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Abstract: The transplantation of organs and cells from pigs into humans could overcome the 

critical and continuing problem of the lack of availability of deceased human organs and cells for 

clinical transplantation. Developments in the genetic engineering of pigs have enabled consider-

able progress to be made in the experimental laboratory in overcoming the immune barriers to 

successful xenotransplantation. With regard to pig organ xenotransplantation, antibody- and cell-

mediated rejection have largely been overcome, and the current major barrier is the development 

of coagulation dysregulation. This is believed to be due to a combination of immune activation 

of the vascular endothelial cells of the graft and molecular incompatibilities between the pig and 

primate coagulation–anticoagulation systems. Pigs with new genetic modifications specifically 

directed to this problem are now becoming available. With regard to less complex tissues, such 

as islets (for the treatment of diabetes), neuronal cells (for the treatment of Parkinson’s disease), 

and corneas, the remaining barriers are less problematic, and graft survival in nonhuman primate 

models extends for .1 year in all three cases. In planning the initial clinical trials, consideration 

will be concentrated on the risk–benefit ratio, based to a large extent on the results of preclinical 

studies in nonhuman primates. If the benefit to the patient is anticipated to be high, eg, insulin-

independent control of glycemia, and the potential risks low, eg, minimal risk of transfer of a 

porcine infectious agent, then a clinical trial would be justified.

Keywords: infection, pigs, genetically-engineered, xenotransplantation, islets, xenotransplantation, 

organs

Introduction
In the developed world, there is a critical shortage of organs and cells from deceased 

human donors for the purposes of transplantation. For example, in the US, there are 

more than 110,000 patients awaiting an organ or cell transplant of one type or another, 

and yet each year only about 30,000 organs become available from approximately 8000 

deceased donors. Despite immense efforts over the past 50 years, we are no closer to 

resolving the problem of donor organ availability than we were at the beginning of this 

period. The steadily improving results of allotransplantation have led to an increasing 

number of patients being put on the waiting list for these procedures.

This problem could be resolved if we were able to use a readily available animal as a 

source of organs and cells for transplantation into humans.1 Indeed, xenotransplantation 

has several advantages over allotransplantation (Table 1). The pig has been identified 

as a potential source of organs and cells for this purpose (Table 2).2 Considerable 

progress has been made in overcoming the immunological barriers to successful pig 

organ and cell transplantation in primates, though some barriers remain.3
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Table 2 Advantages and disadvantages of the pig as a potential source of organs and cells for humans, in contrast with those of the 
baboon in this role

Pig Baboon

Availability Unlimited Limited
Breeding potential Good Poor
Period to reproductive maturity 4–8 months 3–5 years
Length of pregnancy 114 ± 2 days 173–193 days

Number of offspring 5–12 1–2
Growth Rapid (adult human size within 6 months)** Slow (9 years to reach maximum size)
Size of adult organs Adequate Inadequate*
Cost of maintenance Significantly lower High
Anatomical similarity to humans Moderately close Close
Physiological similarity to humans Moderately close Close
Relationship of immune system to humans Distant Close
Knowledge of tissue typing Considerable (in selected herds) Limited
Necessity for blood type compatibility with humans Probably unimportant Important
Experience with genetic engineering Considerable None
Risk of transfer of infection (xenozoonosis) Low High
Availability of specific pathogen-free animals Yes Yes
Public opinion More in favor Mixed

Notes: *The size of certain organs, eg, the heart, would be inadequate for transplantation into adult humans; **breeds of miniature swine are approximately 50% of the 
weight of domestic pigs at birth and sexual maturity, and reach a maximum weight of approximately 30% of standard breeds.

Table 1 Major advantages of xenotransplantation over 
allotransplantation

Unlimited supply of organs, tissues, and cells
Unlimited supply will allow transplantation procedures in ‘borderline’ 
candidates who might otherwise be declined
Organs available electively
Avoids the detrimental effects of brain death on donor organs
Provides exogenous infection-free sources of organs, tissues, and cells
Obviates the ‘cultural’ barriers to deceased human donation present in 
some countries, eg, Japan

History of xenotransplantation
The history of xenotransplantation has been fully reviewed.1,4 

