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Abstract: Radiation pneumonitis (RP) is an important dose-limiting toxicity during thoracic 

radiotherapy. Previous investigations have shown that curcumin is used for the treatment of 

inflammatory conditions and cancer, suggesting that curcumin may prevent RP and sensitize 

cancer cells to irradiation. However, the clinical advancement of curcumin is limited by its poor 

water solubility and low bioavailability after oral administration. Here, a water-soluble lipo-

somal curcumin system was developed to investigate its prevention and sensitizing effects by an 

intravenous administration manner in mice models. The results showed that liposomal curcumin 

inhibited nuclear factor-κB pathway and downregulated inflammatory factors including tumor 

necrosis factor-α, interleukin (IL)-6, IL-8, and transforming growth factor-β induced by thoracic 

irradiation. Furthermore, the combined treatment with liposomal curcumin and radiotherapy 

increased intratumoral apoptosis and microvessel responses to irradiation in vivo. The signifi-

cantly enhanced inhibition of tumor growth also was observed in a murine lung carcinoma 

(LL/2) model. There were no obvious toxicities observed in mice. The current results indicate 

that liposomal curcumin can effectively mitigate RP, reduce the fibrosis of lung, and sensitize 

LL/2 cells to irradiation. This study also suggests that the systemic administration of liposomal 

curcumin is safe and deserves to be investigated for further clinical application.
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Introduction
Radiotherapy is one of the most important treatment modalities for many thoracic 

malignancies including lung cancer, breast cancer, lymphoma, thymoma, and esopha-

geal cancer. However, radiotherapy-induced lung toxicity frequently affects the out-

come of radiotherapy. Radiation pneumonitis (RP), which represents the acute phase 

of radiation-induced lung injury, is the major dose-limiting toxicity in radiotherapy for 

thoracic radiation. Despite recent improvements having been made on the delivery of 

radiotherapy, such as intensity-modulated radiotherapy and image-guided radiotherapy, 

clinically significant RP still develops in 13%–37% of patients receiving radical dose 

radiation therapy.1 RP-inducing acute clinical symptoms, mainly respiratory systemic 

symptoms, frequently result in radiotherapy failure. About 10%–15% patients develop 

severe lung toxicity after thoracic radiation.2 This is a significant problem and is con-

tributory to noncancer-related deaths in patients receiving radiotherapy.3,4 Another 

consequence of RP is lung fibrosis, which leads to shortness of breath, diminished 

quality of life, and reduced activities of daily living accordingly.

At the molecular level, RP is believed to be a consequence of a cascade of cytokine 

production.5 Nuclear factor (NF)-κB, a transcription factor, plays a central role in the 
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induction of cytokine expression in inflammatory response 

including the radiation-induced cascade of inflammatory 

responses and the further activation. Thus, inhibition of 

NF-κB is radioprotective for the lung and may be a synergetic 

strategy for cancer therapy.6–8

Curcumin, a NF-κB inhibitor, is used for the treat-

ment of inflammatory conditions and cancer, and can 

sensitize tumors to radiation including colorectal cancer, 

prostate cancer, and some squamous cell carcinoma.9–13 

Accumulating evidence also suggests that curcumin 

may be an ideal radioprotector for radiotherapy-induced 

lung injury. First, as a natural antioxidant, curcumin can 

capture and remove the free radicals caused by damage, 

and enhance the activity of superoxide dismutase.14 Sec-

ond, curcumin exerts multiple anti-inflammatory effects 

through the inhibition of the NF-κB pathway and decreases 

the release of inflammatory factors including monocyte 

chemotactic protein (MCP)-1, interleukin (IL)-1, and 

tumor necrosis factor (TNF)-α,10,15–18 Third, curcumin is 

believed to be a promising medicine for inhibiting, even 

correcting fibrosis.19,20 Therefore, curcumin is an ideal drug 

for preventing and treating RP, retarding fibrosis, and sen-

sitizing radiotherapy. However, the clinical advancement 

of curcumin has been limited by its poor water solubility, 

short biological half-life, and low bioavailability after oral 

administration.21–23 Development of intravenous adminis-

tration with curcumin is a promising approach to resolve 

these issues for further application.24

Materials and methods
Animals and cell lines
C57BL/6J mice were purchased from the West China 

Experimental Animal Center. Murine Lewis lung carcinoma cell 

line LL/2 and macrophage cell line RAW264.7 was purchased 

from American Type Culture Collection (Manassas, VA). 

