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Abstract: Development of micro- and nanotechnology for the study of living cells, especially 

in the field of drug delivery, has gained interest in recent years. Although several studies have 

reported successful results in the internalization of micro- and nanoparticles in phagocytic cells, 

when nonphagocytic cells are used, the low internalization efficiency represents a limitation 

that needs to be overcome. It has been reported that covalent surface modification of micro- and 

nanoparticles increases their internalization rate. However, this surface modification represents 

an obstacle for their use as drug-delivery carriers. For this reason, the aim of the present study 

was to increase the capability for microparticle internalization of HeLa cells through the use 

of noncovalently bound transfection reagents: polyethyleneimine (PEI) Lipofectamine™ 2000 

and FuGENE 6®. Both confocal microscopy and flow cytometry techniques allowed us to pre-

cisely quantify the efficiency of microparticle internalization by HeLa cells, yielding similar 

results. In addition, intracellular location of microparticles was analyzed through transmission 

electron microscopy and confocal microscopy procedures. Our results showed that free PEI at 

a concentration of 0.05 mM significantly increased microparticle uptake by cells, with a low 

cytotoxic effect. As determined by transmission electron and confocal microscopy analyses, 

microparticles were engulfed by plasma-membrane projections during internalization, and 

24 hours later they were trapped in a lysosomal compartment. These results show the potential 

use of noncovalently conjugated PEI in microparticle internalization assays.

Keywords: HeLa cells, internalization efficiency, endocytosis, drug delivery

Introduction
In the past decade, the fabrication of microelectromechanical systems with controlled 

physical and chemical properties in the micron and submicron scales has been of 

great interest in the biomedical field due to the high number of potential applications 

that they offer, such as the creation of biosensor systems, drug delivery systems, or 

therapeutic implants.1 In fact, fabrication of biological microelectromechanical sys-

tems for a wide range of applications, such as cell tracking,2 embryo tagging3 or drug 

delivery,4–6 has been achieved.

The application of biological microelectromechanical systems has acquired special 

importance due to their potential use in creating systems able to deliver a drug, in a 

controlled manner, to a specific target cell.7 The aforementioned studies have been suc-

cessful with use of phagocytic cells, but when nonphagocytic cells are used, their low 

capacity of internalization is still a limitation that has to be overcome. Moreover, it has 

been shown that several features of microparticle design play an important role in their 

uptake by cells: their size,8,9 shape,10,11 and surface properties.12 Several molecules have 
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been used to increase the capacity for microparticle uptake 

in nonphagocytic cells, in order to study the internalization 

process. In all cases, the microparticles were covalently modi-

fied with a selected molecule13–15 or coated with a bacterial 

membrane.16

Since it has been reported that positive-charged micropar-

ticles are more easily internalized by cells,11 the use of 

transfection procedures in microparticle internalization 

experiments could be considered as a possible approach to 

increase microparticle uptake when working with nonphago-

cytic cells. These procedures are based on the interaction 

between the positive charges of cationic polymers, like poly-

ethyleneimine (PEI) or cationic lipids, like LipofectamineTM 

2000 (LF2000), FuGENE®, or DOTAP, and the negative 

charges of DNA.17 The positive charges of the transfection 

reagents can also interact with the negatively charged oligo-

saccharides of the plasma membrane surface, facilitating the 

internalization of the complex by endocytosis. Once inside 

the cell, these reagents can disrupt the endocytic pathway, 

releasing the contents of the endosomes to the cytosol.18,19 In 

fact, the covalent binding of PEI to the microparticle surface 

facilitates their incorporation into HeLa cells.14,20 However, 

the modification of microparticles with covalently bound PEI 

would render difficult or even impede their functionaliza-

tion with other molecules, such as the drug to be delivered. 

