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Abstract: Tuberculosis remains a disease with an enormous impact on public health worldwide. 

With the continuously increasing epidemic of drug-resistant tuberculosis, new drugs are des-

perately needed. However, even for the treatment of drug-sensitive tuberculosis, new drugs are 

required to shorten the treatment duration and thereby prevent development of drug resistance. 

Within the past ten years, major advances in tuberculosis drug research have been made, leading 

to a considerable number of antimycobacterial compounds which are now in the pipeline. Here 

we discuss a number of these novel promising tuberculosis drugs, as well as the discovery of 

two new potential drug targets for the development of novel effective drugs to curb the tuber-

culosis pandemic, ie, the coronin 1 and protein kinase G pathways. Protein kinase G is secreted 

by mycobacteria and is responsible for blocking lysosomal delivery within the macrophage. 

Coronin 1 is responsible for activating the phosphatase, calcineurin, and thereby preventing 

phagosome-lysosome fusion within the macrophage. Blocking these two pathways may lead to 

rapid killing of mycobacteria.
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Introduction
Mycobacterium tuberculosis continues to be one of the world’s most debilitating and 

deadly pathogens. Tuberculosis accounted for an estimated 1.7 million deaths in 2009, 

and the incidence is higher than ever before, with 9.4 million new cases.1 Efficacious 

drugs exist, but their success in treatment depends on rigid implementation of therapy, 

access to treatment, and adherence over a considerable time span. This has conse-

quences regarding the logistics of tuberculosis control programs, which currently fail 

in many settings in the view of the human immunodeficiency virus (HIV)/acquired 

immune deficiency syndrome copandemic. There are still sizeable populations, espe-

cially in sub-Saharan Africa, which have no access to tuberculosis control through 

the Directly Observed Treatment Short course (DOTS) strategy of the World Health 

Organization. In addition to the urgent need for novel drugs, DOTS coverage should 

be increased further to reduce ongoing transmission.2

Although tuberculosis drug research over the past 10 years has led to the development 

of a few novel agents which are currently in different stages of clinical evaluation, the 

preceding 30 years had been painfully silent in the field of tuberculosis drug research. 

The rise in drug resistance among M. tuberculosis strains has become a severe threat to 

public health on a global scale. With an estimated 440,000 cases of multidrug-resistant 

tuberculosis (defined as Mycobacterium tuberculosis resistance to at least rifampicin 

and isoniazid) and extensively drug-resistant tuberculosis (defined as multidrug-resistant 
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tuberculosis plus resistance to a fluoroquinolone and at least 

one second-line injectable agent, ie, amikacin, kanamycin, 

and/or capreomycin) now being reported in 58 different 

countries, the epidemic is ever increasing.3

Although mortality rates for extensively drug-resistant 

tuberculosis have now been reduced from the initially 

reported nearly 100%4 to approximately 45%,5 it remains a 

challenge to treat infected individuals because of the long 

treatment duration required and inevitable usage of sub-

stances of high cost and with unfavorable safety profiles. In 

HIV-positive patients in Southern Africa, at least 50% of all 

adults have been documented as suffering from tuberculosis.6 

When looking at coinfections in confirmed tuberculosis cases 

with HIV, these reached up to 95% in the Johannesburg 

setting, which is the highest coinfection rate ever described 

to date in the literature.7 All this puts additional pressure 

on the need to develop more effective strategies to curb the 

tuberculosis pandemic, and in particular, this includes novel, 

more effective, and well tolerated drugs.

Apart from the need for new drugs to treat drug-resistant 

tuberculosis, several challenges are faced, even for drug-

susceptible tuberculosis. Drug-susceptible tuberculosis still 

needs to be treated with a regimen containing at least four 

different drugs, and treatment should be continued for at 

least 6 months. Compliance and adherence would increase 

with shorter treatment courses containing fewer drugs. 

Furthermore, there are important interactions with the rifamy-

cins and the most widely used antiretroviral drugs for HIV, 

making coinfection with tuberculosis and HIV complicated 

to treat and creating a need for new drugs which lack these 

interactions. Short and safe treatment regimens for latent 

tuberculosis (with an estimated 2 billion people living with 

latent tuberculosis serving as a continuous reservoir for new 

active cases) still need to be developed.

