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Abstract: Auscultation of the heart is accompanied by both electrical activity and sound. Heart 

auscultation provides clues to diagnose many cardiac abnormalities. Unfortunately, detection of 

relevant symptoms and diagnosis based on heart sound through a stethoscope is difficult. The 

reason GPs find this difficult is that the heart sounds are of short duration and separated from one 

another by less than 30 ms. In addition, the cost of false positives constitutes wasted time and 

emotional anxiety for both patient and GP. Many heart diseases cause changes in heart sound, 

waveform, and additional murmurs before other signs and symptoms appear. Heart-sound aus-

cultation is the primary test conducted by GPs. These sounds are generated primarily by turbulent 

flow of blood in the heart. Analysis of heart sounds requires a quiet environment with minimum 

ambient noise. In order to address such issues, the technique of denoising and estimating the 

biomedical heart signal is proposed in this investigation. Normally, the performance of the filter 

naturally depends on prior information related to the statistical properties of the signal and the 

background noise. This paper proposes Kalman filtering for denoising statistical heart sound. 

The cycles of heart sounds are certain to follow first-order Gauss–Markov process. These cycles 

are observed with additional noise for the given measurement. The model is formulated into 

state-space form to enable use of a Kalman filter to estimate the clean cycles of heart sounds. 

The estimates obtained by Kalman filtering are optimal in mean squared sense.

Keywords: heart sound, murmurs, ECG, Kalman filters, acoustic cardiac signals

Introduction
The heart is divided into four chambers. The upper chambers are called atria and 

lower chambers are called ventricles. The heart muscles squeeze blood from chamber 

to chamber. At each squeeze, the valve opens to let blood move backward. In this 

way, the valve keeps blood moving as efficiently as possible through the heart and 

out to the body.1 Heart sounds result from the interplay of dynamic events associated 

with the contraction and relaxation of the atria’s and ventricles’ valve movements and 

blood flow. The heart can emit normal heart sounds or murmurs. The positioning of 

the stethoscope at the auscultatory area plays a significant role in diagnosis of heart 

murmurs.

Nanomedicine is an emerging field, with nanotechnology concepts for diagnosis and 

treatment of cardiovascular disease.2 Heart-sound data depend on the electronic stetho-

scope, which is bulky, and the mechanism to extract the data depends on the movement 

of the diaphragm of the heart. The oscillations of the diaphragm are converted to the 

heart-sound signal, and this approach is sensitive to artifacts and external noise. There 

is a possibility that the use of nanomedicine also involves applications of nanoparticles 
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or nanoneedles, both of which are currently under develop-

ment and could completely change the way physicians detect 

and treat cardiac patients. For example, in nanomedicine, 

iron oxide nanoparticles can be used to improve magnetic 

resonance imaging of cancer tumor. Peptide-coated nano-

particles can bind to a cancer tumor; once the nanoparticles 

are attached to the tumor, the magnetic property of the iron 

oxide enhances the images from a magnetic resonance 

imaging scan. In related work,3,4 characterization of cellular 

mechanics of cast cells was carried out using nanoneedles 

inside an environmental scanning electron microscope. The 

nanoneedles are used to measure local stiffness characteris-

tics of single cells. Important in estimating the stiffness of 

the cell is choosing the correct tip geometry, such as conical, 

spherical, or cylindrical. Two important steps have to be car-

ried out before nanoneedles are used to measure cell stiffness: 

fabrication of soft and hard nanoneedles, and calibration of 

soft nanoneedles.5,6 In related work, a finite element method–

code Abaqus was used for numerical analysis to ensure that 

only good-quality nanoneedles were selected for measure-

ment of reliable data. In this research,3 it was possible to 

detect defective nanoneedles, which should not be used to 

measure stiffness variation among single cells. This work is 

important; previous work did not use finite element method 

analysis during calibration of the soft nanoneedle. The above 

research clearly indicates the possibility of designing better 

and less bulky sensors to measure heart sounds. The Center 

for Biomedical Engineering is currently pursuing the idea 

of beam deformation using piezoresistance as a measure of 

heart murmurs.

Auscultation area
Auscultation sites may vary according to the patient’s 

anatomy. In studying heart sound, emphasis should be placed 

on its intensity (faint/moderate/loud), which greatly depends 

on the location of the stethoscope on the precordium (skin). 

