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Abstract: In this systematic and comprehensive study, inhalation powders of the polypeptide 

immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs) 

were successfully designed, developed, and optimized. Several spray drying pump rates were 

rationally chosen. Comprehensive physicochemical characterization and imaging was carried 

out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, 

powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor 

sorption. Aerosol dispersion performance was conducted using a next generation impactor 

with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent 

aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine 

particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of 

cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and 

developed by advanced organic solution cospray drying in closed mode. The lung surfactant-

mimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-

glycero-3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol 

powder formulations were comprehensively characterized. Powder X-ray diffraction and 

differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid 

state was preserved following advanced organic solution spray drying in closed mode. These 

novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol 

dispersion performance and high aerosol performance parameters.

Keywords: dry powder inhaler (DPI), polypeptide drug, lung surfactant, calcineurin inhibitor, lung 

immunosuppression, dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol 

(DPPG), targeted lung immunosuppression

Introduction
Cyclosporine A (CsA) is a lipophilic (hydrophobic), cyclic undecapeptide, and a high 

molecular weight polypeptide immunosuppressant drug.1–3 As a calcineurin inhibitor, 

CsA reversibly inhibits T-cell mediated immune response, including the synthesis of 

interleukin-2, interleukin-6, and interferon-γ.3 As a calcineurin inhibitor, it blocks lym-

phocyte activation by inhibiting transcription of cytokine genes in a dose-dependent 

manner.1–3 In addition, CsA has therapeutic effects on the prevention of allograft rejection 

after lung transplantation.4,5 The systemic effects associated with CsA are substantial, 

including hypertension and most notably renal toxicity.6 Local noninvasive administra-

tion of CsA as aerosols may reduce the incidence of toxic complications associated with 
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systemic administration of CsA, increase the therapeutic avail-

ability of CsA for localized immunosuppression, and provide 

a high pulmonary concentration.7–9 Local pulmonary delivery 

of CsA as nebulized liquid aerosols in lung transplant patients 

has been reported.10,11 The improved response in a lung 

transplant patient by inhaled nebulized tacrolimus, another 

important immunosuppressant drug, for successful lung 

immunosuppression while significantly reducing systemic 

side effects and improving patient outcomes has been recently 

reported by the authors’ group.12 A metered-dose inhaler of 

CsA has been aerosolized in asthmatic patients.8 A nebulized 

liquid aerosol of CsA encapsulated in liposomes composed 

of nonionic surfactants and phospholipids,13 inhaled CsA 

dry powders produced by wet-milling,14 and inhaled CsA 

inulin-based dry powders produced by spray freeze drying 

from a tert-butyl alcohol/water cosolvent system15 have been 

reported. Recently, CsA nanosuspensions containing mannitol 

(ie, a water-soluble sugar) produced by antisolvent precipita-

tion followed by aqueous solution spray drying (SD) generated 

inhalable CsA mannitol powders.16 In addition, evaporative 

precipitation into aqueous solution has been reported to 

produce CsA nanoparticles possessing low crystallinity for 

oral and/or parenteral delivery with enhanced bioavailability 

resulting from high dissolution rates.17

Dry powder inhalers (DPIs) of CsA are a targeted delivery 

option for direct administration of CsA to the lung. Targeted 

delivery of a wide array of pulmonary drugs directly and 

efficiently to the lungs has been reported,12,18–21 and with 

high patient acceptance. DPIs offer many advantages such 

as improved stability, higher dose delivery, and better control 

of aerosol particle properties.19,22–25 Performance of inhaled 

aerosols are influenced by the physicochemical properties of 

the inhaled particles including particle size, size distribution, 

particle morphology, surface morphology, and residual water 

content.19,22–24,26 Inhaled particles with a particle size in the 

range of 400 nm to 5 µm can efficiently target the smaller 

airways and deep lung regions.19,20,22,23,27

Pulmonary surfactant is secreted by the type II pneumo-

cytes in the lining of the alveoli. It is comprised of a mix-

ture of specific phospholipids and lung surfactant-specific 

proteins. It has a vital role in reducing the work of breathing 

by reducing the surface tension to near 0 mN/m at the air/

water interface in the lung.28–31 The main constituents of 

pulmonary surfactant are lipids and lung surfactant-specific 

proteins, which account for ∼90% and 10% of the surfactant 

mass, respectively.32,33 Of the lipids, ∼85%–90% are specific 

phospholipids, of which ∼80% are phosphatidylcholine 

and ∼10% are phosphatidylglycerol.28,30,33 The fraction of 

phosphatidylcholine accounted for by dipalmitoylphos-

phatidylcholine (DPPC), a disaturated 16-carbon acyl 

chain phosphatidylcholine, is 54% in humans.34 The lung 

surfactant-mimic phospholipids – DPPC and dipalmi-

toylphosphatidylglycerol (DPPG) – are used in lung surfac-

tant replacement therapies, controlled release drug delivery, 

liposomal drug delivery, and phospholipid colloidal carrier 

nanomedicine pulmonary delivery.25,27,30,35–38 Novel DPIs 

containing phospholipids as multifunctional biocompatible 

excipients offer several unique advantages, as described 

in detail by the authors’ group.25 It has been demonstrated 

that phospholipids improve migration of particles to the 

lung periphery by spreading due to the reduction in surface 

tension provided by their surface chemistry.27–30,35,39 DPPC 

and DPPG phospholipids are innate to the lung, and hence 

are inherently biocompatible and biodegradable in the 

lung. These phospholipids may also facilitate drug absorp-

tion by improving wettability. In nanopharmaceuticals, 

phospholipids self-assemble to form colloidal nanocarri-

ers.27,35–38 Novel DPIs for pulmonary nanomedicine delivery 

composed of respirable microparticulate/nanoparticulate dry 

powders of DPPC/poly(ethylene glycol) (PEG)ylated phos-

pholipid systems40 and tacrolimus inhalation powders41 have 

been recently reported by the authors’ group. Respiratory 

delivery of CsA incorporated in biocompatible biodegrad-

able lung surfactant-mimic DPPC/DPPG in the solid state as 

DPI aerosols would facilitate CsA delivery, with high local 

concentration in the smaller airways of the lung.

This systematic and comprehensive study reports for the 

first time the rational design, physicochemical characteriza-

tion, and optimization of novel therapeutic aerosols as DPIs 

of respirable CsA microparticles and nanoparticles for tar-

geted DPI delivery for lung transplant immunosuppression. 