In this review, we briefly outline the problem of 

multidrug-resistant and extensively drug-resistant tuber-

culosis, give an overview of novel regimens currently in 

clinical evaluation, describe the mechanisms of survival of 

M. tuberculosis in infected hosts, and propose avenues cur-

rently being addressed in the authors’ laboratories that may 

contribute towards the development of therapies targeting 

drug-susceptible, multidrug-resistant, and extensively drug-

resistant tuberculosis.

Multidrug and extensively  
drug-resistant tuberculosis
Control programs are often overburdened in highly endemic 

countries, giving rise to M. tuberculosis drug resistance due 

to a range of predisposing factors and circumstances.8 The 

emergence of multidrug-resistant and extensively drug-

resistant tuberculosis strains has been prominent in parts of 

the former USSR, particularly the Baltic republics and some 

Western megametropolitan areas such as New York City, as 

well as India, China, and the African continent, with a focus 

on its south, as highlighted by the first described outbreak 

of an extensively drug-resistant strain of M. tuberculosis in 

KwaZulu Natal, with excessive mortality.4

The mechanisms involved in the development of mul-

tidrug resistant and extensively drug-resistant tuberculosis 

are complex and determined by the mycobacterium, the 

host, and iatrogenic factors. Firstly, mycobacteria have a 

high degree of intrinsic resistance to most antibiotics and 

chemotherapeutics due to the low permeability of the myco-

bacterial cell wall.9 Numerous chromosomal mutations have 

been associated with the development of drug resistance 

in tuberculosis.10 One of several host factors predisposing 

to tuberculosis drug resistance is immunosuppression.11 

However, development of drug resistance against tubercu-

losis is mainly associated with intensive drug use and lack 

of compliance with treatment. Epidemics of drug-resistant 

tuberculosis, as for example in South Africa, can be largely 

attributed to poor performance of control programs and low 

cure rates over many years.12

Novel drugs to combat TB
The drugs currently used for tuberculosis were discovered 

before 1970. After that, the world of tuberculosis drug 

research remained silent for over 30 years. Over the past 

decade, drug development efforts have increased, fuelled by 

the upcoming threat of drug resistance and the tuberculosis 

epidemics which are ever increasing, and also influenced by 

the expansion of the HIV pandemic.

At the time of writing, there are currently at least 13 drugs 

in different stages of preclinical or clinical evaluation (http://

www.newtbdrugs.org/pipeline.php) for the treatment of 

tuberculosis (see Table 1).5,13–26 They can be roughly divided 

into three categories, ie, novel drugs, drugs currently licensed 

for other indications but “repurposed” for tuberculosis, 

and the current first-line tuberculosis drugs which are re-

evaluated to optimize their efficacy. There are two main lines 

of development, ie, improving treatment of drug-sensitive 

tuberculosis (cutting down on the required duration of 

therapy) to yield higher cure rates and curb development of 

resistance, and improving and shortening treatment of drug-

resistant tuberculosis. In the authors’ view, these should not 

be considered as competing but as complementary areas of 
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interest because both need to be addressed in order to turn 

the tide against tuberculosis at the “drug front”.

Although compared with ten years ago many promising 

new drugs are being developed, a further understanding 

of the pathogenesis of tuberculosis, latent infection, and 

development of drug resistance is needed in order to identify 

novel drug targets which may pave the way for further drug 

development.

Mechanisms of survival of  
M. tuberculosis within infected hosts
To be able to interfere with the persistence mechanisms 

developed by M. tuberculosis, it is important to understand 

the virulence mechanisms that the organism utilizes to 

establish itself within its human host. After entry into the 

host organism via the respiratory tract, mycobacteria are 

phagocytosed by macrophages and resist lysosomal degra-

dation, thus allowing them to survive as well as to multiply 

within macrophage phagosomes, thereby circumventing 

the normal host response that would normally result in 

lysosomal degradation of the bacilli.27–29 Subsequently, 

M. tuberculosis uses an array of strategies to remain 

viable within an infected host, including escape into the 

cytosol,30 residence outside macrophages, for example, 

within caseous regions of granulomas,31,32 modulation of 

nitric and oxygen stress33 and regulation of autophagic 

processes.34 In fact, M. tuberculosis, as one of the most 

successful pathogens known, has evolved an array of 

mechanisms to counteract the host immune response at 

virtually every imaginable level.35

A comprehensive discussion of these mechanisms falls well 

beyond the scope of this paper, and the reader is referred to recent 

excellent review articles. Here, we focus on those mechanisms 

that M. tuberculosis has evolved to modulate intraphagosomal 

survival, and given the attenuation of M. tuberculosis strains 

that have lost the capacity to survive within macrophages,36,37 

or even reside within the macrophage cytosol,30 targeting 

intramacrophage survival mechanisms is likely to contribute 

to the control of M. tuberculosis proliferation.