Those who intend to study heart auscultation should consult 

the experts (cardiologists) regarding correct positioning of the 

stethoscope. Auscultation of the heart should take place in 

a quiet room, with the patient’s chest exposed if necessary. 

The stethoscope should be equipped with a stiff diaphragm 

and shallow bell. The principal area of interest is shown 

in Figure 1. As an example, placing the stethoscope at the 

semilunar valve (aortic and pulmonary) provides better S
2
 

sound. The S
1
 heart sound can be heard more clearly in the 

atrioventricular (AV) area known as the AV valve.

Figure 1 shows stethoscope positions to listen to normal 

S
1
, S

2
, S

3
, and S

4
 sounds. The intensity of S

1
 depends on the 

rate of pressure development in the ventricle, the structure 

of the valve leaflets, and the position of the AV valves at the 

beginning of the ventricle contraction. The goal is to listen 

to the four areas corresponding to the valves, which provide 

valuable information to GPs and can be a very valuable diag-

nostic tool to examine the hearts of patients. If the stethoscope 

Auscultation area

Aortic valve
• S2 components of the heart sound

Pulmonary valve
• S1 components

Mitral valve
• Closure of mitral valve (M1)

Tricuspid valve
(Left lateral sterna border)
• Closure of tricuspid valve
• S1 heart sound can be heard

• S1 is louder than S2

• Lub and dub
• S3 sound is a low pitched gallo or
   blowing sound
• S3 sound is normal in children
• Instead of lub dub, you will hear lub
   dub dub
• S4 heard just S1 (late diastolic) 

• S4 is low pitched gallop-sounding

• Closure of semi lunar valve
   (aortic and pulmonary) Aortic area

(Right second
intercostal space)

(Mid left stemal
border)

(Mitral area)
(apex)

Fifth
intercostal
space

(Left second
intercostal space)

Pulmonic area

Tricuspid
(left lateral
sternal borders)

Figure 1 Auscultation area: listening positions for S1, S2, S3, and S4 heart sounds. (A) QRS complex corresponds to S1, and T-wave corresponds to S2. (B) Position of S3 and S4.
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Figure 2 (A and B) Relationship of ECG and the four heart sounds.
Abbreviation: ECG, electrocardiogram.

is placed at the apex (mitral valve), the normal “lub dub” 

sounds can be heard during the closure of this valve. The S
2
 

sound corresponds to the closure of the aortic and pulmonary 

valves. At the mitral valve (apex), the S
3
 sound, as shown in 

Figure 2C, can be heard as a low-pitched or blowing sound 

during the mid-diastolic stage. In the same position, S
4
 can be 

heard just before S
1
 during the late-diastolic stage as a low-

pitched gallop sound. S
3
 can be normal for children, while 

S
4
 is not normally present in healthy persons.1 Normally, the 

S
1
 sound is louder than S

2
 at the base of the heart. In certain 

conditions, S
1
 can decrease in intensity when S

2
 is louder than 

S
1
 at the cardiac apex.7 This happens in states of impaired 

ventricular contractibility and decreased myocardial tension 

development, which is known as congestive heart failure. 

Another factor can be mitral valve immobility. This occurs 

in severe cases of mitral stenosis. In normal conditions, 

S
2
 is produced by the closure of the aortic and pulmonary 

valves. S
2
 is higher-pitched and shorter in duration than S

1
. 

In this case, S
2
 is louder than S

1
 at the cardiac base (second 

intercostal space, as in Figure 1). This is associated with the 

closure of the aortic valve A
1
 and followed by closure of the 

pulmonic valve P
2
.

Denoising of heart sound
The simplest model for any biomedical signal is the summing 

of an invariant signal and random noise. A common method 

to measure these parameters is the averaging technique, 

which may be reasonable for one type of signal but not for 

all cases. Figure 3A shows heart-sound signal with some 

interference such as background noise and artifacts, and 

Figure  3B shows normal heart-sound signal. The charac-

teristics of heart sound can be faint, moderate, or loud, and 

the intensity does seriously affect the trial case. The use of 

average statistics may not be suitable for this case, as they 

can distort the information. The stethoscope can detect 

high-frequency sounds, such as systolic murmurs, and detect 

low-frequency sounds, such as S
3
 and S

4
. Analyzing such 

data requires a quiet environment with minimum ambient 

noise. A heart murmur is defined according to its intensity, 

frequency, quality, configuration, duration, and radiation.