Thus, a new strategy is necessary to improve microparticle 

uptake by nonphagocytic cells. In this sense, cationic lipids 

have been recently used as fusogenic agents to improve the 

internalization of polystyrene particles.21

Against this background, the aim of this study was to 

improve the efficiency of internalization of polystyrene 

microparticles by nonphagocytic (HeLa) cells through the use 

of the cationic polymer PEI and the cationic lipids LF2000 

and FuGENE 6 added to the culture medium as transfection 

agents. The internalization efficiency was evaluated using 

two completely different methods, confocal scanning laser 

microscopy (CSLM) and flow cytometry (FC), and took into 

account first, the cytotoxic effect of the transfection agent 

at one (LF2000) or three different concentrations (PEI), and 

second, the number of live, adhered cells with an internalized 

microparticle. Finally, the intracellular fate of microparticles 

was determined by immunogold labeling transmission elec-

tron microscopy (TEM) and by CSLM.

Materials and methods
Reagents
Unless otherwise stated, reagents were purchased from Life 

Technologies (Carlsbad, CA).

Polystyrene microparticles
Two types of polystyrene microparticles of 3µm  diameter 

were used: fluorescent microparticles (Fluoresbrite® YG 

Microsphere 3 µm; Polysciences, Inc, Warrington, PA) and 

nonfluorescent carboxylated microparticles (Polybead® Car-

boxylate Microspheres 3 µm; Polysciences). Nonfluorescent 

carboxylated microparticles were functionalized with an 

Alexa Fluor® 594 conjugated goat anti-rabbit IgG antibody 

(H + L) (Life Technologies) using the PolyLink Protein 

Coupling kit (Polysciences), following the manufacturer’s 

recommendations.

Cell culture
HeLa cells were cultured at 37°C in a 5% CO

2
 atmosphere, 

using minimum essential medium (MEM) with Earle’s 

salts and L-Glutamine supplemented with 10% fetal bovine 

serum (FBS).

PEI, LF2000, and FuGENE 6  
cytotoxicity assay
The cytotoxicity of PEI 25 KDa (Sigma-Aldrich, St Louis, 

MO) used at three different concentrations (0.05, 0.10, and 

0.15 mM), of LF2000 (Life Technologies), and of FuGENE 6 

(Promega Corporation, Fitchburg, WI), used at the concen-

trations recommended by the manufacturers, was evaluated 

after the transfection procedure by assessing two different 

parameters: the percentage of cells that remained attached to 

the dish (normalized to the control group), and the viability 

of the attached cells. The global effect of the treatment was 

calculated by multiplying the normalized percentage of 

attached cells by the percentage of viable attached cells.

For the first parameter tested, ie, the percentage of cells 

that remained attached after the transfection procedure, 

1.5 × 105 HeLa cells were seeded in 35 mm diameter dishes 

(Nalge Nunc Int, Roskilde, Denmark). The next day, the 

transfection reagents at their respective concentrations 

were prepared and added to the cell cultures. Briefly, PEI 

10 mM was initially diluted with NaCl 150 mM, incubated 

at room temperature for 40 minutes, and then diluted to the 

three working concentrations (0.05, 0.10, and 0.15 mM) in 

MEM without serum. LF2000 and FuGENE 6 were prepared 

according to the manufacturer’s instructions, also in MEM 

without serum. The culture medium of HeLa cells was then 

replaced with the corresponding transfection solution, and 

the cells were incubated for 4 hours at 37°C and 5% CO
2
. 

After that, the transfection solutions were replaced with fresh 

culture medium. In the control culture, a 4-hour incubation 

with MEM without serum was performed. To determine the 
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number of cells that remained attached, cells were harvested 

24  hours later using 0.05% Trypsin-EDTA, centrifuged 

at 500  g for 5  minutes, and resuspended in fresh culture 

medium. Then, 50 µL of cell suspension was mixed with 

50  µL of Perfect-Count Microspheres™ CYT-PCM50 

(Cytognos SL, Salamanca, Spain) and counted in a Becton 

Dickinson FACSCanto II flow cytometer (BD Biosciences, 

Franklin Lakes, NJ) equipped with BD Biosciences FAC-

SDiva™ software, the beads and the cells being counted 

together. The cell concentration was obtained taking into 

account the concentration of Perfect-Count microspheres.