Xenotransplantation has a long history in the clinic. In the 

eighteenth century, blood transfusions from animals to 

humans were attempted, and this practice continued intermit-

tently for 200 years, before it was realized that the results did 

not warrant the risks. The first corneal xenotransplant was 

carried out in 1838, more than 65 years before the first corneal 

allotransplant in 1905.5 Organs from nonhuman primates and 

nonprimate mammals were transplanted in a small number 

of patients in the early part of the twentieth century, with 

poor results1 (Table 3), although Reemtsma et al reported the 

survival of one patient with transplanted chimpanzee kidneys 

who returned to an active life for approximately 9 months 

until she suddenly died, probably from an acute electrolyte 

disturbance.6 In 1994, Groth and his colleagues carried out 

the transplantation of fetal porcine islets into patients with 

diabetes,7 though without clinical benefit.

Immune barriers
Pig organ xenotransplantation
When a pig organ is transplanted into a nonhuman primate 

(or into a human), it is followed by hyperacute rejection 

(Figure 1). This is a consequence of binding of natural anti-

pig antibodies that are present in all humans to antigens on 

the surface of the pig vascular endothelial cells, activat-

ing complement, and causing rapid graft destruction. The 

most important target for human anti-pig antibodies is the 

galactose-α1,3-galactose (Gal) antigen,8–10 an oligosaccha-

ride very similar in structure to the B blood group antigen. 

The immunopathology of hyperacute rejection is very similar 

to that which occurs when organ allotransplantation is carried 

out across the ABO blood group barrier.11,12

If this can be prevented, it is usually followed within days 

or weeks by acute humoral xenograft rejection (sometimes 

known as acute vascular rejection or delayed xenograft 

rejection), which is a slower process, but which is again 

related to antibody binding, complement activation, and the 

activity of innate immune cells, such as macrophages and 

neutrophils.13

Hyperacute rejection has largely been overcome by the 

transplantation of organs from pigs that do not express the 

important Gal antigens (α1,3-galactosyltransferase gene-

knockout pigs),14–16 particularly if these also express one or 

more human complement-regulatory proteins, eg, CD46, 

CD55, CD59 (Table  4).17–21 The major target for anti-pig 

antibodies is therefore not present, although there is binding of 
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Table 3 Summary of clinical xenotransplantation of organs in the 
twentieth century

Donor n Survival

Kidney – primate (30) 1 day–9 months
      – nonprimate (3) 3–9 days
Heart – primate (5) ,1–20 days
       – nonprimate (4) ,1 day
Liver – primate (11) ,1–70 days
     – nonprimate (1) ,2 days

Copyright © 2012 The Royal College of Surgeons of England. Reproduced with permis-
sion of Taniguchi S and Cooper DKC (content has been modified in this article).101

Figure 1 Hyperacute rejection (defined as occurring within the first 24 hours after 
transplantation) of a pig heart in a baboon.
Complement-mediated injury associated with the immediate binding of natural anti-
pig antibodies to antigens expressed on the vascular endothelium of the pig organ, 
eg, Galα1-3Gal, results in disruption of the myocardial capillaries, with massive 
interstitial hemorrhage and edema.

antibodies to non-Gal antigenic targets,21–23 the nature of which 

is unknown at present24 except in one respect (see below). 

Nevertheless, the effect and extent of complement activation is 

reduced by the presence of the human complement-regulatory 

proteins. Acute humoral xenograft rejection can also be greatly 

inhibited when organs from these pigs are transplanted, but 

may not be completely prevented as the activity of the innate 

immune cells continues.13 The addition of potent immunosup-

pressive therapy, particularly including a costimulatory block-

ade agent,25 inhibits acute humoral xenograft rejection further, 

and graft survival of weeks or months can be achieved.26–31

Isolated acute cellular rejection, ie, T cell-mediated rejec-

tion, has rarely been seen after pig organ transplantation into 

nonhuman primates, either because acute humoral xenograft 

rejection intervenes or because the potent immunosuppres-

sive therapy successfully prevents this response. Graft athero-

sclerosis (chronic rejection), however, has been documented 

in hearts that have functioned for longer than approximately 

3 months in nonhuman primates (Figure 2).28,30

Table 4 Genetically modified pigs currently available for 
xenotransplantation research