Normally, the performance of the filter naturally depends 

on prior information related to the statistical properties of 

the signal and the background noise. Digital filters such as 

finite impulse response filters are time-invariant and have the 

drawback whereby the spectrum of the biomedical signals 
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Figure 4 Processing of the HSS and ECG signals.
Abbreviations: HSS, hybrid spatial spectra; ECG, electrocardiogram.

overlaps with the background noise. In a related area of 

signal processing,8 Wiener filters are another denoising 

approach with a specific filter structure that provides optimal 

filtering in the mean-squared error sense. The drawback of 

this approach is that if the signal is time-frequency vari-

able and the assumption mode based on stationary process, 

then they do not give optimal results. One solution to the 

denoising problem is the use of the Kalman filter (KF). It 

provides a mean-squared value that can minimize the error. 

The KF supports estimates of past, present, and even future 

states, even when the precise nature of the modeled system 

is unknown.

On the other hand,9 a single-trial dynamical estimation 

is also used for event-related potentials (ERP). This is based 

on recursive Bayesian mean-square estimation, which in turn 

is based on the KF procedure. This proposed method gives 

excellent estimates for single trials. The design filters give 

reasonable estimates, even with poor signal-to-noise ratio 

(SNR). The Bayesian aspects of the method are another 

benefit of the KF, and it allows a feasible modeling of prior 

knowledge about the parameters. There are limited applica-

tions of using the KF for denoising of the hybrid spatial 

spectra. To the best of our knowledge, there are no studies on 

this filter for HSS. In this study, for every cycle of HSS, the 

KF is applied for denoising to recover a cleaner estimation 

of the signal. The recursive mean-square estimate for the 

state is given by KF.

Methods
The signal analysis framework used in this study is illustrated 

in Figure 4. HSS and the electrocardiogram (ECG) signals 

were identified and extracted from the acquired data. As men-

tioned before, auscultations of the heart provide clues to the 

diagnosis of many cardiac abnormalities. Thus, a heart-sound 

database is important in the development of an automatic 

heart diagnosis system. The database can be used in clinical 

work, research, and teaching of cardiac auscultation. The heart 

sounds were transduced using phonocardiography sensors and 

amplified with a preprocessing circuit. These signals were then 

digitized and stored. However, during collection of data, it was 

ensured that the data were not corrupted with unwanted noise 

or artifacts that would affect the performance of the system.

Even though the data were collected in a controlled envi-

ronment under normal clinical conditions, it was still difficult 

to collect data free from all the above problems. The heart 

signals were recorded using a Welch Allyn (Skaneateles, NY) 

Meditron Electronic stethoscope placed on the chest of the 

patient. There were ten sets (five normal and five abnormal) 

of data collected at Fakulti Perubatan, Universiti Teknologi 

MARA, Kampus Selayang, Hospital Selayang. Each patient’s 
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sound samples were recorded for a duration of 1 minute. 

Table 1 shows the different number of cycles collected over 

the different patients. The average number of cycles for 

the ten patients was 159. Patients with mild murmurs were 

grouped with the normal subjects. The need for computer-

aided auscultation of the heart and for having a standard clini-

cal practice for the recording of heart sounds are discussed 

in this investigation. Currently, there is no widely available 

large-scale database for development, evaluation purpose, 

and comparison of ECG and HSS algorithm. In addressing 

these issues, the standard practice carried out in this research 

was as follows: (1) in detecting heart murmurs, there are 

variations in the placement of the stethoscope, though for 

general examinations the standard location provides a useful 

reference point; (2) data collected must be under realistic 

conditions; and (3) preprocessing done to remove motion 

artifacts, breath noise, and background noise.

The collected sample of the heart sound can be corrupted 

by sudden movement of the stethoscope and from background 

noise such as conversation, as in Figure 3A. KF can be used 

to estimate the underlying nonstationary process for given 

observation in a minimum mean-squared error sense. This 

type of filter can be used in many applications10–12 and has 

proven to be a powerful filter. The region of electromag-

netic spectrum whereof biomedical signals overlaps with 

background noise have been described in an earlier section. 

The next section address the use of the KF to estimate the 

underlying nonstationary process.

