present in 

cGMP- and cAMP-dependent protein kinases (protein kinase 

G [PKG] and protein kinase A [PKA], respectively) and in 

cyclic nucleotide gated (CNG) cation channels, while the 

other is expressed in cGMP-regulated phosphodiesterases 

(PDEs). Differential tissue expression and intracellular 

compartmentalization of these cGMP targets enable 
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Carboxyl terminal
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Figure 3 GCC and its downstream targets. (A) The domain structure of GCC. (B) Key proximal effectors activated by GCC in intestinal epithelial cells upon catalytic 
conversion of GTP to cGMP.
Abbreviations: cAMP, cyclic adenosine monophosphate; CaR, calcium-sensing receptor; CFTR, cystic fibrosis transmembrane conductance regulator; cGMP, cyclic 
guanosine monophosphate; CNG, cyclic nucleotide gated channel; GCC, guanylyl cyclase C; GTP, guanosine-5′-triphosphate; PDE, phosphodiesterases; PKA, protein kinase 
A; PKG, protein kinase G; VASP, vasodilator-stimulated phosphoprotein.
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selectivity and accuracy of signal transmission and execution. 

PKG and PKA principally mediate regulation of intestinal 

fluid homeostasis and cytoskeletal organization by GCC 

ligands at membrane regions (Figure 3B). PKG is a Ser/Thr 

protein kinase comprising two subtypes, the soluble PKG I, 

with two isoforms Iα and Iβ, widely expressed in tissues, 

and the particulate PKG II, abundant in the intestine.49 PKA 

is a tetrameric kinase preferentially activated by cAMP.17 

PKG II and PKA activation by GCC agonists mediate water 

and electrolyte secretion by inducing phosphorylation and 

opening of the cystic fibrosis transmembrane conductance 

regulator (CFTR), with subsequent Cl− efflux into the 

intestinal lumen.50–52 In this way, endogenous GCC ligands 

act as “fluidity sensors” that provide optimal intestinal 

mucosa hydration through induction of net secretion 

of water, NaCl, and HCO
3

−.17 PKG I, in turn, mediates 

effects of GCC ligands on the cytoskeleton and contractile 

apparatus.17 A particularly crucial PKG target in these actions 

is the vasodilator-stimulated phosphoprotein (VASP), an 

actin binding protein controlling cytoskeletal remodeling, 

cell shape, and adhesion contacts in intestinal epithelial 

cells.53 Herein, GCC agonists induce rapid PKG I-mediated 

phosphorylation of Ser239 in the carboxyl terminal VASP 

domain,54 thereby suppressing F-actin polymerization and 

membrane protrusion formation.53,55,56

Further, CNG channels represent a principal intracellular 

effector for inhibition of proliferation by GCC agonists in 

intestine (Figure 3B). CNG channels are heterotetrameric 

proteins of α- and β-subunits, which mediate cGMP-

dependent Na+ and Ca2+ influx.57 GCC signaling through CNG 

channels slows intestinal cell cycle progression by inducing 

intracellular Ca2+ influx and cytosolic Ca2+ elevations.21 An 

important mechanism by which intracellular Ca2+ by GCC 

agonists suppresses proliferation in intestinal cells is the 

translocation of calcium-sensing receptors to membrane 

compartments.58 Calcium-sensing receptor is a key mediator 

of tumor inhibitory activities by luminal Ca2+, principally 

reflecting its role as a regulator of intestinal cell maturation 

dynamics. Thus, ligand–GCC signaling may act as a 

regulatory system promoting physiological actions by dietary 

Ca2+ in the gut, including cytostasis and the proliferation 

to differentiation transition along the crypt–villus axis.21,58 

Finally, cGMP-regulated PDEs (eg, PDE2, PDE5, PDE6, and 

PDE10) are enzymes specialized in the cleavage of the cyclic 

nucleotide phosphodiester bond.17 In intestinal epithelial 

cells, these PDEs are principally involved in the modulation 

or termination of biological signaling by GCC agonists, 

and in the cross-talk between cGMP- and cAMP-dependent 

pathways (Figure 3B).52,59

GCC signaling in colonic 
mucosal integrity
During the last decade, the appreciation of the biological 

significance of GCC and its ligands for intestinal mucosa 

homeostasis is increased substantially (Figure 2), and from a 

mere fluidity sensor mechanism, the agonist/GCC pathway 

may now be considered a fundamental promoter of the 

intestinal mucosa integrity and its dependent barrier function. 