Gal antigen deletion or ‘masking’
α1,3-galactosyltransferase gene-knockout (GT-KO)
Human H-transferase gene expression (expression of blood type O 
antigen)
Endo-beta-galactosidase C (reduction of Gal antigen expression)
Complement regulation by human complement-regulatory 
gene expression
CD46 (membrane cofactor protein)
CD55 (decay-accelerating factor)
CD59 (protectin or membrane inhibitor of reactive lysis)
Anticoagulation and anti-inflammatory gene expression  
or deletion
Human tissue factor pathway inhibitor (TFPI)
Human thrombomodulin
Human CD39 (ectonucleoside triphosphate diphosphohydrolase-1)
von Willebrand factor–deficient (natural mutant)
Suppression of cellular immune response by gene expression 
or downregulation
Porcine CTLA4-Ig (cytotoxic T-lymphocyte antigen 4 or CD152)
LEA29Y (inhibition of the B7/CD28 costimulatory pathway of T-cell 
activation)
CIITA-DN (MHC class II transactivator knockdown, resulting in swine 
leukocyte antigen class II knockdown)
Human TRAIL (tumor necrosis factor-alpha-related apoptosis-inducing 
ligand)
HLA-E/human β2-microglobulin (inhibits human natural killer cell 
cytotoxicity)
Human CD47 (for species-specific CD47-SIRP-alpha natural interaction 
on macrophages)
Human FAS ligand (CD95L)
Human GnT-III (N-acetylglucosaminyltransferase III)
Antiapoptotic gene expression
Human A20 (tumor necrosis factor-alpha-induced protein 3)
Human heme oxygenase-1 (HO-1)
Human TNFRI-Fc (tumor necrosis factor-alpha receptor I-Fc)
Prevention of porcine endogenous retrovirus (PERV) activation
PERV siRNA

Modified from Ekser et al3; pigs with combinations of genetic modification, eg,  
GT-KO with added transgenes, are available.

In summary, with organs from the current genetically 

engineered pigs and with potent immunosuppressive therapy, 

hyperacute rejection can largely be prevented and the onset 

of acute humoral and acute cellular rejection can be greatly 

delayed. However, activation of the vascular endothelium 

of the organ by anti-non-Gal antibodies and possibly innate 

immune cells results in the initiation of coagulation dysfunc-

tion in the graft. This takes the form of the development of a 

thrombotic microangiopathy in the small vessels of the graft 

and/or a systemic consumptive coagulopathy that results 

in spontaneous hemorrhage.30,32,33 Activation of recipient 

platelets by the presence of the graft endothelium occurs 

and is an initiating factor.34 Coagulation dysregulation can be 

reversed if the graft is excised before hemorrhage develops, 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

9

Clinical xenotransplantation

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Transplant Research and Risk Management 2012:4

indicating that it is the presence of the xenograft that is the 

initiating factor.32

Coagulation dysfunction is almost certainly a combination 

of immune activation of the porcine vascular endothelium by 

anti-pig antibodies, complement, and innate immune cells, and 

the presence of several molecular incompatibilities between pig 

and primate that lead to a change in endothelial phenotype from 

anticoagulant to procoagulant.35–40 For example, pig thrombo-

modulin is not an efficient cofactor for thrombin’s activation 

of protein C, and pig von Willibrand factor is associated with 

excessive primate platelet aggregation.

Despite maximum heparin therapy or the administration 

of other anticoagulant or antithrombotic agents, thrombotic 

microangiopathy and consumptive coagulopathy have to date 

not been prevented. However, new genetic modifications of 

the organ-source pigs, including expression of an antithrom-

botic gene, such as thrombomodulin, tissue factor pathway 

inhibitor, or CD39, may resolve this problem (Table  4).3 

These pigs are just becoming available for testing in nonhu-

man primate models.

Thrombotic microangiopathy appears to be the dominant 

pathology after pig heart xenotransplantation (Figure 3),28,30,31 

whereas consumptive coagulopathy occurs more rapidly after 

pig kidney xenotransplantation (Figure 4).29,34 This difference 

in outcome may be related to differences in the vascular 

endothelium of the two organs.41 In our own experience, 

the more rapid development of consumptive coagulopathy 

results in a reduced period of survival of porcine kidneys in 

nonhuman primates. Whereas heterotopic heart grafts have 

functioned for 6–8 months,28,42 life-supporting kidney trans-

plants have not functioned for even 3 months.26,29 However, 

survival of life-supporting orthotopic heart grafts has also 

had a limited survival of less than 2 months,43,44 and so the 

difference in survival may not be great.