On the other hand, to evaluate cell viability after the transfec-

tion procedures, cells were seeded and incubated with the trans-

fection reagents, at the indicated concentrations. At 24 hours, 

attached cells were harvested as described, and their viability was 

determined by FC after applying the LIVE/DEAD® Viability/

Cytotoxicity Kit for mammalian cells (L3224; Life Technolo-

gies), according to the manufacturer’s instructions. The calcein 

acetomethoxy (AM) derivative of the kit diffuses through the 

cell membrane and, once inside the cell, it is converted to highly 

green fluorescent calcein by the intracellular esterases of living 

cells. The ethidium homodimer-1 of the kit can only enter cells 

with damaged membranes, being able to reach the nucleus and 

bind to DNA, which emits red fluorescence. Therefore, living 

cells are labeled with green fluorescence, whereas dead cells 

are labeled with red fluorescence.

Analysis of Zeta potential of polystyrene 
microparticles
The Zeta potential of microparticles in culture media before 

and after PEI, LF2000, and FuGENE 6 treatments, was 

measured using a Zetasizer Nano ZS (Malvern Instruments 

Malvern, UK).

Internalization of polystyrene 
microparticles in HeLa cells
To analyze the internalization of microparticles in HeLa cells, 

two approaches were carried out: CSLM (Fluoview® FV1000; 

Olympus Corp, Tokyo, Japan) and FC (previously described). 

For confocal microscope analysis, cells were seeded at a 

density of 1.5 × 105 cells/dish on 35 mm–diameter gridded 

glass-bottom coverslip dishes (MatTek Corp, Ashland, MA). 

For FC analysis, cells were seeded at a density of 1.2 × 106 

cells/flask on 75 cm2 flasks (Nunc). After 24 hours of incuba-

tion, transfection was performed as described in the previous 

section. But, in this case, transfection solutions were mixed 

with 3 µm diameter polystyrene fluorescent microparticles at 

a final concentration of 106 microspheres/mL. The efficiency 

of internalization of microparticles by HeLa cells was 

determined 24 hours later.

For FC analyses, cells were harvested as mentioned above 

and microparticle–cell association was analyzed measuring 

the forward scatter and the fluorescent intensity.

For CSLM analyses, cells were washed twice with 

phosphate-buffered saline (PBS) for 5  minutes, and fixed 

with 4% paraformaldehyde (Sigma-Aldrich). Then, cells 

were washed thrice with PBS, blocked with 1% bovine serum 

albumin ([BSA] Sigma-Aldrich) in PBS, and finally stored 

at 4°C until their analysis. Samples were first examined 

under a phase contrast inverted microscope (Olympus IX71, 

Olympus, Hamburg, Germany) to determine the percentage 

of cells that were in contact with one or more microparticles. 

Thus, several fields were captured and then analyzed using 

image analysis software (ImageJ version 1.43r; National 

Institutes of Health, Bethesda, MD). Two hundred cells per 

sample were evaluated for each treatment, and 484 cells in 

the case of the control group. Following this preliminary 

assessment, the location of microparticles (ie, inside the cells 

or attached to their plasma membrane) was determined using 

CSLM. With this aim, cells were stained with wheat germ 

agglutinin conjugated to Texas Red (10 µg/mL; Life Tech-

nologies) and counterstained with Hoescht 33258 (1 µg/mL; 

Sigma-Aldrich), to visualize the plasma membrane and the 

nucleus, respectively. Samples were then examined under 

the CSLM using a 63  ×  oil immersion objective, where 

x-y-z sequential acquisition was performed and orthogonal 

projections of the stacks were analyzed to determine the 

location of the microparticles within the cell. For the image 

analyses, the FV10-ASW Application Software (Ver. 01.07c; 

Olympus) was used.

The use of gridded dishes allowed us to examine the 

same fields in both microscopic evaluations (ie, inverted 

microscope and CSLM).

Electron microscopy
To analyze the intracellular location of microparticles, 

transfected cells (as described in above) were fixed with 2.5% 

glutaraldehyde in phosphate buffer (PB). After 1 hour of incu-

bation with the fixative at 4°C, they were washed with PB and 

postfixed with 1% osmium tetroxide in PB containing 0.8% 

potassium ferricyanide at 4°C. Next, samples were dehydrated 

in acetone, infiltrated with Epon™ (Electron Microscopy 

Sciences, Hatfield, PA) resin over 2 days, embedded in the 

same resin, and polymerized at 60°C over 48 hours. Ultrathin 

sections were obtained using a Leica Ultracut UC6 ultramicro-

tome (Leica Microsystems, Wetzlar, Germany) and mounted 
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on Formvar-coated copper grids. They were stained with 2% 

uranyl acetate in water and lead citrate. Finally, sections were 

observed in an electron microscope (J1010; Jeol Ltd, Tokyo, 

Japan) equipped with a CCD camera SIS Megaview III.