The novel engineering high-throughput process of organic 

solution advanced SD in closed mode was employed, as 

reported by the authors for the first time for pulmonary 

delivery inhalation applications.40–42 In addition, this study 

reports for the first time the rational design, physicochemi-

cal characterization, and high-throughput optimization of 

novel DPIs consisting of CsA with lung surfactant-mimic 

DPPC/DPPG phospholipids as dry powder microparticulate/

nanoparticulate aerosols designed by advanced organic 

solution co-SD in closed mode.

Material and methods
Materials
CsA US Pharmacopeia grade (Spectrum Chemical Mfg 

Corp, New Brunswick, NJ, USA) has a molecular weight of 
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1202.61 g/mol. Methanol (high-performance liquid chroma-

tography grade, American Chemical Society certified, 0.2 µm 

filtered) was used for all SD experiments and was purchased 

from Thermo Fisher Scientific (Waltham, MA, USA). 

Synthetic lung surfactant-mimic phospholipid powders, 

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (ie, DPPC) 

and 1,2-dipalmitoyl-sn-glycero-3-(phosphor-rac-1-glycerol) 

sodium salt (ie, DPPG), were purchased from Avanti Polar 

Lipids Inc (Alabaster, AL, USA). AQUASTAR® anhydrous 

methanol 99.8% was obtained by EMD Chemicals, Inc 

(Darmstadt, Germany). Hydranal®-Coulomat AD was from 

Sigma-Aldrich (St Louis, MO, USA). All powders were 

stored in tightly sealed glass desiccators over Drierite®/

Indicating Drierite® (W A Hammond Drierite Co, Ltd, Xenia, 

OH, USA) desiccant in the freezer at −23°C.

Preparation of SD CsA and co-SD CsA: 
DPPC/DPPG particles from organic 
solution advanced SD in closed mode
Solutions containing CsA were prepared with a total powder 

mass of 1% (weight/volume) in methanol. The prepared 

formulations were subsequently SD using the Buchi mini 

SD B-290 with a Buchi high-performance cyclone plus the 

Buchi inert loop B-295 (Buchi Labortechnik AG, Flawil, 

Switzerland) in closed mode under ultra high purity (UHP) 

nitrogen gas (Scott-Gross Company, Inc, Winchester, KY, 

USA). As stated in Table 1 and similar to the advanced SD 

conditions previously reported by the current authors,40,42 

the following SD conditions in closed mode were used: inlet 

temperature, 100°C; UHP nitrogen atomizing gas flow 601 L/

hour; various pump rates rationally selected; and aspirator 

setting, 100%. The four SD pump rates were rationally chosen 

at 10% (low), 25%, 50% (medium), and 75% (high).

Co-SD CsA powders of CsA lung surfactant lipospheres 

were prepared by dissolving DPPC, DPPG, and the drug 

simultaneously in methanol with a total powder mass of 1% 

(w/v) followed by co-SD under optimized SD conditions 

(50% pump rate). The molar ratio of DPPC:DPPG was 3:1, 

as this is a lung surfactant-mimic ratio. The advanced co-SD 

process was operated under the conditions described above. 

All SD and co-SD powders were stored in a desiccator in 

the freezer until analysis.

Laser diffraction particle size  
and size distribution
Using similar conditions as previously reported,42–45 the 

primary particle size in the solid state and size distribution 

were measured by an ultraviolet laser diffraction nanopar-

ticle size analyzer (SALD-7101; Shimadzu Corporation, 

Kyoto, Japan). The measured sample was prepared by 

dispersing ∼40 mg powder in 10 mL deionized water in a 

capped vessel and then gently shaking. Prior to each measure-

ment, background measurements were carried out by using 

a blank cell filled with deionized water. Then, 1.5 mL of the 

sample was added to the blank for measurement. The refrac-

tive index of the measured samples was 1.60–0.10.

Scanning electron microscopy (SEM)
Using similar conditions as previously reported,40,42–45 the 

shape and surface morphology of all raw, SD, and co-SD 

powders were investigated by SEM (S-800; Hitachi Ltd, 

Tokyo, Japan). Each sample was fixed on an aluminum 

specimen stub covered with a double-sided adhesive carbon 

disc, and then sputter coated (Hummer VI Sputtering System; 

Technics, Anatech USA, Union City, CA, USA) with gold 

prior to imaging. Sputter coating was performed at 20 mA 

for 3 minutes.

Differential scanning calorimetry (DSC)
Using similar conditions as previously reported,28–30,40,42–46 

DSC was performed by using model Q200™ equipped with 

an automated computer-controlled refrigerated cooling system 

(RSC-90) and Tzero™ capabilities (TA Instruments, New 

Castle, DE, USA). The DSC thermograms were collected 

using a sample weight of 3–5  mg powder and placed in 

Tzero alodine-coated aluminum DSC pans, which were then 

hermetically sealed with a Tzero hermetic sealer (TA Instru-

ments). The phase transition temperatures – melting point (T
m
) 

– of the samples were measured under a 50 mL/minute dry 

UHP nitrogen gas (Scott-Gross) purge in DSC. The samples 

were heated at 5°C/minute from 10°C to 300°C. At least four 

melting scans were carried out to ensure T
m
 reproducibility. 

The measured DSC data were analyzed using a coupled DSC 

Q200-1740 data station (TA Instruments).

Table 1 Spray drying parameters of four pump rates, inlet 
temperature, and the corresponding outlet temperature in the 
spray drying process of dilute organic solution advanced spray-
dried cyclosporine A dry powder inhalers

Sample Pump  
rate, %

Inlet  
temperature, °C

Outlet  
temperature, °C

SD CsA 10%P 10 100 53
SD CsA 25%P 25 100 43
SD CsA 50%P 50 100 30
SD CsA 75%P 75 100 22

Abbreviations: %P, pump rate; CsA, cyclosporine A; SD, spray dried.
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X-ray powder diffraction (XRPD)
Using similar conditions as previously reported,30,40,42–45 the 

degree of long-range molecular order (crystallinity) versus 

disorder (noncrystallinity) for all powders was measured 

by XRPD. The XRPD pattern was collected with a Rigaku 

Multiflex X-ray diffractometer (Rigaku Corporation, Tokyo, 

Japan) with a slit detector copper Kα source at 44 mA and 

40 kV. CsA samples were gently pressed onto a glass slide 

(Rigaku) to form a level surface. The glass slide was then 

placed in the X-ray beam path. Data were obtained from 5–60 

2θ degrees at room temperature at a scanning rate of 2 2θ 

degrees/minute and a step rate of 0.04 2θ degrees.