As disease cells show different cell mechanical prop-

erties as compared to normal cells, fast disease detection 

is required. A number of researchers are working on cell 

attachment to substrate in order to understand the sticky force 

and the surface of substrate. It has been observed that if the 

sticky force is strong, the cell is healthy, and for weak sticky 

force the cell is damaged.12 The current work measured the 

beam deformation using piezoresistance of a single cell. We 

believe a similar approach can be used to measure vibration 

of heart sound from the surface of the skin.

State-space formulation and KF
This paper applied the state-space formulation originally 

proposed by Shindle7 for ERP estimation of heart-sound 

denoising.

	 Let y y y yt tt1 1 2: , , ..............,= { } 	 (1)
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The M signal measurement at the t-trial cycle is repre-

sented as a column vector y
t
,

	 y

y

y
t

t

= 



















	

(2)

if we assume θ
t
 is the denoised version of y

t
, which is hidden 

behind the background noise V
t
 and is to be estimated by KF. 

The observation equation of the signal is given by

	
t t ty V= +θ

	
(3)

where V
t
 is the independent and identical distribution (IID) 

Gaussian noise with zero mean and covariance V
t
∼IID N 

(O, R).

The dynamics of θ
t
 represent cycle-to-cycle variations 

that are assumed to follow first-order Gauss–Markov process, 

as shown in equation 3.

	 t t tWθ = θ +ς −1

	
(4)

where W
t
∼IID N(O, Q).

The observation noise covariance, R, and state noise 

covariance, Q, are assumed to be diagonal with identical 

values, ie, R Iv= 2σ  and Q Iw= 2σ .

All the model parameters are denoted by

	 θ σ σ=
v w
2 2{ },

	
(5)

The measurement sequence y
t
  =  T, and if 

t t

^
θ −1  and 

Pt

t
− 1  are the mean and covariance, respectively, represent-

ing one-step-ahead prediction density, and
t t
^θ  and Pt

t
  

are the mean and covariance of the f iltered density  
P y t( )| :θ 1 . The objective is to uncover the underlying clean 

cycle of heart sounds given the noise measurement; this can 

be obtained by estimating the filtered distribution of state θ
t
 

given observation Y
1:tY

, P(θ
t
|y

1:t
), using KF.

First, we initiate o o
^θ = 0  and o oP

^ = 1.

By denoting (θ
t|t
|P

t|t
) and ( | )|

^
|t t t t tP−θ −1 .

The mean and covariance filtering distribution, prediction 

distribution are described as respectively follows. The KF 

algorithm can be summarized as

For t = 1:T

Prediction step

	 t t t t− − −=
1 1 1,

^
,

^θ θ 	 (6)

	
t t t tP P Q− −= +

1 1
^ ^ 	 (7)

Computer Kalman gain

	
1 1 1K P Rt t= +( ) −−

	

(8)

Correction step

	
t t t t t t t t t tK Yθ θ θ= + −− −,

^

,
^( )	 (9)

	
t t t

t t
P k P= −( )1 	 (10)

Prediction error and prediction error covariance.

The prediction error can be as

	 t t t te y= − −1,
^θ

	
(11)

and the prediction error covariance as

	
et t tP P R= +−( )1

	
(12)

In this paper, instead of using measurement samples 

for y
t
, we use its wavelet coefficients, wherein the dimen-

sion of the state vector is greatly reduced, and hence the 

computational effort. The noisy heart-sound measurements, 

y
t
, are first transformed into a vector of wavelet coefficients 

before estimation of the θ
t
, which is its denoised version. 

The estimation θ
t
 is used to reconstruct the clean heart-sound 

signal. This method has been used10,11 for ERP estimation 

using particle filtering. Discrete wavelet transformation of 

biorthogonal 5.5 is used with an approximation coefficient 

of level -2.

Results and discussion
Effect of varying noise variance
In this section, the effects of variation in the parameters σ v

2 

and σ w
2 and comparison of these signals between normal and 

abnormal heart sound are studied. Selection of the optimal 

valves for noise variances σ v
2 and σ w

2 is important for KF. The 

ability to track the change of the state parameters is related 

to the ratio of state noise to observed variance 
w

2σ . A large 

value of noise is estimated at a stationary point, while small 

valves are unable to follow the abrupt changes and suffer a 

tracking lag.