Both cell lines were cultured in Dulbecco’s modified Eagle’s 

medium (Invitrogen, Carlsbad, CA), each supplemented with 

10% (vol/vol) fetal bovine serum (Invitrogen).

Preparation of curcumin-loaded liposomes 
(Lipo-cur) and empty liposomes
Lipo-cur were prepared by thin film method. Briefly, 18:1:1 

lecithin/cholesterol/curcumin (weight ratio) were dis-

solved in ethanol and evaporated to dryness under reduced 

pressure in a rotary evaporator. The dried lipid film was 

hydrated with phosphate-buffered solution (PBS) for 1 hour 

at 55°C. Then, the lipid suspension was extruded through 

0.4 µm and 0.1 µm pore size polycarbonate membranes on a 

nitrogen-driven Lipex lipid extruder (Northern Lipids Inc, 

Burnaby, BC, Canada). The empty liposomes were prepared 

as described above without addition of curcumin. The lipo-

somes were prepared in triplicate.

Characterization of Lipo-cur
Particle size and zeta potential of the Lipo-cur were deter-

mined by Malvern Nano-ZS 90 (Malvern Instruments, 

Worcestershire, UK). A transmission electron microscope 

(H-6009IV, Hitachi, Japan) was used to observe the morphol-

ogy of the Lipo-cur. The liposome dispersions were diluted 

five times with ultrapure water, dropped on copper grids with 

films and negatively stained with 2% (w/v) phosphotungstic 

acid, and dried at room temperature. Drug loading (DL) and 

encapsulation efficiency (EE) of Lipo-cur were determined as 

follows. Briefly, 10 mg of the lyophilized Lipo-cur was dis-

solved in 0.1 mL chloroform and then diluted with methanol. 

The amount of curcumin was determined by high perfor-

mance liquid chromatography (HPLC, Waters Alliance 2695, 

Waters, Milford, MA). Solvent delivery system was equipped 

with a column heater and a plus autosampler. Detection was 

carried out on a Waters 2996 detector. Chromatographic 

separations were performed on a reversed-phase C18 column 

(4.6 mm × 150 mm, 5 µm, Sunfire Analysis column), with 

the column temperature kept at 28°C. Methanol–0.3% acetic 

acid (80/20, v/v) was used as eluent at a flow rate of 1 mL 

min−1. Finally, the DL and EE of Lipo-cur were calculated 

according to the following equations:

 
DL =

Mc

Ml Mc+
× 100%  (1)

 
EE

Mc

M
= × 100%  (2)

where Mc, Ml, and M stand for the amount of encapsulated 

curcumin, the amount of lipids, and the amount of total 

curcumin used, respectively. All the experiments were 

performed in triplicate.

In-vivo toxicity of Lipo-cur
Lipo-cur (10 mg/kg) and normal saline (NS) were injected 

into C57BL/6J mice through the tail vein. The injections 

were continued for 7 days. The weight of mice was observed 

before the treatment and after 180 days; the survival of mice 

was also observed. Then the mice were sacrificed to obtain 

the liver, kidney, lung, spleen, brain, and heart for histo-

pathological analysis.
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Mice models and treatments
For the RP model, C57BL/6J mice were randomly assigned 

to receive hemi-lung radiation at a modified dose of 14 Gy 

as described previously.25 The hemi-lung radiation was per-

formed by placing pentobarbital-anesthetized mice individu-

ally in a plastic restrainer inside a 1.5 inch thick cerrobend 

shield that had a window (3.0 cm × 1.5 cm) exposing the 

right thoracic region to the radiation source.