Cross-polarizing light hot-stage microscopy
Using similar conditions as previously reported,40,42 solid-state 

phase transitions for raw CsA, SD CsA, and co-SD CsA lung 

surfactant-mimic phospholipid powders were observed under 

cross-polarizing light hot-stage microscopy (HFM) for the 

presence and/or absence of birefringency. The polarized opti-

cal microscope (BX51; Olympus Corporation, Tokyo, Japan) 

and a hot stage were equipped with a temperature control unit 

(STC200; Instec Inc, Boulder, CO, USA). The microscope 

was connected to a computer and SPOT Advanced™ software 

(Diagnostic Instruments, Inc, Sterling Heights, MI, USA) was 

used to capture pictures from the microscope. The temperature 

control unit was also connected to a computer and WinTemp 

2.00 software (Instec Inc., Boulder, CO, USA) was used to 

set up the heating conditions. Samples were mounted on a 

microscope glass slide and placed into the sample chamber of 

the hot stage. Samples were then heated from 25°C to a final 

temperature of 200°C at a step rate of 5°C/minute.

Circular dichroism (CD) spectroscopy
Using similar conditions as previously reported,30 CD mea-

surements were carried out on model J-810 Spectropolarim-

eter (Jasco, Inc, Easton, MD, USA). CsA was dissolved in 

methanol at a concentration of 100 µM. The scanning wave-

length range was 195–250 nm in 0.5 nm increments. Nitrogen 

gas was supplied to prevent the accumulation of oxygen in the 

system, which produces CD absorption bands around 200 nm. 

Other parameters were the following: data pitch: 0.5 nm; scan 

speed: 50 nm/minute; response time: 8 seconds; accumulation: 

four; and band width: 1 nm. The baseline spectrum of the 

solvent alone was taken prior to sample measurements.

Karl Fischer coulometric titration
Using similar conditions as previously reported,40,42,46 residual 

water content in the DPI aerosol powders was analytically 

quantified by Karl Fischer coulometric titration method using 

a Karl Fischer titrator cell (737 KF Coulometer; Metrohm AG, 

Herisau, Switzerland) equipped with a magnetic stirring device 

(703 Ti Stand; Metrohm). Karl Fischer titrator was filled with 

Hydranal-Coulomat AD reagent, comprising of methanol, 

diethanolamine, imidazole, hydroiodic acid, and sulfur diox-

ide. The powder sample was prepared by dissolving 50 mg of 

powder into 100 mL AQUASTAR anhydrous methanol. The 

precisely weighed sample solution (∼500 mg) was then injected 

into Karl Fischer titrator to react with titration reagent under 

magnetic stirring. At the end point of titration, the water amount 

in the analyzed CsA sample was displayed automatically on the 

titrator. Given that the weight of reacted sample was known, the 

percentage of water in the sample was calculated.

Gravimetric water vapor sorption
Using similar conditions as previously reported,30,42,46 

gravimetric water vapor isotherms were measured using 

a Cahn® automated ultrasensitive microelectronic balance 

coupled to a computerized SGA-CX Symmetrical Gravimetric 

Analyzer (VTI Corporation, Hialeah, FL, USA) under dry 

UHP nitrogen gas vacuum conditions. All measurements were 

made at 25°C using a sample size of 1.5–2.5 mg. Before the 

absorption step, samples were dried in situ under dry UHP 

nitrogen gas vacuum conditions. The criterion used to establish 

drying equilibrium was a weight change of 0% in a 10-minute 

interval. At the end of the drying cycle, the sample was exposed 

to a sequence of increasing relative humidity (RH) levels under 

equilibrium conditions starting at 0% RH. Data were logged 

every 2 minutes or when weight gain reached 0.01%. Up to 

a maximum of 3 hours was allowed, which was sufficient to 

reach absorption equilibrium at each RH level. The criterion 

used to establish absorption equilibrium was a weight change 

of #0.03% in a 10-minute interval.

In vitro aerosol dispersion performance 
by the next generation impactor (NGI)
The US Pharmacopeia describes the specifications on aero-

sols performance47 and, as previously reported,40 the aerosol 

dispersion performance was tested using inertial impaction. 

The aerosol dispersion properties of the dry powder particles 

as DPIs were determined using the NGI with a stainless steel 

induction port (ie, US Pharmacopeia throat) attachment 

(170  NGI™; MSP Corporation, Shoreview, MN, USA), 

equipped with specialized stainless steel NGI gravimetric 

insert cups (MSP Corporation). A DFM 2000 flow meter 

(Copley Scientific, Nottingham, UK) was employed to mea-

sure and adjust the airflow rate (Q) prior to each experiment. 
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The NGI was coupled with a TPK 2000 critical flow control-

ler (Copley) that was connected to an HCP5 vacuum pump 

(Copley). The NGI was operated at a controlled flow rate of 

Q = 60 L/minute. For the NGI Q = 60 L/minute, the effective 

cutoff diameters for each impactor stage were calibrated by the 

manufacturer and stated as follows: stage one (8.06 µm); stage 

two (4.46 µm); stage three (2.82 µm); stage four (1.66 µm); 

stage five (0.94 µm); stage six (0.55 µm); and stage seven 

(0.34 µm).

The aerosolization studies were experimentally 

designed by Design-Expert® 8.0.7.1  software (Stat-Ease, 

Inc, Minneapolis, MN, USA). Glass fiber filters (Type A/E, 

55 mm; Pall Corporation, Port Washington, NY, USA) were 

placed in the stainless steel NGI gravimetric insert cups 

for NGI stages one through seven to minimize bounce or 

reentrapment. Three hydroxypropyl methylcellulose hard 

capsules (size three, Quali-V®; Qualicaps, Irving, TX, 

USA) were each loaded with 10 mg powder, which were 

then loaded into a high resistance (ie, high sheer stress) 

human DPI device (HandiHaler®; Boehringer Ingelheim 

GmbH, Ingelheim, Germany), and tightly inserted into the 

induction port. Three capsules (containing 10 mg of aerosol 

formulation per capsule) were used per aerosol experiment 

run. For each aerosol experiment run, the mass of particles 

deposited onto each stage was determined gravimetrically 

by measuring the difference in mass of the glass filters after 

particle deposition.

The mass mean aerodynamic diameter (MMAD) and 

geometric standard deviation (GSD) were calculated using 

a mathematic program written by Dr Jay Holt.48 All experi-

ments were triplicated (n = 3). The fine particle dose, fine 

particle fraction (FPF), respirable fraction (RF), and emitted 

dose (ED) were calculated as follows:

Fine particle dose = �Mass of particles , 4.46 µm  

(stages two through seven)

	 FPF
Fine particle dose

Initial particle mass loaded into capsules
= × 1100%

RF

mass  of particles <448 m stages two through seven)

tot
=

µ (

aal particle mass on all stages

×100%
	

ED

Initial mass in capsules Final mass remaining in capsul
=

− ees

Initial mass in capsules

× 100%

Data and statistical analyses
The results were analyzed statistically using Prism® 4 soft-

ware (GraphPad Software, Inc, La Jolla, CA, USA). The 

results are expressed as mean ± standard deviation. An 

unpaired Student’s t-test and one-way analysis of variance 

were used to compare the means and to assess statistical 

significance. Results were considered statistically significant 

if P , 0.001. The aerosolization studies were experimentally 

designed using design of experiments by Design-Expert 

8.0.7.1 software (Stat-Ease).