Despite adequate hepatic function,45,46 pig liver xenotrans-

plantation in a nonhuman primate is followed by a different 

form of coagulation dysfunction, namely by an immediate 

loss of platelets.47 The platelets probably sequestrate within 

the graft or maybe are phagocytosed by cells in the graft.48,49 

The profound thrombocytopenia results in life-threatening 

spontaneous hemorrhage into the tissues and from the body 

orifices within days.

The immune responses and coagulation dysregulation that 

are associated with pig heart or kidney xenotransplantation are 

very much accelerated after pig lung xenotransplantation.50,51 

Survival after pig lung transplantation in a nonhuman primate 

is therefore currently limited to hours or days.

It is hoped that further planned genetic modifications of 

the organ-source pigs will overcome most of these barriers 

(Table 4). The genetic modifications that we believe may be 

necessary to overcome these various immune and pathophysi-

ological barriers have recently been discussed in relation to 

xenotransplantation of the lung, in which these problems are 

particularly acute and vigorous.52

There is also a documented systemic inflammatory response 

to the presence of a pig organ xenograft,53 and again this may 

require genetic modification to the organ-source pig if it is to 

be prevented or minimized. Expression of thrombomodulin,  

CD39, heme oxygenase-1, or A20 may prove valuable (Table 4).

Pig cell xenotransplantation
The barriers associated with transplantation of less complex 

organs, such as the cornea or cells, eg, pancreatic islets 

or dopamine-producing neuronal cells, appear to be less 

Figure 3 Thrombotic microangiopathy in a pig heart transplanted into a baboon. 
Fibrin deposition and platelet aggregation results in thrombosis within the vessels of 
the graft. Minor pathological changes can be seen within a month (right); ischemic 
fibrosis occurs when the thrombosis becomes extensive (left).

Figure 2 Chronic rejection (graft atherosclerosis) in a vessel in a pig heart 
transplanted into a baboon 4 months previously (from Kuwaki K, et al31).
Copyright © 2012 John Wiley and Sons. Reproduced with permission of Kuwaki K, 
Knosalla C, Dor FJ, et al. Suppression of natural and elicited antibodies in pig-to-
baboon heart transplantation using a human anti-CD154 monoclonal antibody-based 
regimen. Am J Transplant. 2004;4(3):363–372.31
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problematic. With regard to islets and neuronal cells, the 

absence of a vascular endothelium in these transplants may 

be a major factor in their better outcome. However, there are 

still significant problems to be overcome.

With regard to pig islet transplantation, there is an initial loss 

of islets when they are infused into the portal vein (which is the 

current approach for islet allotransplantation). An inflammatory 

response is set up that leads to destruction of a significant percent-

age of the islets. This event, known as the instant blood-mediated 

inflammatory reaction (IBMIR)54–59 (reviewed in van der Windt 

et al60), is probably a combination of the effect of antibody bind-

ing to the grafts with subsequent activation of complement and 

coagulation and innate immune cells, and a nonspecific effect 

related to the (unnatural) presence of islets in the blood, which 

also leads to activation of complement and coagulation. It may 

therefore have both immune and nonimmune component mecha-

nisms; recent data suggest immune mechanisms are playing a 

greater role than hitherto thought.61 If sufficient islets remain 

functional, however, long-term (.1 year) correction of diabetes 

can be achieved as long as potent immunosuppressive therapy 

is continued; healthy-looking pig islets can be identified in the 

nonhuman primate liver (Figure 5).62–64 New genetically engi-

neered pigs with multiple gene modifications, some of which are 

specifically directed to protecting the islets from IBMIR (using 

an insulin promoter), are now becoming available.3

There is some evidence that neonatal pig islets may have 

some advantages over adult pig islets.65,66 Furthermore, in an 

effort to avoid the substantial loss of islets from IBMIR, efforts 

are being made to identify suitable sites for islet transplantation 

other than the portal vein (reviewed in van der Windt et al67).

Encouraging results have also been obtained when islets 

are transplanted within microcapsules that protect them 
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Abbreviation: TF, tissue factor.