Mice were kept at room temperature during radiation. 

The shield reduced the radiation dose to protected tissues by 

greater than 95%. Lipo-cur (5 mg/kg) and empty liposome 

was injected into each of the two groups of C57BL/6J mice 

through the tail vein on the second day after the RP model 

was established. The injections were continued for 7 days. 

Mice were sacrificed to obtain the blood plasma at 1, 2, 3, 4, 

5, and 6 weeks after radiation. In addition, the experiments 

were repeated; three mice per group were sacrificed to harvest 

lungs for histological analysis.

For the LL/2 Lewis lung carcinoma model, 5 × 105 

LL/2 Lewis lung carcinoma cells were subcutaneously 

injected in a total volume of 50 µL into the right leg of 

C57BL/6J mice (n = 6 per group). One group was treated 

with Lipo-cur by intravenous injection once a day for 

2 weeks; one group was treated with radiation therapy once 

every 3 days with 5 Gy 5 times (total dose = 25 Gy), one 

group was treated with the two modalities. One group was 

treated with empty liposome as a control. Tumors were 

measured. Tumor volume was calculated according to the 

formula: volume = width2 × length × 0.52.

Detection of chemokine production  
by enzyme-linked immunosorbent  
assay (ELISA)
IL-6, IL-8, IL-10, TNF-α, and transforming growth factor 

(TGF)-β cytokine concentration were measured by ELISA 

and expressed as pg/mL in plasma. Thawed plasma (200 µL) 

was used in the ELISA according to the manufacturer’s 

instructions. Optical absorbance was determined using an 

EXL-800 microplate reader.

Chemotaxis and chemokinesis assays
Murine macrophage-like (RAW264.7) cells were used to 

assess the effects of Lipo-cur to inhibit the activity of NF-κB. 

Migration of macrophage cell lines across a 10 pm thick 

Nucleopore® (Whatman plc, Maidstone, Kent, UK) polycar-

bonate filter containing 5 pm holes was measured in a 24-well 

chemotaxis chamber. The top wells contained 50,000 cells in 

minimum essential medium with 10% heat-inactivated fetal 

calf serum, and the bottom wells contained a 1:100 dilution of 

endotoxin-activated mouse serum in Roswell Park Memorial 

Institute 1640 medium. The cells were then incubated for 

4 hours at 37°C in an atmosphere of 5% CO
2
, 95% air.

Migrated cells were counted. AS605240 was used as a 

positive control as described previously.26 In most experi-

ments, less than 1% of the input cells migrated in the absence 

of attractant.

Electrophoretic mobility shift  
assays (EMSA)
NF-κB activation was analyzed by EMSA as follow. EMSA 

were performed by incubating 2.5 µg of nuclear extract in 12 

µL of binding buffer [5 mmol/L HEPES (4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid), pH 7.9, 5 mmol/L MgCl
2
, 

50 mmol/L KCl, 0.5 mmol/L dithiothreitol, 0.4 mg/mL 

poly(dI-dC) (Pharmacia Biotech, Piscataway, NJ), 0.1 mg/mL 

sonicated double-stranded salmon sperm DNA, and 10% 

glycerol] for 10 minutes at room temperature. 32P end-

labeled 45-mer double-stranded NF-κB oligonucleotide 

from HIV-I long-terminal (5′- TTGTTACAAGGGACTTTC-

CGCTGGGGACTTTCCAGG- GAGG CGTGG-3′) was 

added and incubated for 30 minutes at 37°C, and the DNA– 

protein complex resolved in a 6.6% native polyacrylamide 

gel. A 32P-labeled oligonucleotide probe (30,000 cpm) 

was then added, and the reaction mixture was incubated for 

another 10 minutes at room temperature. For reactions involv-

ing competitive oligonucleotides, the unlabeled competitor, at 

100-fold molar excess, and the labeled probe were premixed 

before addition to the reaction mixture. For supershift assays, 

the reaction mixture minus the probe was incubated with 2 

µL of specific antibodies to NF-κB proteins for 30 minutes 

at room temperature. The 32P-labeled oligonucleotide probe 

was then added, and incubation was continued for 15 minutes. 