Results
Laser diffraction particle size  
and size distribution
Table 1 provides a summary of the CsA samples investi-

gated in the current study. During the SD process, when the 

operating parameters – including nozzle orifice, atomization 

pressure, feed solvent, feed concentration, inlet temperature, 

and spray gas flow rate remained constant – different pump 

rates resulted in different outlet temperatures, which is to be 

expected (Table 1).

In laser diffraction analysis of SD CsA at rationally cho-

sen pump rates (Table 2), the Dv
10

 volumetric particle size 

range over the range of pump rates was 0.81–1.16 µm, the 

Dv
50

 volumetric particle size range over the range of pump 

rates was 0.95–1.41 µm, and the Dv
90

 volumetric particle 

size range over the range of pump rates was 2.91–3.79 µm. 

A correlation was observed in which increasing the SD 

pump rate of drug organic solution yields particles with 

a slightly larger particle size. The particle size distribu-

tion for the SD CsA aerosol powders was unimodal and 

narrow, which is important for enhancing reproducible 

aerosol delivery.

Table  3 lists the compositions of co-SD CsA lung 

surfactant-mimic liposphere aerosol powder formulations 

designed in this study. In laser diffraction analysis, the 

mean Dv
50

 sizes of co-SD CsA:DPPC/DPPG 25:75 and 

co-SD CsA:DPPC/DPPG 75:25 were 1.49 µm and 1.73 µm, 

respectively (Table 3). The particle size distribution of the 

co-SD CsA:DPPC/DPPG lung surfactant-mimic particles 

was unimodal and narrow, which is important for reproduc-

ible aerosol delivery.

SEM
The particle morphology, surface morphology, and primary 

particle size of raw unprocessed CsA and SD CsA DPI aerosol 

formulations were imaged and the SEM micrographs are shown 
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Table 2 Volumetric particle size (Dv10, Dv50, and Dv90), particle shape, and surface morphology properties of spray-dried cyclosporine A 
dry powder inhalation powders from different pump rates

Sample Volumetric particle  
size Dv10, μm

Volumetric particle  
size Dv50, μm

Volumetric particle  
size Dv90, μm

Particle  
shape

Surface  
morphology

SD CsA 10%P 0.81 ± 0.03 0.95 ± 0.09 2.91 ± 0.18 Sphere Corrugated
SD CsA 25%P 0.94 ± 0.04 1.12 ± 0.08 3.10 ± 0.22 Sphere Corrugated
SD CsA 50%P 0.99 ± 0.01 1.33 ± 0.10 3.47 ± 0.15 Sphere Corrugated
SD CsA 75%P 1.16 ± 0.03 1.41 ± 0.08 3.79 ± 0.31 Sphere Smooth

Notes: Mean ± standard deviation, n = 5.
Abbreviations: %P, pump rate; CsA, cyclosporine A; SD, spray dried.

Table 3 Compositions and average volumetric particle size (Dv50) of cospray-dried cyclosporine A: dipalmitoylphosphatidylcholine/
dipalmitoylphosphatidylglycerol lung surfactant-mimic dry powder inhalation aerosol formulations by advanced cospray drying from 
organic solution

co-SD CsA: (DPPC/DPPG)  
sample abbreviation

CsA content,  
mole %

Phospholipid (DPPC/DPPG)  
content, mole %

Volumetric particle  
size, μm

co-SD CsA lipo 25:75 (1:3) 25 75 1.49 ± 0.16
co-SD CsA lipo 75:25 (3:1) 75 25 1.73 ± 0.08

Notes: Mean ± standard deviation, n = 5.
Abbreviations: CsA, cyclosporine A; DPPC, dipalmitoylphosphatidylcholine; DPPG, dipalmitoylphosphatidylglycerol; lipo, lipospheres; SD, spray dried.

in Figure 1. As can be seen, the raw CsA are too large for inha-

lation with irregular nonspherical morphology (Figure 1A). 

SD CsA aerosol powders prepared at 10% (Figure 1B), 25% 

(Figure 1C), and 50% (Figure 1D) pump rates are observed 

as spherical particles with a corrugated surface, while SD 

CsA at a 75% pump rate (Figure 1E) is observed as spherical 

particles with a smooth surface. Particle dimensions of all SD 

batches appear much smaller than that of raw CsA and are in 

excellent agreement with those measured by laser diffraction 

particle sizing (Table 2). The particle morphology and surface 

morphology are summarized in Table 2.

The SEM micrograph of raw CsA and co-SD CsA lung 

surfactant-mimic lipospheres are shown in Figure 2. The raw 

unprocessed CsA (Figure 2A) have an irregular nonspherical 

morphology with very large dimensions that are much too 

large for inhalation. The co-SD CsA lung surfactant-mimic 

liposphere particles (Figures 2B and C) appear as spherical 

particles with a smooth surface morphology. The particle 

size of co-SD CsA:DPPC/DPPG lung surfactant-mimic 

particles observed in their SEM images is in excellent agree-

ment with that measured by laser diffraction particle sizing 

(Table 3) and much smaller than that of raw CsA, making 

them within the inhalable size range for targeted pulmonary 

delivery as DPIs.

DSC
The DSC thermograms of raw CsA versus SD CsA aerosol 

powders are shown in Figure 3. Raw CsA was characterized 

by a sharp narrow endothermic phase transition peak, which 

had an onset temperature at ∼161°C. The melting of crys-

talline CsA is similar to that reported in the literature.49,50 

This order-to-disorder endothermic peak can be attributed 

to melting. These observations are in good agreement with 

previous reports on crystalline CsA, indicating the crystalline 

nature of the raw drug. Similarly, the thermograms of SD 

CsA aerosol powders at a 10%, 25%, 50%, and 75% pump 

rate showed endothermic peaks with onset temperatures of 

∼152°C, 162°C, 153°C, and 154°C, respectively. The peaks 

that represent the SD samples correspond to those of the 

original CsA but differ in intensity (peak broadness), sug-

gesting that the SD process has rendered the final powder in 

a different state from the raw as is often observed in SD.