In this regard, the columnar epithelial cell monolayer covering 

the inner surface of the colorectum provides a complex 

chemical and physical barrier protecting the host from its 

harmful external environment, including pathogens, toxins, 

and food bioproducts.60 This monolayer is sealed by tight 

junctions restricting barrier permeability and comprises three 

cell lineages arising from self-perpetuating stem cells located 

at colonic crypt bases, including absorptive colonocytes, 

mucus-producing goblet cells, and hormone-secreting 

enteroendocrine cells.61 Maintenance of the balance between 

proliferation, migration, and differentiation along the colonic 

crypt-surface axis is central in preserving an intact epithelial 

barrier function, and alterations in those cell homeostatic 

dynamics compromise the bowel mucosal integrity, thereby 

favoring inflammatory responses and IBD by unchecked 

exposure of the sterile host compartment to dangerous 

luminal antigens.62 Elimination of GCC signaling disrupts 

the epithelial lineage crypt-surface balance in the mouse 

colon, reflected by hyperplastic proliferative compartments 

with fast-cycling and fast-migrating progenitor cells,63,64 and 

poorly developed differentiated compartments, characterized 

by incomplete phenotypic and metabolic maturation and self-

repair programs.64–66 In particular, loss of GCC resulted in a 

fewer number of colonic goblet cells, with reduced production 

of mucin and intestinal trefoil factor.64 This is significant 

because UC patients exhibit fewer, malfunctioning goblet 

cells whose pathological recapitulation in mouse models 

results in loss of mucosal integrity, inflammation, and 

spontaneous colitis.67 Moreover, mucin and intestinal trefoil 

factor are key components of the gut-coating mucus layer 

mediating epithelial barrier protection and post-injury 

restitution, and their defective production or activity in mice 

causes increased intestinal permeability and susceptibility 

to chronic colonic inflammation.68 The contribution to 

optimal mucus barrier function is further underscored by the 

ability of ligand-dependent GCC signaling through CFTR to 
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induce secretion of NaCl and HCO
3
−,17,50 critical electrolytes 

controlling the rheological properties of the mucus layer and 

its proper interaction with the adjacent colonic microbiota.69 

Importantly, secretion of these electrolytes at colonic surfaces 

is often dysregulated in UC patients.70

Beyond effects on lineage- and mucus-dependent 

functions, GCC signaling protects intestinal barrier 

integrity by promoting tight junction-mediated epithelial 

cell sealing. Elimination of GCC or uroguanylin in mice 

increased intestinal permeability and inflammation through 

myosin light chain kinase activation and tight junction 

disassembly, with reduced claudin-2 and JAM-A levels.13 

Accordingly, induction of GCC signaling with GCC agonists 

enhanced tight junction assembly, reduced intestinal barrier 

permeability and protected mice from chemical-induced 

colitis.14 A key mechanism mediating regulation of epithelial 

cell tight junctions by GCC is the inhibition of v-akt murine 

thymoma viral oncogene homolog 1 (AKT-1) activity, coupled 

with increased expression of junctional proteins occludin and 

claudin-4.14 In this context, it is reasonable to speculate that 

the likely candidate as the proximal molecular effector of 

GCC-mediated intestinal barrier functions is PKG. In support 

of this notion, PKG I-mediated VASP phosphorylation 

represents a well established paradigm underlying cell–cell 

junction integrity and tissue barrier protection.71,72 Notably, 

in intestinal epithelial cells, GCC agonists suppress 

cytoskeletal remodeling at dynamic membrane regions, the 

process driving epithelial junction disassembly,73 by inducing 

PKG-dependent VASP phosphorylation.53 Moreover, ligand-

mediated GCC signaling through CFTR, which controls 

electrolyte secretion and intestinal barrier maintenance by 

the mucus layer, is a PKG II-dependent phenomenon.17,50 

Together, these observations underscore the central role of 

the GCC pathway in support of intestinal barrier integrity, 

including its protection from or its restitution following injury. 