The samples were analyzed on 6% acrylamide gels. The gels 

were pre-electrophoresed at 12 V/cm for 1.5 hours at room 

temperature and 0.5 hours in a cold room, and the electropho-

resis was continued at the same voltage for another 2 hours at 

room temperature. Gel contents were transferred to Whatman 

chromatography paper (Markson Lab Sales, Hillsboro, OR), 

dried, and exposed to a PhosphorImage screen (Molecular 

Dynamics, Sunnyvale, CA) for 3 hours.

Immunohistochemistry  
and alginate-encapsulate tumor cell assay
To explore whether the antitumor immunity involved the 

inhibition of angiogenesis, detection of vessel density in 

tumor tissue and angiogenesis in vivo was done as described 
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previously.27 Frozen sections were used to determine 

vessel density with an anti-CD31 antibody. In addition, an 

alginate-encapsulate tumor cell assay was done. One group 

was treated with Lipo-cur by intravenous injection once 

a day for a week, and one group was treated with empty 

 liposome. After 12 days, mice were injected intravenously 

with 0.1 mL of a 100 mg/kg fluorescein isothiocyanate 

(FITC)-dextran (Sigma) solution. Alginate beads were 

photographed after being exposed surgically and then 

rapidly removed 20  minutes after FITC-dextran injection. 

The uptake of FITC-dextran was measured as described 

previously.28

Histopathological analysis
Hematoxylin-eosin (HE) staining and picric acid-Sirius red 

dyeing were performed. Mouse lungs were fixed by perfusion 

with 4% paraformaldehyde-PBS before routine processing 

and paraffin embedding. Sections (3 µm) were stained with 

HE for histological examination. The Ashcroft score was 

used for semiquantitative assessment of fibrotic changes.29,30 

The severity of fibrotic changes in each histological section 

of the lung was assessed as the mean score of severity from 

observed microscopic fields. Thirty fields in each section 

were analyzed. After examination of the whole fields of the 

section, the mean of the scores from all fields was considered 

the fibrotic score. To prevent bias of observation, grading 

was done in a blinded fashion by two observers.

Statistical analysis
SPSS Statistics (IBM Corporation, Somers, NY) software, 

version 11.5, was used for statistical analysis. The statistical 

significance of results in all of the experiments was deter-

mined by Student’s t-test and analysis of variance. Survival 

curves were compared by the log-rank test. The findings were 

regarded as significant if P , 0.05.

Results
Here, Lipo-cur with good water solubility was developed 

to explore its radioprotective effects for lung tissue, and 

sensitizing activity to lung cancer cells, in mice models with 

radiation. The study showed that a systemic administration 

of Lipo-cur could inhibit RP and sensitize lung carcinoma 

to radiation.

Preparation and characterization  
of Lipo-cur
Liposomes have been widely used carriers for lipophilic 

drugs.31,32 By preparing liposomes in this study, the 

concentration of curcumin in aqueous phase was significantly 

increased.

The Lipo-cur had a DL and an EE of 5.0 ± 0.2 and 

90.1 ± 1.7, respectively (n = 3). The liposomes were char-

acterized by photon correlation spectroscopy and exhibited 

a mean particle size of 114.9 ± 7.3 nm. The polydispersity 

index was 0.15 ± 0.04, indicating a very narrow particle size 

distribution. The liposomes were negatively charged, with a 

zeta potential of −2.62 ± 0.51 mV (n = 3). The particle size 

observed by transmission electron microscopy was consistent 

to that determined by particle size. The irregular surfaces of 

the spheres were probably ascribed to the dehydration process 

during sample preparation.