The thermograms of raw CsA and co-SD aerosol powder 

formulations are shown in Figure 4. DPPC powders exhibited 

two endothermic phase transitions at 66.9°C and 73.0°C, 

corresponding to the gel-to-ripple bilayer pretransition and 

to the bilayer main transition T
m
 (ie, due to the hydrophobic 

acyl chain melting event) between the rippled gel and liquid 

crystalline phases, respectively.46 DPPG powders showed 

three endothermic phase transitions consisting of two low-

enthalpy pretransitions at ∼55.3°C and ∼79.5°C and a high-

enthalpy main phase transition at 125°C, which correspond 

to the crystal-to-gel bilayer phase transition, gel-to-ripple 

bilayer phase transition, and rippled-to-liquid crystalline 

bilayer main phase transition (T
m
), respectively.46 Co-SD 

aerosol powder formulations of co-SD CsA:DPPC/DPPG 
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Figure 1 Representative scanning electron micrographs of (A) raw unprocessed cyclosporine A and spray-dried cyclosporine A at a (B) 10% pump rate; (C) 25% pump rate; 
(D) 50% pump rate; and (E) 75% pump rate.
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Figure 2 Representative scanning electron micrographs of (A) raw unprocessed cyclosporine A and cospray-dried cyclosporine A: dipalmitoylphosphatidylcholine/
dipalmitoylphosphatidylglycerol ratio of (B) 25:75 (1:3) and (C) 75:25 (3:1).
Abbreviations: CsA, cyclosporine A; DPPC, dipalmitoylphosphatidylcholine; DPPG, dipalmitoylphosphatidylglycerol; SD, spray dried.
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Figure 3 Representative differential scanning calorimetry thermograms at 
5°C/minute heating scan rate of raw CsA and organic solution advanced SD CsA 
dry powder inhalation aerosol powders.
Notes: 10, 25, 50, and 75  indicate a pump rate of 10%, 25%, 50%, and 75%, 
respectively.
Abbreviations: CsA, cyclosporine A; SD, spray dried.
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Figure 4 Representative differential scanning calorimetry thermograms at 5°C/
minute heating scan rate of raw CsA, pure DPPC, pure DPPG, and organic solution 
advanced co-SD lung surfactant-mimic powders of co-SD CsA:DPPC/DPPG 25:75 
(1:3) and co-SD CsA:DPPC/DPPG 75:25 (3:1).
Abbreviations: CsA, cyclosporine A; DPPC, dipalmitoylphosphatidylcholine; 
DPPG, dipalmitoylphosphatidylglycerol; SD, spray dried.
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25:75 and co-SD CsA:DPPC/DPPG 75:25 compositions 

encapsulated in lung surfactant-mimic DPPC/DPPG (3:1) 

show a bilayer main phase transition temperature (T
m
) at 

72.8°C and 71.1°C, respectively, which are below the indi-

vidual T
m
 values of DPPC and DPPG described above. The 

co-SD aerosol powders did not exhibit a CsA melting peak 

complete miscibility with the phospholipids (ie, no drug-rich 

phase separation was detected).

XRPD
The molecular state of the raw CsA versus SD CsA aerosol 

powder formulations was further evaluated by XRPD to 

measure the degree of molecular order (ie, crystallinity) 

versus molecular disorder (ie, noncrystallinity), which is an 

important physicochemical property for dry powder aerosols. 

In Figure  5, the XRPD diffractogram of raw CsA shows 

sharp diffraction peaks in the range of 5–10 2θ degrees and 

in the range of 14–20 2θ degrees. This indicates a partially 

crystalline powder with defined structural molecular order 

in the solid state that is observed in liquid crystals and 

heteropolypeptides having secondary structure in the solid 

state such as α-helical and/or β-sheet secondary structure 

conformations.30,51 In contrast, the XRPD diffractograms for 

the various SD CsA aerosol powders showed the absence 

of the sharp peaks and the distinctive diffuse “halo” that 

is characteristic of noncrystalline powders suggesting the 

amorphous state of the SD CsA powders. The broad peaks 

in the range of secondary structure conformations of CsA 

are still evident, suggesting the retention of secondary con-

formation following SD.

Diffractograms of the co-SD respirable powders are 

shown in Figure 6. DPPC and DPPG show a distinct peak 

in the range of 20–25 2θ degrees, which is the characteris-

tic range indicative of the solid-state phospholipid bilayer 

structure.52 This characteristic peak is also clearly evident 

in the co-SD CsA:DPPC/DPPG respirable powders, which 

indicates preservation of the solid-state phospholipid bilayer 

structure in these co-SD aerosol powder formulations.

Cross-polarizing light hot-stage microscopy
Figure 7 shows the cross-polarized light optical microscope 

images for the phase transitions of raw CsA at a heating scan 

rate of 5°C/minute, which is the same rate as employed in 

thermal analysis by DSC. Minimal birefringency is detected, 

which agrees with the XRPD diffractogram. At 140.6°C, raw 

CsA exhibited small crystals (Figure 7A). When temperature 

increased to 161.1°C, CsA started to melt (Figure 7B). The 

onset temperature coincided with its melting as measured 

by DSC thermal analysis. Figure 7C shows the liquid state 

of CsA after melting.

Figure  8  shows representative cross-polarized light 

optical microscope images for the phase transitions of SD 

CsA aerosol powders. Various SD batches generated similar 

images to the representative images shown for the SD CsA 

aerosol powder at a 10% pump rate. As shown in Figure 8A, 

SD CsA at a 10% pump rate at 25°C exhibited the complete 

absence of birefringency, which is characteristic of non-

crystalline powders. At 152°C, the aerosol powder started 

to melt (Figure 8C), which was in a good agreement with the 

DSC thermal analysis data of SD CsA at a 10% pump rate 
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Figure 5 Representative X-ray powder diffractograms of raw CsA and various 
organic solution advanced SD CsA aerosol powders.
Notes: 10, 25, 50, and 75 indicate a pump rate of 10%, 25%, 50%, and 75%, respectively.
Abbreviations: CsA, cyclosporine A; SD, spray dried.
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Figure 6 Representative X-ray powder diffractograms of raw CsA, pure DPPC, pure 
DPPG, and organic solution advanced co-SD CsA lung surfactant-mimic powders of 
co-SD CsA:DPPC/DPPG 25:75 (1:3) and co-SD CsA:DPPC/DPPG 75:25 (3:1).
Abbreviations: CsA, cyclosporine A; DPPC, dipalmitoylphosphatidylcholine; 
DPPG, dipalmitoylphosphatidylglycerol; SD, spray dried.
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Figure 7 Representative cross-polarized light optical microscope images of the phase transitions for raw cyclosporine A heated from 25°C to 200°C at 5°C/minute. 
The temperature for each graph is (A) 140.6°C; (B) 161.1°C; and (C) 197.1°C.
Note: Scale bar represents 0.2 mm.