In one model, similarly to other intestinal regulatory peptides, 

GCC endogenous ligands guanylin and uroguanylin are to 

be considered “mucosal barrier guardians,” whose signal 

transduction dysregulation may contribute to inflammation 

and IBD.74 Conversely, iatrogenic induction of colonic 

GCC signaling with administration of specific agonists as 

therapeutics may hold great promise for the prevention of 

further damage, or mucosal barrier restitution in patients 

with UC (Figure 4).10,14

GCC agonists as UC therapeutics
Current pharmacological remedies for UC include 

5-aminosalicylic acid, corticosteroids, cyclosporine, 

and infliximab, a monoclonal antibody blocking pro-

inflammatory tumor necrosis factor-α.1 Although these 

drugs may induce symptom remission and successfully 

prevent disease progression,75 ∼30% of patients with severe 

UC are resistant to pharmacological therapy and require 

colectomy.76,77 The global risk of colectomy for UC patients 

is ∼9% over 10 years.76 Common curative surgery consists of 

total proctocolectomy with ileal J-pouch anal anastomosis.76 

However, this procedure is associated with high rates (∼20%) 

of postoperative complications,76 including abscesses, 

sepsis, fistulas, infertility, and sexual dysfunction.78,79 Thus, 

innovative drug development programs for UC are warranted. 

In that context, GCC agonists could be exploited as a 

unique class of therapeutics for IBD and UC in particular. 

In the “leaky gut” hypothesis, intestinal hyper-permeability 

resulting from disruption of mucosal barrier integrity is a 

principal pathogenetic event underlying abnormal immune 

responses to luminal antigen exposure and IBD (Figure 4, 

left panel).60,62,80,81 Reestablishment of epithelial barrier 

function, in turn, could arrest pathogenetic processes of 

inflammation thereby preventing or treating IBD.81 As GCC 

signaling protects lineage-dependent homeostasis along the 

colonic crypt-surface axis,36,64 activation of that pathway 

by its specific ligands could restore normal environment-

immune interactions regulated by the epithelial monolayer 

(Figure  4, right panel).60 Moreover, the ability of GCC 

agonists to specifically reinforce the colonic barrier through 

the regulation of the superficial mucus layer17,50 and epithelial 

tight junctions14 may predict their utility as novel drugs 

for the chemoprevention and treatment of patients with 

barrier-dependent intestinal inflammation (Figure  4).62,81 

Mucus layer

Homeostatic environment-immune
responses 

Cell lineage
commitment 

Tight junction

Proliferation Differentiation

GCC agonists

Insufficient
mucus layer

Abnormal immune responses,
inflammation 

Disruption of cell
lineage homeostasis 

Tight junction
disassembly

Proliferation Differentiation

Epithelial
hyperpermeability

Loss of colonic barrier integrity

Figure 4 GCC agonists as ulcerative colitis therapeutics. 
Notes: In ulcerative colitis, abnormal immune responses and colonic inflammation 
reflect inappropriate luminal antigen exposure for disruption of the mucosal barrier 
integrity (left panel). Pathogenetic mechanisms underlying loss of intestinal barrier 
function, in turn, include mutually reinforcing processes of cell lineage imbalance, 
defective mucus layer, tight junction disassembly and epithelial cell hyper-permeability 
(left panel). Administration of GCC agonists reconstitutes normal environment-
immune interactions by restoring the colonic mucosal barrier integrity, in part, 
through the promotion of cell lineage-dependent homeostasis, optimal superficial 
mucus layer and epithelial cells’ tight junctions (right panel).
Abbreviation: GCC, guanylyl cyclase C.
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Additionally, expression of endogenous GCC ligands 

guanylin and uroguanylin is significantly reduced in affected 

UC tissues compared with healthy subjects,82 supporting 

the notion that restoration of the dormant GCC pathway 

with exogenous administration of GCC agonists may be an 

effective strategy to tissue restitution in UC patients.