Lysosome associated membrane  
protein 1 (LAMP-1) immunogold
After microparticle internalization using PEI 0.05  mM 

treatment, HeLa cells were chemically fixed at 4°C with a 

mixture of 4% paraformaldehyde and 0.1% glutaraldehyde 

in PB. After washing with PB containing 50 mM glycine, 

cells were embedded in 12% gelatine and infused in 2.3 M 

sucrose. Mounted gelatine blocks were frozen in liquid 

nitrogen. Thin sections were prepared in an EM Ultracut 

UC6/FC6 ultracryomicrotome (Leica Microsystems, Wetzlar, 

Germany). Ultrathin cryosections were collected with 2% 

methylcellulose in 2.3 M sucrose.

Cryosections were incubated at room temperature on drops 

of 2% gelatine in PBS for 20 minutes at 37°C, followed by 

50 mM glycine in PBS for 15 minutes, 10% FBS in PBS for 

10 minutes, and 5% FBS in PBS for 5 minutes. Then they 

were incubated with 5 µL of rabbit anti-LAMP-1 polyclonal 

antibody (Abcam, Cambridge, UK) for 30 minutes. After 

three washes on drops of PBS for 10 minutes, sections were 

incubated for 20 minutes using colloidal gold conjugated goat 

anti-rabbit IgG (cat. 111-205-144) Jackson Immunoresearch 

Laboratories Inc, West Grove, PA) using a 1:30 dilution in 

5% FBS/PBS. This was followed by three washes on drops of 

PBS for 10 minutes, and two washes with distilled water. As a 

control for nonspecific binding of the colloidal gold conjugated 

antibody, the primary antibody was omitted.

The observations were done in an electron microscope 

(Jeol) with a CCD camera SIS Megaview III.

Early endosome antigen 1 protein 
(EEA-1) and LAMP-1 immunolabeling
To visualize the location of the microparticles 24 hours after 

the transfection procedure, cells were seeded at a density of 

1.5 × 105 cells/dish on 35 mm–diameter gridded glass-bottom 

coverslip dishes (MatTek Corp). After 24 hours of incubation, 

transfection with PEI 0.05 M mixed with 3  µm diam-

eter polystyrene functionalized microparticles (previously 

described) at a final concentration of 106 microspheres/mL 

was performed as described above. After 24 hours, cells were 

washed twice with PBS fixed in 4% paraformaldehyde/PBS, 

permeabilized with 0.25% Triton X-100 in PBS, and blocked 

with 5% PBS/BSA. Then, cells were incubated for 1 hour at 

37°C with one of two primary antibodies, mouse anti-EEA-1 

monoclonal antibody (cat. 610456 BD Biosciences) or mouse 

anti-LAMP-1 polyclonal antibody (cat. 555798 BD Biosci-

ences), to label the endosomal or the lysosomal compartment, 

respectively. Finally, cells were incubated for 1 hour at room 

temperature with Alexa 488-conjugated chicken anti-mouse 

IgG antibody (Life Technologies), counterstained with Hoe-

scht 33258, and analyzed by CSLM. For each marker, 40 cells 

with microparticles were analyzed.

Statistical analyses
Normal distribution of data was verif ied with the 

Kolmogorov–Smirnov test, and homoscedasticity was assessed 

with the Levene’s test. When necessary, data (x) on percent-

ages were transformed with arcsin square root transformation 

(arcsin√x) for accomplishing the parametric assumptions. The 

comparison among the different treatments was done with a 

one-way analysis of variance (ANOVA), followed by a posthoc 

t-test with Bonferroni’s correction for multiple comparisons. P 

, 0.05 was considered to be statistically significant.