The appearance of curcumin aqueous solution, Lipo-cur, 

and curcumin ethanol solution are shown in Figure 1D. As 

curcumin is water-insoluble, its PBS solution was turbid. 

In contrast, the Lipo-cur solution was a translucent, yellow 

dispersion without sedimentation. The curcumin ethanol 

solution was clear and transparent.

Detection of toxicity
The mice treated with Lipo-cur were in particular investi-

gated for the potential long-term toxicity. No adverse con-

sequences were indicated in gross measures such as weight 

loss (Figure 2A), ruffling of fur, or life-span (Figure 2B). 

Furthermore, no pathologic changes of liver, kidney, lung, 

spleen, or brain were found by the microscopic examination 

(data not shown).

Effect of curcumin treatment on RP  
from single fraction X-ray radiation  
to the thorax in mice
Lungs were analyzed at 7, 14, 21, 28, 35, and 42 days for the 

onset of the pneumonitis reaction. Histopathologic changes 

were judged by two independent investigators in a blinded 

manner. These results revealed that radiation once with 

14 Gy lead to an increase in acute inflammatory infiltrate in 

the  interstitium. The mice from the control group developed 

pathognomonic alterations characteristic of pneumonitis, 

including alveolar wall thickness, interstitial edema, and 

interstitial and peribronchial inflammation after radiation. 

However, the lung tissue from the Lipo-cur-treated group only 

showed slight histopathologic changes during the 6 weeks 

(Figure 3A). The murine lung inflammation from the control 

group had further developed until progressive fibrosis of 

interstitium, while the systemic and repeated administra-

tion of Lipo-cur not only inhibited the onset of RP, but also 

retarded its process and sequelae (Figure 3B). The degree of 
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type I collagen deposition was confirmed by lung histology 

stained with Picric Acid-Sirius Red (Figure 4A). As antici-

pated, lung tissue specimens from the empty liposome 

group showed extensive Picric Acid-Sirius Red staining, 

indicating type I collagen deposition inside the alveolar wall. 

This suggested that the degree of lung fibrosis in the control 

group significantly increased compared with that in the Lipo-

cur-treated group (P , 0.01) (Figure 4B).

Cytokine plasma levels at the onset  
of RP mice
As a result of clearing apoptotic cells or as a direct response 

to radiation, the activation of macrophages may cause 

cytokine production, leading to lung injury.33 Here, the 

inhibitory effects of curcumin on activation of macrophages 

was  investigated. The results showed that curcumin not only 

inhibited the activity of NF-κB, but also blocked the migra-

tion of macrophages (Figure 5A and B). In vivo, plasma 

levels of both curcumin and NS group for IL-6, IL-8, TNF-α, 

and TGF-β cytokine concentration were measured at the first 

month of RP. The level of TGF-β from the Lipo-cur treatment 

group was lower than the NS group from the first week to the 

fourth week. Moreover, the level of TGF-β in the third week 

and fourth week was lower than that in the first week and 

second week in the Lipo-cur treatment group (Figure 5C). No 

difference of TNF-α and IL-8 was observed between the NS 

group and Lipo-cur group after the first week, but the level 

of TNF-α and IL-8 of the Lipo-cur group was lower than in 
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the NS group after the second week (Figure 5D and E). The 

level of IL-6 from the Lipo-cur treatment group was lower 

than the NS group from the first week to the fourth week; 

it reached its peak at the second week and then showed a 

gradual downward trend (Figure 5F).