Figure 8 Representative cross-polarized light optical microscope images for the phase transitions of spray-dried cyclosporine A at a 10% pump rate. The samples were 
heated from 25°C to 200°C at 5°C/minute. The temperature for each graph is (A) 25°C; (B) 146.8°C; (C) 152°C; and (D) 188°C.
Note: Scale bar represents 0.2 mm.

(Figure 4). At 188°C, SD CsA at a 10% pump rate existed 

completely as a liquid (Figure 8D).

CD spectroscopy
Figure 9 shows the CD spectrum of CsA at 25°C in methanol. 

The distinct pattern observed in the CD spectrum clearly 

indicates the presence of secondary structure, suggesting 

the presence of an α-helix conformation. This makes sense 

given the polypeptide structure of CsA.

Karl Fischer coulometric titration
The residual water content values for all one-component CsA 

powders were quantified analytically by Karl Fischer coulo-

metric titration and are shown in Table 4. The residual water 

content before SD for raw CsA was 1.64%, which is low as 

would be expected due to the hydrophobic nature of CsA. 

After advanced organic solution SD from the alcohol metha-

nol, the value was further reduced to remarkably low levels 

that are well within recommended levels for DPIs. Moreover, 

the extent of remarkable reduction in the residual water per-

centage in the aerosol powders depended on the pump rate. 

At the lowest SD pump rate used in these experiments of 

10% (ie, slowest SD process), SD CsA had the lowest water 

content (0.7%), and water content was increased with each 

increment in the percentage of pump rate used in the SD 

process. When a higher pump rate of 75% was used (ie, faster 

SD process), the SD sample had a residual water content of 

1.60%, which is still low and similar to that measured in raw 

CsA. These results are in good agreement with the data from 

the gravimetric vapor sorption analysis (Figure 10).

Low residual water content also existed in the multifunc-

tional co-SD CsA lung surfactant-mimic aerosol formulations. 

Before SD, the mean values of water content of raw CsA, 

DPPC, and DPPG were 1.64%, 1.95%, and 0.51%, respec-

tively (Table  5). After organic solution advanced SD, the 

residual water content of co-SD CsA:DPPC/DPPG lung sur-

factant-mimic aerosol powder formulation was reduced further 

to ∼1.1% (lower than that of raw CsA and raw DPPC), which 

is favorable for superior DPI aerosolization and is well within 

the recommended levels for dry powders. Low water content 

in aerosol powders is important for pharmaceutical stability 

and improved aerosol dispersion performance.23,24,26,40,42

Gravimetric water vapor sorption
Figure 10 shows the water vapor absorption isotherms for 

raw CsA and SD CsA aerosol powders produced at various 

SD pump rates. These profiles show that the hydrophobic 

nature of CsA appears to dominate its low water vapor uptake 
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Table 4 Water content (weight change percentage) by Karl Fisher 
titration for raw cyclosporine A and spray-dried cyclosporine A 
powders at various spray drying pump rates

Sample Water content, %

Raw CsA 1.64 ± 0.08
SD CsA 10%P 0.70 ± 0.33
SD CsA 25%P 1.00 ± 0.08
SD CsA 50%P 1.33 ± 0.16
SD CsA 75%P 1.60 ± 0.24

Notes: Mean ± standard deviation, n = 3.
Abbreviations: %P, pump rate; CsA, cyclosporine A; SD, spray dried.
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Figure 9 Representative circular dichroism (m°) spectrum of cyclosporine A at 
25°C in methanol.

in the solid state for the raw and SD CsA aerosol powders. 

These isotherms are in good agreement with Karl Fisher 

values, which also revealed low residual water content in all 

powders under ambient RH conditions. This is favorable for 

enhanced aerosol dispersion performance as DPIs.23,24,26,40,42 

Indeed, these are high performing aerosols as DPIs (to be 

discussed).

The maximal absorption weight change percentage 

values for SD CsA aerosol powders at high lung RH levels 

modeled at 90% and 93% RH are shown in Table 5. This 

is the maximal water percentage absorbed by the respirable 

powders at these very high RH levels, which is low and as 

expected for hydrophobic powders.

For co-SD CsA:DPPC/DPPG 25:75 and co-SD 

CsA:DPPC/DPPG 75:25, the rate of water vapor absorp-

tion isotherms remained relatively similar to one another at 

all RH levels (Figure 11). The maximal absorption weight 

change percentage values at high lung RH levels modeled at 

90% and 93% RH are stated in Table 6. The maximal water 

percentage absorbed at 90% RH and 93% RH reveals that 

DPPC dominates the maximal values for the co-SD CsA 

lung surfactant-mimic aerosol powders. This property may 

aid in improving wettability, spreading, and absorption in 

the lungs. DPPC bilayers undergo a lyotropic phase transi-

tion in the solid state from the gel to the liquid crystal at RH 

values greater than 75%, as reported earlier.46 Sodium DPPG 

absorbed much less water due to its tightly packed bilayer 

as a result of favorable electrostatic interactions between the 

cationic sodium ion and anionic polar headgroup, which is 

in good agreement with an earlier report.46 At intermediate 

RH regions, the weight change percentage of DPPG showed 

a plateau with an increasing RH between 20%–70% but 

increased significantly when the RH exceeded ∼70%. The 

plateau region is indicative of a crystal-to-gel bilayer lyo-

tropic phase transition, as reported earlier.46

In vitro aerosol dispersion performance 
by the NGI
Figure 12 shows the DPI aerosol dispersion and deposition 

profile for novel SD CsA DPI aerosols and multifunctional 

co-SD CsA:DPPC/DPPG lung surfactant-mimic DPI aero-

sols aerosolized using a United States (US) Food and Drug 

Administration (FDA)-approved DPI device, the Handi-

Haler. As seen in Figure 12, measurable deposition is present 

on all stages including the lowest stages of stages six and 

seven. Outstanding deposition on stages modeled for middle 

lung and deep lung delivery is present for all DPI aerosols. 

Distinct trends are seen in SD pump rate effect on tailoring 

the aerosol deposition patterns for SD CsA aerosols. Namely, 

the SD CsA powders produced at the lower SD pump rates 

of 50% and 25% appear to give increased aerosol deposi-

tion on the lower NGI stages, which are modeled to predict 

deeper lung delivery. Specifically, at a 75% pump rate, the 

aerosol deposition peak mode is on stage three, while the 

aerosol deposition peak mode is on stage four for aerosols 

engineered at a 50% pump rate and 25% pump rate. The 

aerosol peak mode for all co-SD CsA:DPPC/DPPG lung 

surfactant-mimic DPI aerosols is on stage four, with higher 

deposition than SD CsA aerosols on stage four.