Figure 5 Insulin immunostaining of liver section in a streptozotocin-induced diabetic 
monkey recipient 1 year after transplantation of islets from an adult CD46-transgenic pig.
Blood glucose levels had remained normal throughout this period without the 
need for any exogenous insulin therapy Copyright © 2012 John Wiley and Sons. 
Reproduced with permission of  van der Windt DJ, Bottino R, Casu A, et al. Long-
term controlled normoglycemia in diabetic non-human primates after transplantation 
with hCD46 transgenic porcine islets. Am J Transplant. 2009;9(12):2716–2726. .
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to some extent from the immune response of the host. In 

these cases, exogenous immunosuppressive therapy is not 

required. Survival of more than 6 months has been achieved 

in nonhuman primates,68,69 but it is uncertain whether the graft 

subsequently fails from ischemia or a slow immune response. 

The minimal risk to the patient (in the absence of the need 

for immunosuppressive therapy) has enabled clinical trials to 

be initiated.70

There are several million patients worldwide with 

neurodegenerative diseases who might benefit from the 

transplantation of specif ic neuronal cells. Long-term 

(.1 year) survival of pig neuronal cell xenotransplantation 

in the treatment of monkeys with an induced Parkinson-like 

condition has also been achieved by the transplantation 

of fetal pig dopamine-producing cells that transgeni-

cally express CTLA4-Ig, a potent costimulatory blockade 

molecule.71

Although in the Western world the availability of deceased 

human corneas meets the needs of clinical corneal transplan-

tation, worldwide there is a major deficiency5 (Table 5). As 

the cornea is a relatively avascular structure and therefore 

less susceptible to antibody binding and complement activa-

tion,5 wild-type pig corneal xenotransplantation in nonhuman 

primates has also been associated with relatively long-term 

graft survival.72,73 Importantly, this has been achieved with 

only local corticosteroid therapy to the eye. The availability 

of genetically engineered pigs should increase corneal graft 

survival further.

The potential of red blood cell xenotransfusion from 

genetically engineered pigs into patients is also being 

investigated.74,75 Red blood cells from genetically modified 

pigs have been demonstrated to be preferable to ABO-

incompatible allotransfusions, but not yet comparable to 

ABO-compatible transfusions. As red blood cells do not 

have nuclei, modifications to the standard techniques of 

genetic engineering are required before this can be entirely 

successful. However, it is likely that the pig will eventu-

ally become a limitless source of blood for transfusion, 

particularly in countries where a high incidence of human 

immunodeficiency virus infection has greatly reduced the 

availability of human donor blood.

Other immunological considerations
In addition to Gal, pigs express another known carbohy-

drate antigen, namely N-glycolylneuraminic acid (NeuGc), 

which is also expressed in all nonhuman primates, but not 

in humans.76–79 Humans are therefore the only mammals 

that develop natural preformed anti-NeuGc antibodies. The 

effect of this antigen–antibody binding therefore cannot be 

tested in nonhuman primate models. Although the effect 

of the presence of NeuGc antigens is not considered to be 

as powerful as that of Gal antigens, nevertheless they do 

provide a target for binding of natural antibodies and for 

subsequent sensitization that may be problematic, at least 

in some patients. It is therefore possible that, particularly 

for organ transplants, pigs that do not express NeuGc may 

be required.

Other important points for which there is some evidence 

are that sensitization to human leukocyte antigens would 

not be detrimental to the outcome of clinical pig organ 

xenotransplantation80 and sensitization to pig antigens after 

clinical pig organ xenotransplantation would not preclude 

subsequent allotransplantation.80

Physiological aspects of 
xenotransplantation
Even if all of the immune barriers and coagulation discrep-

ancies can be overcome, the question remains as to whether 

the various pig organs will function adequately in a primate 

environment. There are several differences in anatomy and 

physiology between pig and primate that may result in less-

than-perfect function.1,81–83

However, evidence from experience of pig orthotopic heart 

transplantation in nonhuman primates, suggests that cardiac 

function will be adequate.43,44 Conclusions with regard to 

function of transplanted pig kidneys need to be cautious, as 

proteinuria is almost always present;29,34 this may be a result 

of immune activation or injury, but other pathophysiological 

causes have not been ruled out. Pig liver function appears to 

be surprisingly good, but as follow-up has been restricted 

Table 5 Estimated numbers of corneal allotransplants carried out 
in 2008 and numbers of patients awaiting corneal transplantation 
in selected countries*