Escape of mycobacteria from host defenses may also 

allow reactivation of tuberculosis in adults. This occurs 

when so-called dormant foci left in the host after a primary 

infection become reactivated.38 Reactivation can occur when 

the host immune system fails to control bacterial growth or 

when the immune system is deteriorating, eg, as a result of 

malnutrition, overcrowding, or stress,39 resulting in uncon-

trolled bacterial growth and death of the host.

Because of the important role of the macrophage phago-

some as an escape site for M. tuberculosis, substantial efforts 

have been directed at defining the biology of mycobacterial 

entry and survival inside phagosomes. The mycobacterial 

phagosome, because it is derived from the plasma mem-

brane, has many features in common with the membrane.40–43 

However, in contrast with normal phagocytosis, in which 

phagosomal content is delivered to lysosomes either by matu-

ration or through vesicular traffic of intermediate vesicles, 

mycobacteria actively resist lysosomal delivery.27

Several strategies have been used to define mycobacterial 

virulence factors. These have included characterization of 

the erp gene product through generation of mutant strains,44 

Table 1 Overview of antituberculous drugs currently in different stages of clinical development, the chemical class to which they 
belong, and their mechanism of action

Drug Chemical class Mechanism of action Phase of clinical 
development

Novel drugs
Bedaquiline (TMC207)18,19,22 
(Tibotec BVBA, Beerse, Belgium)

Diaryquinolones PPI blocking mycobacterial ATP synthase II, III

SQ10923 
(Sequella, NIH, Rockville, MD)

Ethylenediamine Inhibition of cell wall synthesis II

Delamanid (OPC-67683)13,21,25 
(Otsuka Pharmaceuticals Inc, Tokyo, Japan)

Nitroimidazoles Inhibition of cell wall mycolic acid biosynthesis III

PA-82420 
(TB Alliance, New York, NY)

Nitroimidazoles Inhibition of cell wall mycolic acid biosynthesis II

Licensed drugs being repurposed for use in tuberculosis
Moxifloxacin5,24,26 Fluoroquinolones Inhibition of DNA replication and transcription III
Gatifloxacin24,26 Fluoroquinolones Inhibition of DNA replication and transcription III
Linezolid15,16 Oxalidinones Inhibition of protein synthesis II
Tuberculosis drugs re-evaluated to optimize efficacy
Rifapentin14,17 Rifamycins Inhibition of DNA-dependent RNA synthesis II, III

Note: References mentioned are clinical trials reporting on efficacy, safety, and pharmacokinetics.
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proteins with a regulatory function, such as sigma factors 

as well as enzymes that function in different mycobacterial 

biochemical pathways, such as isocitrate lyase and glutamine 

synthetase.45–48 On the host side, the recently identified 

interferon-gamma-induced LRG-47 gene was suggested to act 

as a vacuolar trafficking regulator necessary for the control 

of intracellular mycobacterial growth.49

Different signaling pathways have been implicated in the 

survival mechanisms for pathogenic mycobacteria, including 

modulation of Ca2+ signaling upon entry50 and regulation 

of phagosome-lysosome fusion through phosphorylation/

dephosphorylation.51

Thus, M. tuberculosis uses multiple strategies to cir-

cumvent innate host immunity to infections. This unique 

capacity of M. tuberculosis to remain viable within the 

mycobacterial phagosome by avoiding lysosomal delivery 

within macrophages may be important for its capacity not 

only to survive for prolonged periods but also to cause severe 

disease and death in infected individuals.

Discovery of novel drug targets  
to block survival of M. tuberculosis
The capacity of M. tuberculosis to cause disease lies in its 

ability to avoid destruction within those cells that normally 

destroy all incoming bacteria, namely the macrophages. 

While bacteria are normally internalized into phagosomes 

from which they are transported to lysosomes where they 

are destroyed, M. tuberculosis actively blocks their transfer 

to lysosomes, allowing them to survive for prolonged times 

within phagosomes. A long-term interest in the mechanisms 

utilized by M. tuberculosis to circumvent host resistance, 

thereby allowing these bacteria to proliferate and cause dis-

ease, has been maintained in the laboratories of RJ and JP.