We fixed v

2
1σ = , and allowed observation noise w

2σ  to 

change. The selection of optimal parameters involved only 

v
2σ . Figure  6A shows a patient with murmurs, while 6B 

shows a normal healthy person. In this experiment, v
2σ  was 
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kept constant, and 
w
2σ  was varied, with values of 0.0001, 

0.001, 0.01, 0.1, and 1.0. The figure clearly shows that as 

the value of w
2σ  gets bigger, the amplitude of the signals 

gets smaller, significant levels of the noise are removed, and 

a clear estimate of the underlying clean heart sound can be 

obtained. SNR is measured to compare the level of a desired 

signal to the level of background noise. It is defined as the 

ratio of signal power to the noise power. A ratio higher than 

1:1 indicates more signal than noise.

To quantify the estimation performance, we used SNR 

for heart sound, defined as follows

	 SNR  10 log = 10

2

2

σ
σ

s

N

	 (13)

where σ N
2  and σ S

2 are the noise and signal power estimated 

using averages over trial as

	 ˆ /[ ( )] ( )σ N nk k
k

K

n

J

K J y y2 2

11
1 1= − −∑∑

==
	 (14)

	 ˆ /[ ( )] ( ˆ / )σ σS K N
K

K

K J y J2 2 2

1
1 1= − ∑

=

− 	 (15)

where y J yk nkn
J= ∑ =( / )1 1  is the ensemble average of 

trials.

The goal of this study was to maximize the SNR so that 

accurate conclusions could be drawn. The experiment was 

carried out in order to obtain a good quality of heart-sound 

signal. Actual implementation of the system in a hospital 

may be met with a noisy environment. The patient may move 

during recording, causing impulse-like noise in the recorded 

heart sound due to friction between the stethoscope’s chest 

piece and the patient’s chest. In this experiment, the robustness 

of the system against noise was tested. Table 2 shows SNR 

average over ten patients. The best performance was with 

w
2σ  = 0.0001, where SNR (decibels [dB]) gave a value of 

10.3, and the worst value came from w

2σ  = 1.0 with SNR = 1.1 

(dB) for normal. The SNR with abnormal patients provided 

the best results, with values of 5.4 and 0.3, respectively, 
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Figure 5 Overall average signal-to-noise ratio (SNR) of the ten patients.
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Figure 6 (A) Abnormal heart sound from a patient after the filtering process; (B) normal heart sound from a patient after the filtering process.

with 
w
2σ  = 0.0001. Figure 5 shows the overall average result 

of the SNR with different variations over the ten patients.

The goal of this research was to improve the quality and 

maximize the SNR for the respective heart sounds. Figure 6A 

shows the SNR of the original noisy heart-sound cycles and 

after the KF process. The SNR cycles after the KF show 

significant improvement over the original noisy cycles, which 

shows a significant reduction in noise. Figure  6B shows 

less turbulence for normal heart sound (rise and fall) at the 

systolic and diastolic areas, while 6A shows high turbulence 

for abnormal heart sound in these areas. Heart murmurs are 

related to valvular heart disease and typically diagnosed by 

examining the spectral characteristics of the heart sound with 

additional information such as amplitude and timing. The 

preprocessing of this filtered signal plays a significant role 

before any features can be extracted from the signal.
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Conclusion
This work addressed the need for a framework that provides 

tools to automatically segment heart sounds into individual 

cardiac cycles. The relative contribution of each analytical 

stage to identify murmurs has been evaluated. Since heart 

murmurs can be systolic, diastolic, or continuous, they are 

accompanied by different intensity grades. Some systolic 

murmurs have proven to be clinically innocent, while all 

the diastolic and continuous murmurs are classified as 

abnormal.6,13–15 The KF is proposed as a preprocessed signal 

to evaluate system performance based on mel-frequency 

cepstral coefficients and Gaussian mixture model classifiers. 

Accessing a heart-murmur analysis system is complicated in 

terms of its effect on the preprocessing stage, feature extrac-

tion, and classification of the heart. First, the types of features 

used in this area to analyze the acoustic cardiac signals are 

extensive and followed by performance measures on the 

classification scheme. Normally, the raw data, y
t
, of the heart 

murmurs depends on θ
t
, the denoted version of V

t
, which is 

hidden behind the background noise. In this research, an 

estimation has been used to reconstruct the clean heart sound 

and to improve the quality, with a view to maximizing the 

SNR of the heart-sound signals.
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