Effects of curcumin and radiotherapy  
on tumor treatment
It has been reported that curcumin sensitizes human colorectal 

cancer xenografts in nude mice to gamma-radiation by target-

ing NF-κB-regulated gene products. The sensitizing effects 

of curcumin on murine lung cancer cells were investigated in 

LL/2 Lewis lung carcinoma cell model. There was significant 

inhibition of tumor growth in mice treated with curcumin 

plus radiotherapy. Although the antitumor effects were also 

detected in mice treated with curcumin and radiotherapy 

separately, the data suggest that the combined treatment of 

curcumin and radiotherapy can elicit an enhanced antitumor 

effect (Figure 6A and B). The further data from terminal 

deoxynucleotidyl transferase dUTP nick end labeling 

(TUNEL) test also revealed curcumin plus radiotherapy 

induced significantly increased cellular apoptosis (Figure 6C 

and D). Therefore, the data suggest that Lipo-cur not only 

inhibit the process of RP, but also sensitize the antitumor 

effect of irradiation.

Inhibition of angiogenesis
A previous study indicates that irradiation induces endothelial 

cell apoptosis and resulting microvascular damage regulates 

tumor cell response to radiation.34 Accumulating evidence 

have been documented that curcumin inhibits angio-

genesis by targeting endothelial cells.35–37 In this study, 
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immunohistochemical staining (Figure 7A) of the tumor 

tissue from curcumin-treated mice with an anti-CD31 anti-

body showed significantly decreased microvessel density 

compared with that of the empty liposome group. Interest-

ingly, the microvessels were still obviously observed in 

tumor tissue from single irradiation-treated mice; however, 

both the microvessels and cancer cells showed morphologic 

abnormality, suggesting the damages and disfunction of these 

microvessels. The combined treatment with Lipo-cur plus 

radiotherapy resulted in significantly decreased microvessels 

(Figure 7A and B). In addition, inhibition of angiogenesis 

could also be detected in the alginate-encapsulate tumor 

cell assay (Figure 7C and D). New blood vessels in alginate 

beads from curcumin therapic mice were apparently sparse. 

Besides, FITC-dextran uptake was significantly decreased 

from Lipo-cur-treated mice. These findings further support 

that curcumin effectively inhibits tumor angiogenesis; it is a 

possible mechanism to sensitize LL/2 Lewis lung carcinoma 

cells to radiotherapy.

Discussion
Drug-loaded liposomes are expected to decrease the plasma 

clearance rate of the drug compared with free drug, and cor-

respondingly enhance the therapeutic efficacy.38  Therefore, 

developed in this work was a water-soluble Lipo-cur 

system.

RP is a common complication of thoracic radiother-

apy, and especially occurred in patients with lung cancer. 

Prevention and treatment of RP not only ameliorate patients’ 

clinical symptoms, but also improve the long-term survival 

quality. An optimal drug should be expected not only to 

prevent or treat RP, but also generate additional or synergic 

antitumor effects. This study suggests that the systemic 

administration of Lipo-cur can provide the double inhibi-

tory effects on both RP and cancer.

The lung tissues exposed to the ionizing radiation are 

likely to be affected not only by the radiation results on 

DNA but also by the activity of pro-inflammatory cytokines, 

which include IL-1α, IL-1β, TNF-α, IL-6, IL-8, and TGF-β. 
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Figure 5 Lipo-cur inhibits the activation of macrophages and downregulates the serum levels of pro-inflammatory cytokines. The inhibitory effect of Curcumin on activation 
of macrophages was detected first.  (A) Curcumin inhibited the activity of NF-κB of macrophages. (B) Curcumin blocked the migration of macrophages (MCP-1, Cur: 
Cur+MCP-1, AS605240: AS605240+MCP-1). Then, the serum levels of both the Lipo and Lipo-cur group for IL-6, IL-8, TNF-α, and TGF-β cytokine concentration were 
measured at the first month of RP, mice in each group were bled for serum at the end of week 1, 2, 3, and 4 after being treated with Lipo or Lipo-cur. (C) The level of TGF-β 
from the Lipo-cur treatment group and the Lipo group. (D) The level of TNF-α from the Lipo-cur treatment group and the Lipo group. (E) The level of IL-8 from the Lipo-
cur treatment group and the Lipo group. (F) The level of IL-6 from the Lipo-cur treatment group and the Lipo group.
Notes: Data are mean ± standard error of the mean; *denotes P , 0.05 between groups.
Abbreviations: Cur, curcumin; IL, interleukin; Lipo, empty liposome; Lipo-cur, liposomal curcumin; MCP, monocyte chemotactic protein; NF, nuclear factor;  
TGF, transforming growth factor; TNF, tumor necrosis factor.
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Although the target cell population and the underlying 