Recent work has unraveled two pathways via which 

M. tuberculosis manages to survive within host cells. One 

mechanism relies on the secretion of a eukaryotic-like kinase 

by M. tuberculosis, ie, protein kinase G, the expression of 

which is essential to block lysosomal delivery.52,53 A second 

strategy relies on the retention of a host molecule, coronin 1, 

at the mycobacterial phagosome that is responsible for acti-

vating the phosphatase, calcineurin.54,55 Interestingly, current 

work suggests that targeting of protein kinase G as well as the 

coronin 1/calcineurin pathway may result in rapid killing of 

internalized mycobacteria. Whether or not inhibition of these 

recently discovered pathways would block survival and pro-

liferation of multidrug-resistant and extensively drug-resistant 

strains of M. tuberculosis remains to be analyzed.

Targeting protein kinase G to 
promote killing of M. tuberculosis
Protein kinase G was discovered in a search for mycobac-

terial factors that promote survival of pathogenic myco-

bacteria within host macrophages. Protein kinase G is a 

eukaryotic-like serine/threonine protein kinase that is not 

required for mycobacterial growth per se but is essential 

for its survival within host macrophages (Figure  1), and 

has been discussed in detail elsewhere.53,56 Protein kinase 

G is one of the 11 serine/threonine protein kinases found in  

Nonpathogenic mycobacteria Pathogenic mycobacteria

Degradation

Coronin 1/TACO

PknG

Macrophage
cytosol

Phagosome

Lysosome

Survival

Figure 1 Protein kinase G-mediated and coronin 1-mediated survival within host macrophages.
© Copyright National Academy of Sciences, USA. Reproduced with permission from Scherr N, Honnappa S, Kunz G, et al. Structural basis for the specific inhibition of protein 
kinase G, a virulence factor of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2007;104:12151–12156.52

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

220

Janssen et al

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2012:6

M. tuberculosis, and the only soluble kinase maintained in 

the genome of M. leprae that is believed to have retained the 

minimal set of genes essential for virulence.57 The presence 

of domains typically found in proteins from eukaryotic spe-

cies as well as the finding that protein kinase G is dispens-

able for in vitro growth of M. tuberculosis56,58 suggests that 

protein kinase G has arrived in the M. tuberculosis genome 

through horizontal gene transfer and has been maintained 

as a virulence factor important for its survival inside the 

eukaryotic host.59

Importantly, mycobacteria overexpressing a kinase-dead 

mutant of protein kinase G are rapidly transferred to lyso-

somes and killed, thus demonstrating that protein kinase G 

activity is crucial for mycobacterial survival. The fact that 

protein kinase G is translocated into the host cytosol suggests 

that compounds aimed at blocking protein kinase G activity 

do not require translocation across the only slightly perme-

able mycobacterial cell wall.53

Together, these findings make protein kinase G an attrac-

tive and promising drug candidate. Indeed, blocking protein 

kinase G activity by a specific small molecular weight inhibi-

tor, ie, the tetrahydrobenzothiophene, AX20017, results in 

rapid transfer of mycobacteria to lysosomes and killing of 

intracellularly residing bacilli.53,56 Furthermore, detailed 

biochemical analysis of the domains of protein kinase G 

has revealed several key residues that are crucial for both its 

in vitro kinase activity as well as the virulence function of 

protein kinase G within infected macrophages.60,61

Two recently obtained sets of results have contributed to 

the validation of protein kinase G as a potential drug target. 

First, infecting mice with M. tuberculosis lacking protein 

kinase G resulted in dramatically prolonged survival of 

infected mice (mean survival time prolonged from 12 weeks 

to .50 weeks, unpublished data). This suggests that targeting 

protein kinase G in vivo may significantly alter the outcome 

of infection with M. tuberculosis. Second, we have recently 

obtained the x-ray structure of protein kinase G complexed 

with its inhibitor (Figure 2). The structure shows that protein 

kinase G contains a unique ATP-binding pocket that is dif-

ferent from any of the 491 human kinases known; in fact, a 

potent protein kinase G inhibitor showed virtually no activity 

when tested against a panel of 28 different kinases originat-

ing from the six major kinase groups. Thus, the structure of 

protein kinase G was revealed to be distinct from the host cell 

kinases, allowing its efficient targeting without blocking host 

cell kinases.52 Interestingly, docking studies using the tridi-

mensional structure of protein kinase G identified potential 

novel inhibitors of the withanolide compound class.62

These preliminary findings suggest that targeting protein 

kinase G may enable inhibition of M. tuberculosis growth 

within host cells by allowing the macrophages to carry out 

their natural innate immune function, namely, shuttling 

M. tuberculosis to degradative lysosomes.

Inhibition of coronin 1-mediated 
signaling to block resistant  
M. tuberculosis
In 1999, coronin 1, also known as tryptophan aspartate-con-