Table 7 shows the aerosol performance parameters for 

the novel SD CsA DPI aerosol powders and the co-SD CsA 

lung surfactant-mimic DPI aerosol powders. The ED values 

are very high in the range of ∼80%–85% and represent effi-

ciency in aerosolization for SD CsA aerosols. The ED values 

for co-SD CsA lung surfactant-mimic DPI aerosol powders 

are even higher, suggesting that the presence of DPPC/

DPPG lung surfactant favorably enhances the aerosolization 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1278

Wu et al

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2013:8

Relative humidity (%)
0 10 20 30 40 50 60 70 80 90 100

W
ei

g
h

t 
ch

an
g

e 
(%

)
0

1

2

3

4

5

6

7
A

Relative humidity (%)

0 10 20 30 40 50 60 70 80 90 100

W
ei

g
h

t 
ch

an
g

e 
(%

)

0

1

2

3

4

5

6

7

Relative humidity (%)

0 10 20 30 40 50 60 70 80 90 100

W
ei

g
h

t 
ch

an
g

e 
(%

)

0

1

2

3

4

5

6

7

Relative humidity (%)

0 10 20 30 40 50 60 70 80 90 100
W

ei
g

h
t 

ch
an

g
e 

(%
)

0

1

2

3

4

5

6

7

Relative humidity (%)

0 10 20 30 40 50 60 70 80 90 100

W
ei

g
h

t 
ch

an
g

e 
(%

)

0

1

2

3

4

5

6

7

B

C D

E

Figure 10 Gravimetric water vapor absorption isotherms for (A) raw cyclosporine A and spray-dried cyclosporine at a (B) 10% pump rate; (C) 25% pump rate; (D) 50% 
pump rate; and (E) 75% pump rate.

Table 5 Residual water content (weight change percentage) of 
raw cyclosporine A, lung surfactant-mimic phospholipids (dipalmi-
toylphosphatidylcholine and dipalmitoylphosphatidylglycerol), and 
cospray-dried cyclosporine A: dipalmitoylphosphatidylcholine/ 
dipalmitoylphosphatidylglycerol inhalation powders before and 
after organic solution advanced cospray drying

Sample Water content, %

Raw CsA 1.64 ± 0.10
DPPC 1.95 ± 0.45
DPPG 0.51 ± 0.77
co-SD CsA:DPPC/DPPG 25:75 (1:3) 1.16 ± 0.37
co-SD CsA:DPPC/DPPG 75:25 (3:1) 1.12 ± 0.52

Notes: Mean ± standard deviation, n = 5.
Abbreviations: CsA, cyclosporine A; DPPC, dipalmitoylphosphatidylcholine; 
DPPG, dipalmitoylphosphatidylglycerol; SD, spray dried.

efficiency process. This makes sense as these phospholipids 

are inherently surface active and can reduce interparticulate 

interactions, which will enhance dispersion of DPI aerosols. 

The values of RF are very high in the range of ∼90%–95% 

for SD CsA aerosols and similarly very high for the co-SD 

CsA:DPPC/DPPG lung surfactant-mimic dry powder aero-

sols. The values of FPF are also remarkably high at ∼50% 

for SD CsA aerosols. These high FPF values are significantly 

greater than the ∼10%–20% that is often observed for com-

mercially marketed pharmaceutical inhalation aerosol prod-

ucts.53,54 The MMAD values are in the optimal size range of 

2.5–3 µm for all aerosol powders, which is optimal for high 

lung deposition targeting the smaller airways.
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Figure 11 Gravimetric water vapor absorption isotherms for raw CsA, pure DPPC, 
pure DPPG, and organic solution advanced co-SD CsA:DPPC/DPPG dry powder 
formulations of “CsA lipo 25:75” for co-SD CsA:DPPC/DPPG 25:75 (1:3) and “CsA 
lipo 75:25” for co-SD CsA:DPPC/DPPG 75:25 (3:1).
Abbreviations: CsA, cyclosporine A; DPPC, dipalmitoylphosphatidylcholine; 
DPPG, dipalmitoylphosphatidylglycerol; lipo, lipospheres; SD, spray dried.

Table 6 The maximal weight change percentages by water 
absorption at 90% and 93% relative humidity for raw versus 
cospray-dried cyclosporine A: dipalmitoylphosphatidylcholine/
dipalmitoylphosphatidylglycerol particles for dry powder 
inhalation aerosol powder formulations

Sample wt% at 90% RH wt% at 93% RH

Raw CsA 4.33 4.56
DPPC 11.40 13.19
DPPG 3.98 5.47
co-SD CsA:DPPC/ 
DPPG 25:75 (1:3)

13.26 14.83

co-SD CsA:DPPC/ 
DPPG 75:25 (3:1)

11.14 12.24

Abbreviations: CsA, cyclosporine A; DPPC, dipalmitoylphosphatidylcholine; 
DPPG, dipalmitoylphosphatidylglycerol; RH, relative humidity; SD, spray dried; wt%, 
weight change percentage.

Discussion
In this systematic and comprehensive study, novel SD CsA 

DPIs and multifunctional co-SD CsA:DPPC/DPPG lung 

surfactant-mimic DPIs were rationally designed and success-

fully produced. Respiratory delivery of CsA incorporated in 

biocompatible biodegradable DPPC/DPPG in the solid state 

as DPI aerosols would facilitate CsA delivery with high local 

concentration in the smaller airways of the lung. Additionally, 

these high-performing DPI aerosols are multifunctional 

and have nanomedicine properties associated with the lung 

surfactant-mimic phospholipids – DPPC/DPPG – for targeted 

pulmonary nanomedicine. In addition, improved absorption 

due to improved wettability may be offered by the presence 

of these phospholipids. Novel organic solution advanced SD 

particles and co-SD lung surfactant-mimic particles all were 

successfully designed under a rationally chosen advanced SD 

closed mode condition with the primary particle size below 

5.0 µm and aerosol deposition on the lower stages of the NGI 

all the way to the lowest NGI stage seven.

All aerosol powder formulations were unimodal with 

a narrow size distribution. All SD CsA powders appeared 

to be amorphous based on the XRPD data. The SD CsA 

powders produced at the lower SD pump rates of 50% and 

25% appeared to provide increased aerosol deposition on 

the lower NGI stages, which are modeled to predict deeper 

lung delivery. Specifically, at a 75% pump rate, the aerosol 

deposition peak mode is on stage three, while the aerosol 

deposition peak mode is on stage four for aerosols engineered 

at a 50% and 25% pump rate. The aerosol peak mode for all 

co-SD CsA:DPPC/DPPG lung surfactant-mimic DPI aerosols 

is on NGI stage four, with higher deposition than SD CsA 

aerosols on NGI stage four.