Results
Cytotoxic effect of transfection reagents
The percentage of cells that remained attached to the dish after 

the transfection procedures can be seen in Figure 1A, show-

ing that all treatments resulted in a significant decrease in the 

percentage of attached cells. Normalized to the control group, 

PEI 0.05 mM was the less aggressive treatment (77.4% of cells 

remaining attached) when compared with the rest of the treat-

ments (47.5%, 36.5%, 20.8%, and 20.1% for PEI 0.10 mM, 

FuGENE 6, LF2000, and PEI 0.15 mM, respectively).

The viability of the attached cells was determined by 

calcein AM/ethidium homodimer-1staining. Figure 1B shows 

that after PEI 0.10 mM and 0.15 mM treatments, the per-

centages of living cells were significantly lower (65.6% and 

62.5%, respectively) than those observed following the other 

treatments (94.7% [control], 94.1% [FuGENE 6], 90.4% [PEI 

0.05 mM], and 87.6% [LF2000]). Moreover, the difference 

between control and LF2000 was also significant.

When both parameters are considered (Figure  1C), 

PEI 0.05 mM appears as the least cytotoxic treatment, with 70% 

of cells remaining viable; whereas in the other treatments, less 

than 35% of the cells remained alive (34.3% FuGENE 6; 31.2% 

PEI 0.10 mM; 12.6% PEI 0.15 mM; and 18.2% LF2000).

Effect of transfection reagents  
on microparticle surface charge
To evaluate the electrochemical changes at the microparticle 

surface due to the treatment with the transfection reagents, 
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Figure 1 Cytotoxicity of transfection treatments. (A) Percentage of cells that remained attached to the dish after treatments, normalized to the control. (B) Percentage of 
viable attached cells after treatments. (C) Percentage of viable cells.
Note: a, b, c denote significant differences among groups.
Abbreviations: PEI, polyethyleneimine; LF, Lipofectamine™. 

their Z potential was analyzed. As can be seen in Figure 2, 

nontreated fluorescent microparticles showed a highly 

negative Z potential (-45.9), whereas treatment with the 

transfection reagents clearly changed the surface to posi-

tively charged. This change also occurred in functionalized 

microparticles after PEI 0.05 treatment.

Internalization of polystyrene 
microparticles by HeLa cells
Microparticle internalization by HeLa cells was evaluated 

by two approaches, FC and CSLM. By FC, it was observed 

that for all treatments, the number of cells in contact 

with microparticles was clearly increased from twofold 

(PEI 0.15 mM) to fivefold (PEI 0.05 mM) when compared 

with the control (Figure 3). In addition, for all treatments, in 

the population of cells associated with microparticles, there 

were no differences among the percentages of cells with one, 

two, three, or more microparticles (Figure 4).

Confocal microscopy analyses were performed next to 

precisely determine whether microparticles were located 

inside or outside the cells (Figure 5A and B). As can be seen 

in Figure 5C, in the cells that remained attached to the dish, 
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a significant increase (P , 0.05) in the percentage of cells 

in contact with microparticles and in the percentage of cells 

with internalized microparticles was observed for all treat-

ments compared with the control group, these results being 

consistent with those previously obtained by FC.

Finally, the results obtained from FC and CSLM analyses 

were compared taking into account the cytotoxic effect of 

the different treatments (see Figure 1C). Figure 6 shows that 

PEI 0.05 mM provided the highest microparticle internaliza-

tion efficiency, doubling at least the efficiency of the other 

treatments.

Internalization of functionalized 
polystyrene microparticles by HeLa cells
To test whether PEI 0.05 mM could also enhance micropar-

ticle internalization when a cargo is covalently attached to 

their surface, the internalization efficiency of antibody-

functionalized microparticles was determined by CSLM. 

This analysis showed that 18.9% of the cells had internal-

ized at least one functionalized microparticle, a percentage 

equivalent to that for non-functionalized microparticles 

(25.5%) and significantly higher than that for the control 

group (3.7%).

Intracellular location of microparticles
To investigate the intracellular fate of microparticles, TEM 

analyses were carried out in Epon-embedded samples. 