In striking contrast with the above considerations, 

a nonsynonymous single nucleotide polymorphism in 

GUCY2C conferred a dominant phenotype on affected 

members of a Norwegian family, characterized by ligand-

dependent hyperactivation of GCC signaling, chronic 

diarrhea, and susceptibility to intestinal inflammation and 

IBD.83 Accordingly, ∼10% of travelers experiencing acute 

diarrhea from exposure to Escherichia coli producing the 

GCC super-agonist ST develop post-infectious chronic 

intestinal symptoms and irritable bowel syndrome.84 

Further, the artificial ST analog linaclotide compared poorly 

with other drugs in protecting isolated pig jejunum from 

ischemia-induced intestinal barrier disruption,85 and mice 

deficient in GUCY2C exhibited reduced mucosal damage 

and inflammation following chemical-induced colitis.86 

Beyond confounding variability in experimental models, 

apparent conflicting observations on the role of GCC in 

inflammatory gut disorders could be reconciled if one 

assumes that only physiological levels of ligand-dependent 

GCC activation mediate intestinal mucosa protection. In 

this model, activation of the wild-type GCC receptor with 

the endogenous ligands ensures beneficial GCC signaling 

underlying normal intestinal biology. In contrast, both 

dormancy and hyperactivation of the GCC pathway would 

disrupt mucosal homeostasis and result in bowel disease 

susceptibility. Thus, administration of adequate dosages 

of GCC agonists should mimic homeostatic functions of 

endogenous ligands and oppose intestinal barrier disruption, 

prevent inflammatory responses and treat IBD-associated 

pathological events. Of significance, SP-333, the GCC agonist 

currently under therapeutic development for the treatment of 

patients with UC, is an artificial analog of the endogenous 

GCC ligand uroguanylin.10 SP-333 is behaving as a highly 

effective drug in preclinical mouse models of UC, wherein 

it is reducing colonic inflammatory damage induced with 

various chemicals, in part, through the downregulation of pro-

inflammatory cytokines including interleukins 4, 5, and 23, 

and tumor necrosis factor.10 Finally, prolonged stimulation 

of GCC with its ligands produces cellular refractoriness 

to biological effects of GCC agonists,59 pointing toward 

selective temporal administration schedules as yet another 

critical variable, apart from drug concentrations, to consider 

for optimal translation of GCC-targeted strategies into UC 

patients’ therapeutics.

Conclusion
In UC, disruption of homeostatic balance between intestinal 

microflora, epithelial barrier permeability and host 

immune responses underlies colitis and tissue damage.5,6 

It is suggested that unsupervised exposure of the sterile 

subepithelial compartment to luminal antigens promotes 

chronic inflammatory processes and recurrent symptoms.62 

There is a need for innovative drug development programs 

in UC, wherein ∼9% of patients undergo colectomy 

as a result of severe disease that is resistant to current 

pharmacological therapy.1,76 GCC agonists are attractive 

novel UC therapeutics because of their unique mechanism 

of action, which would enable restoration of homeostatic 

signaling circuits promoting colonic mucosa integrity. 

In this way, GCC agonists will fill an unmet need in the 

pharmacological anti-UC armamentarium by targeting one 

causal mechanism of chronic colonic inflammation, abnormal 

mucosal permeability.81

Beyond inflammation in the gut, intestinal barrier 

protection by GCC and its agonists also reduces local 

and systemic DNA damage and tumorigenesis.14,65 Not 

surprisingly, UC patients exhibit a higher incidence of 

colorectal cancer.1 An inverse epidemiological association 

exists between colon cancer and the risk for enterotoxigenic 

infections,21 and UC is less common in geographic areas 

where those infections are endemic.2 Thus, it is tempting 

to speculate that intermittent longitudinal exposure to the 

exogenous GCC agonist ST may contribute to protect 

resident populations from both UC and colorectal cancer. 

These observations also suggest that GCC agonists might 

have a broad therapeutic utility, from local inflammation and 

tumorigenesis chemoprevention to systemic protective actions 

against genotoxicity and transformation.14 Of relevance, oral 

administration of GCC agonists is a safe, effective, and well 

tolerated medication in patients with chronic constipation,39–42 

underscoring the clinical utility for these agents as human 

therapeutics. Together, these considerations support the great 

significance and translational potential of GCC agonists for 

the management of UC patients, reflecting the emergent role 

of this new class of drugs as promoters and protectors of the 

mucosal barrier integrity in the colon.
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