SD is a commonly used method in the preparation of 

inhalation powders.55,56 To tailor and optimize the particle 

characteristics, the SD operating parameters can be modi-

fied and include solvent type (organic or aqueous), solute 

concentration, atomization pressure, feed properties, pump 

rate, gas type, airflow, and drying temperature.22,27,57 In this 

study, pure alcohol solutions were used in organic solution 

SD and co-SD in closed mode to effectively reduce both the 

residual water content and particle size due to its nonaqueous 

nature and lower surface tension. In addition, the specific 

method reported here enables high-throughput optimization. 

Compared to water’s high surface tension (72 mN/m), alco-

hols such as methanol (which are also regarded as “green 

chemicals”) have a much lower surface tension in the range 

of 22—25 mN/m. It is observed that rationally choosing the 

SD pump rate enabled tailoring of the respirable article size 

and particle surface morphology, which provided excellent 

dispersion as dry powder aerosols and resulted in high aerosol 

performance values for all SD and co-SD aerosol formula-

tions in this study.

Preservation of the phospholipid bilayer structure in the 

solid state following organic solution SD in closed mode 

was successfully achieved for all co-SD CsA:DPPC/DPPG 

powders, as confirmed by XRPD and DSC. The small particle 

size, unimodal narrow size distribution, particle morphology, 

surface morphology, and very low residual water content of 

all co-SD aerosol formulations were all suitable for targeted 
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Table 7 Aerosol dispersion performance properties of aerosolized dry powders including emitted dose, fine particle fraction, respirable 
fraction, mass median aerodynamic diameter, and geometric standard deviation for inhalable microparticle/nanoparticle formulations 
of spray-dried cyclosporine A and cospray-dried cyclosporine A: dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylglycerol 
dry powder inhalation aerosol systems

Dry powder inhalation aerosol system Aerosol performance parameters

SD and co-SD powders ED, % FPF, % RF, % MMAD, μm GSD

SD CsA 25%P 81.10 ± 9.29 49.52 ± 3.25 91.35 ± 8.59 2.18 ± 0.09 1.77 ± 0.03
SD CsA 50%P 79.00 ± 4.39 51.22 ± 3.15 96.14 ± 1.30 2.26 ± 0.06 1.71 ± 0.02
SD CsA 75%P 85.21 ± 5.57 52.14 ± 12.48 95.82 ± 1.36 2.75 ± 0.47 1.79 ± 0.19
co-SD CsA:DPPC/DPPG 25:75 (1:3) 89.06 ± 1.69 39.09 ± 1.40 84.08 ± 0.74 3.01 ± 0.05 2.16 ± 0.06
co-SD CsA:DPPC/DPPG 50:50 (1:1) 83.12 ± 1.46 48.42 ± 3.83 94.55 ± 1.00 2.57 ± 0.04 1.86 ± 0.04
co-SD CsA:DPPC/DPPG 75:25 (3:1) 85.40 ± 1.04 52.99 ± 4.12 96.15 ± 8.65 2.79 ± 0.47 1.85 ± 0.05

Notes: Mean ± standard deviation, n = 3.
Abbreviations: %P, pump rate; CsA, cyclosporine A; DPPC, dipalmitoylphosphatidylcholine; DPPG, dipalmitoylphosphatidylglycerol; ED, emitted dose; FPF, fine particle 
fraction; GSD, geometric standard deviation; MMAD, mass median aerodynamic diameter; RF, respirable fraction; SD, spray dried.
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Figure 12 Therapeutic aerosol dispersion performance of dry powder inhalers as percentage deposition on each stage of the NGI at an airflow rate (Q) of 60 L/minute for 
SD CsA and co-SD CsA:DPPC/DPPG DPI aerosol systems. For the NGI at Q = 60 L/minute, the NGI stage cutoff diameters are as follows: stage one (8.06 µm), stage two 
(4.46 µm), stage three (2.82 µm), stage four (1.66 µm), stage five (0.94 µm), stage six (0.55 µm), and stage seven (0.34 µm).
Abbreviations: CsA, cyclosporine A; DPPC, dipalmitoylphosphatidylcholine; DPPG, dipalmitoylphosphatidylglycerol; NGI, next generation impactor; P, pump rate; 
SD, spray dried.

respiratory drug delivery. Organic solution advanced SD in 

closed mode enabled all aerosol powders to have remarkably 

low residual water content which enhanced aerosol dispersion 

performance, as reflected in remarkably high ED percentage, 

RF percentage, and FPF percentage aerosol parameter values. 

The MMAD values were in the optimal range of 2.5–3 µm 

for targeting the smaller airways.

Excellent aerosol dispersion performance was demon-

strated using the NGI coupled with the HandiHaler DPI 

device, which clearly indicated that the formulated par-

ticles would be optimal for targeted delivery as aerosolized 

powders. This demonstrates for the first time the significant 

potential of these various advanced DPI aerosols (designed 

and optimized by organic solution advanced SD in closed 

mode) to be utilized to effectively deliver SD CsA alone 

and with lung surfactant-mimic phospholipids – DPPC/

DPPG – for targeted lung transplant immunosuppression 

with multifunctional properties as DPI aerosols.
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Conclusion
Novel DPI aerosol formulations of CsA for pulmonary 

delivery were rationally designed and successfully developed 

by the novel particle engineering design process technology 

of organic solution advanced SD from alcohol solutions 

at several rationally chosen pump rates. All DPI SD CsA 

aerosol powders had excellent physicochemical properties 

with optimal particle morphology, surface morphology, 

and very low residual water content. The aerosol dispersion 

parameters of ED, FPF, and RF were all high. The MMAD 

values were low and in the optimal range for targeting the 

smaller airways.

In addition, co-SD multifunctional dry powder aerosols 

consisting of co-SD CsA:DPPC/DPPG showed excellent 

physicochemical and aerosol dispersion properties as high-

performing DPIs with very low residual water content. 

The phospholipid bilayer structure was preserved in the 

solid state, as confirmed by DSC and XRPD analyses. As 

reported here, the DPI aerosol delivery systems of SD CsA 

and co-SD CsA:DPPC/DPPG have the potential to signifi-

cantly reduce the side effects associated with the systemic 

exposure of CsA, leading to a wider therapeutic safety 

margin and enhanced patient outcomes/quality of life in 

lung transplant patients.
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