Country Estimated number  
of cases per year

Waiting list

United States 41,652 Minimal
United Kingdom 2711 500
South Africa** 330 1884
India 15,000 300,000
China 101 4,000,000
Taiwan 263 637
Korea 480 3630
Japan 1634 2769
Australia 1096 Minimal

Notes: From Hara and Cooper5; *Based on eye bank data in individual countries and 
personal communications; **in sub-Saharan Africa, the number of corneal transplants 
carried out annually has been falling for several years because of the high incidence of 
human immunodeficiency virus positivity in the potential donor population.
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to approximately a week (because of the development of 

profound thrombocytopenia), definite conclusions cannot be 

drawn.45–47 Pig lung function cannot be adequately assessed, 

as injury is so rapid. Although there are some differences in 

glucose metabolism between pigs and primates,84 pig islet 

function in nonhuman primates is clearly adequate if enough 

islets survive the initial IBMIR.64 It should be noted that nonhu-

man primates have higher insulin requirements than humans 

and pigs, which makes them a more challenging preclinical 

model for pig islet xenotransplantation studies.84

Clinical trials of xenotransplantation
Although progress has been slow, encouraging progress has 

been made during the past 20 years since the initial intro-

duction of genetically engineered pigs and the availability 

of costimulatory blockade immunosuppressive agents. The 

longest survivals of organs and cells in preclinical models 

now extend to approximately 8 and greater than 12 months, 

respectively (Table 6).

Risk–benefit ratio
It will be important to confirm these encouraging results in 

clinical trials, and considerable thought has been given to 

the basis on which these trials can be justified. In particular, 

there has been careful consideration of what results would 

be required to warrant clinical trials of pig heart85 and pig 

islet xenotransplantation.86 Furthermore, the ‘ideal’ patients 

who might be considered for these initial trials are being 

carefully considered.85,87,88

The ethics of performing clinical trials are largely based 

on a calculation of the risk–benefit ratio of the procedure, 

particularly with regard to the potential risk of exposing the 

patient and possibly members of the community to a porcine 

infection (see below).89–91

Thought is therefore being given to clinical trials of 

cell or corneal xenotransplantation, where survival of the 

graft is anticipated to be likely and the risks minimal, rather 

than to clinical trials or organ xenotransplantation, where at 

present the benefits cannot be guaranteed and the risks are 

certainly greater.

For example, there are several million patients worldwide 

who could benefit from a corneal transplant,5 but human 

corneas are not available to them. The risks associated with 

pig corneal xenotransplantation are considered to be low; 

if a pig corneal graft should fail, the patient would remain 

with corneal blindness, but it is unlikely there will be any 

life-threatening complications from this procedure. Again, 

if pig islet transplants are carried out, particularly if they are 

encapsulated and therefore no immunosuppressive therapy 

is required, the risks are likely to be few. Failure of the 

graft would necessitate the patient returning to daily insulin 

therapy, but other complications are unlikely to be seen, at 

least based on our experience in nonhuman primates. It is 

therefore highly likely that corneal, islet, or neuronal cell 

transplants will be the first to enter clinical trials. Indeed, 

under the supervision of the Department of Health in New 

Zealand, there is a clinical trial being undertaken at present 

of encapsulated porcine islets in patients with diabetes.70

With regard to organ transplants, however, the current risks 

are significantly higher. The development of a consumptive 

coagulopathy could, of course, be life-threatening. Even in the 

presence of good graft function, a risk of consumptive coagul-

opathy would contraindicate a clinical trial. The only possible 

exception to this would be if the organ were transplanted for 

a limited period of time as a bridge to allotransplantation. For 

example, a patient with fulminant hepatitis may die within 

48–72 hours after admission to hospital. If he/she could be 

maintained by an orthotopically transplantated pig liver for 

this period while a human liver was obtained, this might well 

be life-saving.92 A clinical trial may therefore be justified if 

preclinical work indicates that a pig liver will function consis-

tently without major complication for periods of greater than 

1 week. At present (as mentioned above), this is not the case, 

as transplantation of a pig liver into a baboon is followed by an 

almost immediate thrombocytopenia, which could prove life-

threatening, particularly if allotransplantation were attempted 

in the relative absence of platelets.47

The potential risk of transfer of pig 
microorganisms
The other major consideration with regard to potential 

complications from clinical xenotransplantation relates 

Table 6 Approximate maximum periods of survival of pig organs 
and cells in nonhuman primates (without retransplantation)