According to the previous results, only the PEI 0.05 mM 

treatment was selected for these analyses. A plasma membrane 

evagination was clearly observed around microparticles whilst 

they were being engulfed by HeLa cells (Figure 7A). Once 

internalized, microparticles appeared to be tightly surrounded 
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Figure 4 Flow cytometry analysis. Transfection agents’ effect on the internalization of fluorescent microparticles by HeLa cells. (A), (C), (E), (G), (I) and (K) Dot plots 
showing two populations of cells: associated (cells + MP) or not associated (cells) with green fluorescent microparticles. (B), (D), (F), (H), (J) and (L) Histograms showing 
the fluorescence intensity of the different populations of cells.
Notes: Cells = cell population not associated with microparticles. Cells + MP = cell population associated with at least one microparticle. P2, P3, P4, P5 = cell population 
associated with one, two, three, or more than three microparticles, respectively.
Abbreviations: MP, microparticle; PEI, polyethyleneimine; LF, Lipofectamine™.
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Abbreviations: CSLM, confocal scanning laser microscopy; PEI, polyethyleneimine; LF, Lipofectamine™.
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Figure 6 Microparticle internalization efficiency. Percentage of viable cells with one or more internalized microparticles after the different transfection treatments.
Notes: Results were obtained from internalization analyses by both CSLM and FC, taking into account the number of cells that remained attached to the dish after treatments 
and their viability.
Abbreviations: CSLM, confocal scanning laser microscopy; FC, flow cytomtery; PEI, polyethyleneimine; LF, Lipofectamine™.

by a single membrane in the majority of cases (Figure 7B), 

and occasionally, they were additionally surrounded by a 

two-membrane complex (Figure 7C and D).

The immunolocalization of LAMP-1 showed that in the 

majority of cells analyzed, the membrane surrounding the 

microparticles was positive for LAMP-1, indicating that 

microparticles were trapped in a lysosomal compartment 

(Figure 8).

To quantify the number of internalized microparticles 

located inside lysosomes, CSLM analysis using two cell 

compartment markers (EEA-1 for endosomes and LAMP-1 

for lysosomes) was carried out. In this case, antibody-

functionalized microparticles were used because their lower 

fluorescence intensity in relation to fluorescent microparticles 

allowed us to observe the colocalization of the internalized 

microparticles and the endosomal/lysosomal compartments. 
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Figure 7 Microparticle localization by transmission electron microscopy. 
Micrographs of HeLa cells with internalized microparticles. (A) Illustration of the 
internalization of microparticles; arrow indicates a cell membrane evagination, 
typical of macropinocytosis. (B) A single membrane surrounding an internalized 
microparticle. (C) Microparticle surrounded by a double membrane. (D) Enlarged 
view of the microparticle shown in C.
Notes: Arrow heads point to a single membrane tightly associated to microparticle. 
Arrows indicate the two membrane complex. Scale bars: (A) 2 µm (B) 1 µm (C) 
and (D) 500 nm.
Abbreviation: MP, microparticle.
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Figure 8 LAMP-1 immunogold detection. Cryotransmission electron micrographs 
of LAMP-1 immunogold performed in HeLa cells. (A–C) Arrow heads indicate 
positive LAMP-1 marks. (D) Arrow heads indicate positive LAMP-1 marks whereas 
arrows point to the lysosome membrane.
Abbreviation: LAMP-1, lysosome associated membrane protein 1; L, lysosome.

It was observed that 24 hours after treatment, none of the 

microparticles colocalized with endosomes and 83.4% colo-

calized with lysosomes, confirming the results previously 

obtained by TEM.

Discussion
The use of micro- and nanoparticles as carriers for drug 

delivery applications has gained interest in recent years.7 It 

has been shown that their uptake by cells is highly dependent 

on their physical and chemical properties, especially their 

size and surface charge (being that cationic particles are 

more easily uptaken by cells).11 However, the low capacity 

of nonphagocytic cells for the internalization of micron-sized 

particles is a handicap that needs to be improved.

In order to increase microparticle uptake by nonphagocytic 

cells, PEI, LF2000, and FuGENE 6 were chosen because of 

their efficiency in DNA transfection procedures. Moreover, 

PEI and LF2000 have also been used in microparticle-14,20,21 

and nanoparticle-internalization22 experiments.