taining coat protein or p57,63 was described as a protein that 

was actively retained in mycobacterial phagosomes, and was 

predicted to be involved in blocking the delivery of pathogenic 

mycobacteria to lysosomes (Figure 1).54 This suggested an essen-

tial role for coronin 1 in protecting the mycobacterial phagosome 

from fusion with lysosomes,54,64 confirmed subsequently using 

siRNA-mediated knockdown of coronin 1.65–67 Moreover, myco-

bacteria are effectively destroyed within Kupffer cells, the major 

macrophages in the liver that do not express coronin 1.54

How coronin 1  mediates the survival of pathogenic 

mycobacteria has been revealed recently by generating 

mice lacking coronin 1. It turns out that while mice lack-

ing coronin 1 are perfectly healthy, coronin 1 is required for 

activation of the Ca2+-dependent phosphatase, calcineurin.55 

In wild-type macrophages, upon internalization of mycobac-

teria, this phosphatase becomes activated, thereby blocking 

RD
KD

TPRD

Figure 2 Structure of protein kinase G with inhibitor.
Note: Inset: protein kinase G crystal.
© Copyright National Academy of Sciences, USA. Reproduced with permission 
from Scherr N, Honnappa S, Kunz G, et al. Structural basis for the specific inhibition 
of protein kinase G, a virulence factor of Mycobacterium tuberculosis. Proc Natl Acad 
Sci U S A. 2007;104:12151–12156.52 
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phagosome-lysosome fusion by an as yet unknown mechanism 

and allowing survival of mycobacteria. In the absence of 

coronin 1, calcineurin activation does not occur, resulting in 

phagosome-lysosome fusion and intracellular killing of the 

internalized mycobacteria. Strikingly, genetic depletion of 

coronin 1 can be phenocopied by addition of the calcineurin 

inhibitors, cyclosporin A and FK506 (Figure 3). Thus, it appears 

that coronin 1 has evolved to activate Ca2+-dependent signaling 

reactions in macrophages, thereby promoting the survival of 

pathogenic mycobacteria.55

These results suggest that blocking the coronin 1 signaling 

pathway may allow intracellular killing of M. tuberculosis. 

Preliminary results indeed suggest that in vivo administration 

of calcineurin inhibitors allows rerouting of M. tuberculosis 

inside macrophages.55 Because this newly discovered path-

way is unlikely to be related to any of the mechanisms that 

are currently targeted by available tuberculosis drugs, we 

anticipate that blockers of the coronin 1 pathway may be 

useful for treatment of drug-resistant tuberculosis.

Therapeutic potential of agents 
blocking protein kinase G and 
coronin 1
Preliminary data have shown that blocking either the protein 

kinase G or the coronin 1 pathway may be highly specific for 

inhibiting growth of M. tuberculosis inside macrophages with-

out affecting host functioning. For protein kinase G inhibition, 

a potent inhibitor of protein kinase G53 was not active against 

a panel of 28 human kinases that were selected to represent 

the entire human kinome.52 In addition, when macrophages 

were exposed to high concentrations of these inhibitors, all 

measurable cellular functions appeared normal.

With regard to coronin 1 inhibition, the clearest indica-

tion that coronin 1 can be blocked without obvious adverse 

effects is the phenotype of coronin 1-deficient mice. These 

mice develop normally, are healthy, and show no obvious 

phenotype.55 In addition, the inhibitory protocol that we 

have developed to block the coronin 1-signaling pathway is 

based on use of cyclosporin A and/or FK506, both of which 

are drugs approved for use in humans.68,69

Conclusion
It is reassuring that after many years, a tuberculosis drug 

pipeline is now developing. Moreover, several novel path-

ways essential for M. tuberculosis survival are currently 

being explored, including the protein kinase G and coronin 

1 pathways, which have potential to serve as novel drug tar-

gets for treatment of both drug-sensitive and drug-resistant 

tuberculosis. Whilst pressing on with the development of 

drugs and optimized combination and usage of existing 

drugs at the “outcome” end of the pipeline, concerted effort 

is needed to expand further the portfolio of novel drug targets 

and to identify novel leads.
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