Organ/cells Period of graft or  
recipient survival

Neuronal cells .1 year
Free pancreatic islets .1 year
Cornea .1 year
Microencapsulated pancreatic islets .8 months
Hepatocytes .8 months
Heterotopic (non-life-supporting) heart ,8 months
Life-supporting kidney ,3 months
Orthotopic (life-supporting) heart ,2 months
Life-supporting liver 9 days
Life-supporting lung 5 days
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to the potential risk of the transfer of a porcine virus, 

microorganism, or parasite with the donor organ into the 

recipient and, possibly of greater importance, from the 

recipient to the general population.93 Risk of such an infec-

tious complication will be minimized by barrier housing of 

the organ-source pigs and by monitoring for the presence 

of infectious organisms at intervals before the organs or 

cells are recovered for transplantation. It would seem that 

the majority of potentially infectious porcine microorgan-

isms, though perhaps not all, can be eradicated from the 

donor herd by careful husbandry techniques, such as early 

weaning and barrier housing.93,94 The potential risks of 

xenotransplantation in this respect are therefore considered 

to be low.95

However, the presence of porcine endogenous retro-

viruses (PERV) in the genome of all pig cells has caused 

concern.96 Although human cells include similar endogenous 

retroviruses that do not appear to cause humans significant 

health problems, the issue has been raised about the potential 

transfer of PERV into human hosts, with possible recom-

bination of porcine and human retroviruses to form new 

viruses. However, to date there has been no evidence of 

transmission of PERV into humans or nonhuman primates 

following porcine organ, tissue, or cell xenotransplantation 

procedures.93,96 It is now thought unlikely that these viruses 

will be problematic. Furthermore, if the actual risk proves 

to be greater than presently thought, genetic engineering 

techniques are available to inhibit activation of porcine 

endogenous retroviruses.97,98

Regulation of clinical xenotransplantation
It is unlikely that national and international regulatory 

authorities, such as the Food and Drug Administration in 

the USA, will prohibit clinical xenotransplantation on the 

basis of the potential risk of infection alone, though they 

will insist on careful monitoring of the organ-source animals 

and of the human recipients for many years following the 

transplant procedure.91,99,100

It should be borne in mind that in comparison with the 

transplantation of human organs from donors who have been 

identified only within the previous few hours and in whom 

monitoring for all infectious agents is not possible during 

this very short period of time, clinical xenotransplantation is 

likely to be a safer procedure. If consistent successful func-

tion of a pig organ or cell transplant in a nonhuman primate 

recipient can be obtained, it is likely that clinical trials will 

be equally successful.

Conclusion
Within the next few years, further clinical trials of xeno-

transplantation will almost certainly be undertaken. The 

likely sequence of clinical trials is outlined in Table  7. 

Initially, these may involve transplantation of corneas, islets, 

and neuronal cells. During this period, as new improved 

genetically engineered pigs become available, we predict 

it will become justified to carry out organ xenotransplants 

as bridges to allotransplantation, eg, involving the liver or 

heart. Finally, organ xenotransplantation will be carried out 

as a definitive procedure, anticipating relatively long-term 

graft survival. Even if the survival of the graft is not as long 

as that of an allograft, the limitless availability of organ-

source pigs will enable retransplantation to be carried out 

whenever indicated.

It should be remembered that allotransplantation, which 

really began in the early 1950s, has taken 60 years to reach 

its present state of success, even though problems remain, 

particularly with regard to long-term graft survival (chronic 

rejection) and the complications of long-term immunosup-

pressive therapy. The goal of inducing a state of immuno-

logical tolerance to the graft has been elusive, but may be 

easier to achieve in xenotransplantation where the donor 

can be identified and the timing of any pretreatment and the 

operative procedure planned well in advance.

It is exceedingly unlikely that clinical xenotransplantation 

will be successful overnight. There will be a distinct learning 

curve, with steady improvement in results over many years, 

in part relating to the availability of ‘better’ pigs with more 

advanced genetic manipulations, before pig cells and organs 

can routinely replace human cells and organs for these life-

saving procedures. Nevertheless, we predict that eventually 

allotransplantation will become of historical interest only.
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