In our study, we analyzed the effect of free PEI (ie, 

noncovalently bound to microparticle surface) on the 

microparticle-internalization efficiency. Considering that 

these microparticles are expected to be drug-delivery carri-

ers in the future and that the cargo will need to be attached 

to their surface, we considered the use of free PEI as a more 

appropriate approach to avoid competition for the same 

substrate. To the best of our knowledge, this is the first time 

that free PEI has been used for internalizing microparticles. 

In this regard, although PEI, LF2000, and FuGENE 6 have 

been widely used in DNA transfection procedures with 

positive results, it has been described that they produce a 

considerable cytotoxic effect, which has to be taken into 

account.18,23 Thus, with the aim of finding the best balance 

between efficiency of microparticle internalization and cyto-

toxicity, three different concentrations of PEI were tested 

in the present study. The highest concentration was set at 

0.15 mM since it has been reported that an intense cytotoxic 

effect is observed at higher concentrations.24 In the case of 

LF2000 and FuGENE 6, the concentrations used were those 

recommended by the manufacturers, which provided good 

results when used for internalizing 1 or 3 µm–sized beads 

in the case of LF2000.21

In our study, the number of cells remaining attached to 

the culture plates after their exposure to the transfection 

reagents was determined, together with the viability of these 

attached cells. This combined analysis allowed us to more 

accurately determine the cytotoxic effect of the treatments. 

We observed that compared with the control culture, the per-

centage of viable cells among those attached was high in all 

treatments (more than 60% viable cells), but a reduction in the 

percentage of attached cells was observed for all treatments. 

These data demonstrate the usefulness of taking into account 

not only the viability of the cells but also the percentage of 

remaining cells after treatments in the cytotoxicity assays and 

moreover, showed that PEI at 0.05 mM was the least cyto-

toxic treatment. On the other hand, our viability results are in 

agreement with previous reports in that free PEI treatments 

produced a dose-dependent cytotoxic effect.25 None of the 
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reported studies that used LF2000 to improve microparticle 

uptake21,26 analyzed the cytotoxic effect of this agent.

To calculate the efficiency of microparticle uptake, two 

different strategies were used. FC studies allowed us to clearly 

identify the population of cells associated with microparticles 

but also to discriminate among cells associated with one or 

more microparticles. The results obtained by FC showed that 

all treatments increased the percentage of cells associated 

with microparticles, especially PEI 0.05 mM (25.9%) and 

LF2000 (20.4%). Furthermore, no significant differences 

were found between these two treatments, indicating that both 

would be equally efficient in terms of microparticle inter-

nalization. In the case of PEI, a decrease in the percentage 

of cells in contact with microparticles was observed as PEI 

concentration was increased. However, FC did not allow us 

to distinguish between internalized microparticles and those 

only bound to the cell surface.

To complement the FC data and to determine the location 

of microparticles, confocal analyses of cells were performed. 

By confocal microscopy, it was possible to discriminate and 

quantify the number of microparticles that had been internal-

ized or that were only in contact with the cell surface. With 

regards to the use of LF2000, our results are in agreement 

with those of Kobayashi et al,21 who reported an increase 

in the rate of internalization of 1 µm–sized microparticles 

by HeLa cells when using this reagent. On the other hand, 

and concerning the use of PEI, the data obtained in the 

present study agree with previous studies, such as that of 

Thiele et al,14 who demonstrated that microparticles cova-

lently bound to PEI are more efficiently internalized by 

macrophages and dendritic cells than are microparticles 

alone. In the present study, we demonstrated that PEI could 

also increase microparticle internalization in nonphagocytic 

cells, and that this could be accomplished without its covalent 

attachment to the microparticle surface. In addition, we 

observed a dose-dependent, inverse relationship between PEI 

concentration and internalization efficiency. In agreement 

with FC, quantification by CSLM indicated that increasing 

concentrations of PEI not only resulted in an increase in the 

number of microparticles in contact with cells, but also in a 

decreased internalization. Our results suggest that the lower 

internalization rates at higher PEI concentrations could be 

related to its higher cytotoxic effect, especially membrane 

damage,27,28 which would lead to an incapability of the 

affected cells for microparticle internalization.