mechanism that initiates the process of RP in the lung remain 

unknown, it is accepted that a perpetual cascade of cytokine 

expression patterns are important for radiation-induced 

pneumonitis.5,39 The current working hypothesis suggests 

that complex alterations involve endothelial cells, pneumo-

cytes, macrophages, and other resident and transient cells.39,40 

Cytokines are produced not only in the normal lung tissue 

after radiation, but also overexpressed in tumor cells of non-

small cell lung cancer (NSCLC) specimens. For example, 

IL-6 is produced by lymphocytes, macrophages, fibroblasts, 

endothelial cells, bronchiolar epithelium, and some tumor 

cells.41,42 Notably, a recent study has suggested that tumor 

is the major source of circulating cytokines in patients with 

advanced NSCLC who have received RT,43 which supports 

the idea that tumor cells play more important roles in the 

process of RP. Therefore, the prevention and treatment of 

RP should not only aim to cascade signaling of cytokines, 

but also to reduce the release of cytokines from various cells, 

especially cancer cells.

A previous study has shown that ionizing radiation can 

directly activate NF-κB in various tumor cells and endothe-

lial cells,6 while the activation of NF-κB plays a central 

role in the regulation of multiple cellular processes such as 

inflammation, immune response, differentiation, prolifera-

tion, apoptosis, and carcinogenesis. In the process of RP, 

NF-κB, as an important transcription factor, plays double 

roles both in producing and signaling of pro-inflammatory 

cytokines.7,44 Pro-inflammatory genes can be expressed 

in various cells including T cells, macrophages, endothe-

lial cells, and especially tumor cells, while inhibition of 

NF-κB results in a decrease of the cytokines in these cells.45 

Therefore, decreasing the secretion of cytokines from these 

cytokine-producing cells and downregulating cytokine sig-

naling in possible target cells are necessary to effectively 

inhibit the process of RP. Accumulating evidence has shown 

that curcumin inhibits the activity of NF-κB in various 

cells.10,45,46 The macrophage plays multiple roles in tissue 

injury and is involved in production and signal transduction 

of pro-inflammatory cytokines through the NF-κB-dependent 

way.34,47,48 The current study showed that curcumin effectively 

inhibits activity of murine macrophage-like (RAW264.7) 
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Figure 6 Lipo-cur sensitizes cancer cells to RT. (A and B) C57BL/6J mouse tumor 
model was established by subcutaneous injection with 5 × 105 LL/2 cells. Mice 
(six mice in each group) were treated with 100 µg of Lipo-cur (▲) (intravenous 
route), RT (◊), Lipo-cur (intravenous route) and RT (■), or Lipo solution alone (●). 
Significant difference was found in tumor volume (*denotes P , 0.05) between RT-
curcumin group and those two methods alone. Points, mean (n = 8); bars, standard 
deviation. (C and D) Apoptosis of lung cancer cells was detected using TUNEL 
analysis. The percentage of apoptosis was determined by counting the number of 
apoptotic cells and dividing by the total number of cells in the field (five high power 
fields per slide).
Notes: The combined  treatment  with  Lipo-cur  and  RT  resulted  in  significantly 
increased apoptosis compared with that of other groups (*denotes P , 0.05, 
**denotes P , 0.01); bars, standard deviation; columns, mean.
Abbreviations: Lipo, empty liposome; Lipo-cur, liposomal curcumin; RT, radiotherapy; 
TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling.
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Figure 7 Inhibition of angiogenesis within tumors. (A and B) Frozen sections of 
tumor tissue were tested by immunohistochemical analysis of anti-CD31 antibody, 
and  vascular  density was  quantified  by  counting  the  number  of microvessels  per 
high power field (×400). Vessel density of tumor tissues from combined treatment 
with Lipo-cur and RT indicated a decrease compared with the phosphate-buffered 
saline group (five high power fields per slide). (C and D) Alginate beads containing 
1 × 105 LL/2 cells per bead were then implanted subcutaneously into the backs of 
mice. One group was treated with curcumin by intravenous injection once a day 
for 1 week, and one group was treated with normal saline. Beads were surgically 
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cells, which further proved that curcumin could mitigate RP 