The higher efficiency of microparticle internalization 

after their treatment with a transfection reagent seems to 

be related to the changes in surface charges, as determined 

by the results of the Z potential analysis. Our results also 

showed that although surface properties of the microparticles 

were modified after the antibody conjugation, PEI could still 

interact with them, increasing their uptake by cells without 

affecting the fluorescence emission of the functionalizing 

molecule.

Both FC and CSLM analyses showed that, when the 

cytotoxic effect of the transfection reagents is considered, PEI 

0.05 mM turns out to have been the most effective treatment, 

since it led to at least a twofold increased microparticle inter-

nalization rate. The advantage of FC was the high number 

of cells that could be analyzed in a short period of time, 

whereas the advantage of CSLM was its ability to ascertain 

internalization.

Considering that microparticles are expected to deliver 

their cargo inside the cell, it is necessary to determine 

their exact location inside the cell. Our results, using TEM 

analyses, showed that they were engulfed by a cell membrane 

Figure 9 Intracellular location analysis of functionalized microparticles by CSLM. (A) Endosomal labeling with EEA-1. (B) Lysosomal labeling with LAMP-1. (C and D) 
Microparticles functionalized with an Alexa Fluor®-594 conjugated antibody. (E and F) Merged images of compartment and microparticles.
Abbreviations: CSLM, confocal scanning laser microscopy; EEA-1, early endosome antigen 1 protein; LAMP-1, lysosome associated membrane protein 1.
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evagination and no discernible coat was visible. We also 

observed that once inside the cell, they appeared to be tightly 

surrounded by a single membrane, positive for the LAMP-1 

lysosome marker, indicating that after 24 hours, the majority 

of microparticles were entrapped in lysosomes. These results 

have been confirmed by the use of nonfluorescent micropar-

ticles functionalized with an Alexa 594-conjugated secondary 

antibody, as the majority of internalized microparticles were 

also localized in the lysosomal compartment. We anticipated 

that using PEI, microparticles would be found in the cytosol, 

because it has been previously reported that the capability of 

protonation of PEI results in the disruption of endosomes.29–31 

Authors that have covalently attached PEI to microparticles20 

have reported that these particles can be found free in the 

cytosol as early as 4–6 hours posttransfection when using PEI 

70 KDa but not when using PEI 25 KDa. Kobayashi et al21 

demonstrated that the use of free cationic lipids increases the 

internalization of microparticles and that once in the endo-

somes compartment, they escape in a few minutes. According 

to this author, the rupture of the endosome membrane induces 

the formation of an autophagosome. In our study by TEM, we 

found that a few microparticles were surrounded by a double 

membrane, which could correspond to endoplasmic reticulum, 

indicating that an autophagic process was taking place. Our 

results regarding the intracellular location of microparticles 

by CSLM confirmed the results of the TEM studies, indicating 

that in the majority (83.4%) of cells, the internalized micropar-

ticles were located in the lysosomal compartment. As no 

endosomal association with microparticles was observed, the 

microparticles that were not located in lysosomes could be 

either free in the cytosol, or part of an autophagic process. 

Further studies will be necessary to analyze whether, when 

microparticles are functionalized with a specific cargo, the 

cargo can be released into the cytosol even if the microparticle 

remains trapped inside an organelle.

Conclusion
To sum up, our results show that PEI 25 kDa at a concen-

tration of 0.05  mM significantly increases microparticle 

internalization by nonphagocytic HeLa cells with a low 

cytotoxic effect, and that this can be achieved without the 

covalent binding of PEI to the microparticle surface. Both 

CSLM and FC can be used for the quantification of internal-

ization efficiency, yielding similar results, but FC allows a 

fast analysis of high numbers of cells whereas CSLM allows 

distinction between cells with internalized microparticles and 

cells with microparticles attached to their surface. Finally, 

our results show that 0.05 mM PEI 25 kDa does not induce 

endosomal disruption, as internalized microparticles remain 

surrounded by a lysosomal membrane. With a view to drug 

delivery, further studies will be necessary to evaluate whether 

functionalized microparticles entrapped in lysosomes are still 

able to release their cargo into the cytosol.
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