through inhibition of the NF-κB pathway.

As we know, the process of RP involves a complicated 

signal network of cytokines and chemokines. The biological 

effects of TNF-α are achieved by activation of signaling cas-

cades that elicit a pro-inflammatory gene expression program, 

leading to an increased vascular permeability, and a hallmark 

of the inflammatory response.49 IL-6 plays important roles 

in the regulation of immune response and inflammation, 

and can be used as a predictor of RP.50,51 IL-8 not only is a 

pro-inflammatory cytokine but also stimulates collagen syn-

thesis and matrix production, even angiogenesis.52,53 TGF-β 

expression in response to radiation plays an important role in 

postradiation lung injury, which results in collagen deposition, 

increased alveolar wall thickness, and endothelial damage.54,55 

In this study, the systemic treatment with Lipo-cur resulted in 

the significant decreased sera levels of TNF-α, IL-6, IL8, and 

TGF-β, which further relieved the inflammation and fibrosis 

of the irradiated lung. Therefore, the present study documents 

that curcumin can be used as a protector for RP.

Accumulating evidence has shown that curcumin 

sensitizes cancer cells to radiation and chemotherapy by 

targeting the NF-κB pathway.11,38 Moreover, curcumin has 

shown to inhibit the functions of endothelial cells by target-

ing the NF-κB/Akt pathway.56,57 It is accepted worldwide 

that angiogenesis plays a pivotal role in tumor growth and 

metastases, and radiation-inducing endothelial cell apoptosis 

regulates tumor response to radiotherapy.35 The results of this 

present study further support that the systemic administra-

tion of Lipo-cur may sensitize the murine lung cancer cells 

to radiation by inhibiting angiogenesis and show systemic 

antitumor effects. Therefore, compared with other radiation 

protectors and therapeutic drugs of RP, such as amifostine 

and dexamethasone, curcumin may play another irradiation 

sensitizer role in further clinical application for the patients 

receiving thoracic radiotherapy.

A Phase I study which involved curcumin-dose escala-

tion evaluation found no trace of curcumin at oral doses of 

500–8000 mg/d, and only trace amounts in a minority of 

patients at 10–12 g of curcumin intake per day.22 The therapeu-

tic effects of curcumin are mainly limited by oral administration 

due to the reduced bioavailability.58,59 A variety of approaches 

are being pursued to overcome these limitations, which include 

synthesis of curcumin analogues, the use of adjuvants (eg, 

piperine), and the development of improved delivery platforms 

for the parental compound, including liposomal, nanoparticu-

lated, and phospholipid complex formulations of curcumin.23 

In this present study, the  injectable  Lipo-cur was prepared and 

a systemic administration  performed. The effects of Lipo-cur 

were confirmed effectively; moreover, there were no observed 

side effects in vivo.

In summary, this study indicates that Lipo-cur may be 

an optimal radiation protector against RP and sensitizer for 

radiation therapy. The systemic administration of Lipo-cur 

for patients who receive thoracic radiation should be inves-

tigated in further clinical trials.

Conclusion
In this study, a water-soluble Lipo-cur system was success-

fully developed. The results indicate that Lipo-cur can effec-

tively mitigate RP, reduce the fibrosis of lung, and sensitize 

LL/2 cells to irradiation. This study also suggests that the 

systemic administration of Lipo-cur is safe and deserves to 

be investigated for further clinical application.
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