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Abstract: For many years, central dogma defined multiple sclerosis (MS) as a T cell-driven 

autoimmune disorder; however, over the past decade there has been a burgeoning recognition that 

B cells contribute to the pathogenesis of certain MS disease subtypes. B cells may contribute to 

MS pathogenesis through production of autoantibodies (or antibodies directed at foreign bodies, 

which unfortunately cross-react with self-antigens), through promotion of T cell activation via 

antigen presentation, or through production of cytokines. This review highlights evidence for 

antibody-dependent and antibody-independent B cell involvement in MS pathogenesis.
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Introduction
Multiple sclerosis (MS) is a common and progressive neurological disease that affects 

over 1 million people worldwide, with the Canadian Prairies showing among the highest 

incidence rates in the world.1 This demyelinating autoimmune disease usually presents 

in the prime of life and is associated with marked physical and cognitive disabilities 

and a shortened life span.2 Classically described as a neuroinflammatory autoimmune 

disease that targets the myelin in the brain and spinal cord, this complicated disease has 

an unknown etiology and no known cure. It presents with varying symptoms such as 

muscle fatigue, paralysis, loss of sensation/numbness, and pain, as well as emotional 

impairments such as depression and other mood disorders. The disease has diverse 

phenotypes.3 The majority of MS patients initially present with subacute attacks, 

with symptoms and signs referable to the central nervous system (CNS) – defined 

as a clinically isolated syndrome (CIS).4 When the attack is followed by a complete 

or partial remission which is then followed by another attack(s), often focused in a 

different location in the CNS and possibly of higher intensity, the disease course is 

defined as relapsing and remitting MS (RRMS).4 Patients who present with a gradually 

progressive course without a well-defined initial attack are presenting with primary 

progressive MS (PPMS).4 Secondary progressive MS (SPMS) is characterized by CIS 

or RRMS followed by progressive clinical worsening over time, generally 3 years or 

more after the onset of disease.4

The pathology of MS includes penetration of leukocytes across the blood–brain 

barrier (BBB), intrathecal production of antibodies, and neuroinflammation, which 

leads to demyelination and astrocytic and/or neuronal/axonal injury.2,5 In a recent study, 

Lucchinetti et al used immunohistochemistry to characterize demyelinating activity, 
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inflammatory infiltrates, and the presence of meningeal 

inflammation in cortical lesions from a cohort of patients with 

early-stage MS.6 They observed that cortical demyelination 

was common in the early stages of MS, that the majority 

of cortical lesions studied were positive for CD3+ T cells, 

and that a subset were positive for CD20+ B cells. Further, 

there was a strong topographic association between cortical 

demyelination and meningeal inflammation suggesting a 

direct relationship between inflammation and demyelination. 

The authors speculate that the reason why inflammatory 

cortical demyelination is not typically observed in chronic, 

progressive MS may relate to efficient clearance of cortical 

inflammation over time and thus does not preclude the pos-

sibility that inflammation may contribute to demyelination at 

its onset.6–11 Recent work highlighting how B cells contribute 

to inflammation and pathogenesis of certain MS disease 

subtypes are explored in this review.12,13

Evidence that intrathecal B cells 
contribute to MS pathogenesis
In the majority of MS patients, B cell numbers are elevated 

in the CNS.14 In an extensive histopathological study on 

actively demyelinating lesions obtained from MS patient 

biopsies and autopsies, four distinct lesion patterns were  

observed.15 Pattern II lesions, but not lesions following 

pattern I, II, or IV, were positive for B cells and they had 

prominent antibody deposition and complement components 

at sites of active myelin destruction.15 In other studies, immu-

nohistochemical analysis of brain and spinal cord sections 

revealed lymphoid follicle-like structures containing T cells, 

B cells, and plasma cells in the cerebral meninges in patients 

with SPMS, but not in patients with RRMS or PPMS.16–18 

These results suggest de novo formation and maintenance 

of ectopic lymphoid structures that contribute to increased B 

cell production in patients with active SPMS.16–18 Meningeal 

B cell follicles were found in close proximity to large subpial 

gray matter lesions and diffuse meningeal inflammation, 

which suggests that the lymphoid-like follicles or products 

produced by them negatively impacted the integrity of the 

cortical structures and contributed to gray matter corti-

cal demyelination.18,19 In a recent study, Lee-Chang et  al 

determined that patients with CIS and RRMS had reduced 

transitional B cell numbers in the peripheral blood compared 

to control patients, but of the transitional B cells present, 

these cells had upregulated surface expression of integrins 

(α4 and β1).20 Further, transitional B cells were present 

in the cerebral spinal fluid (CSF) obtained from the CIS 

and RRMS patients but they were absent from the CSF of 

individuals with other inflammatory neurological disease.20 

Upregulated integrins (α4 and β1) likely assist these cells to 

cross the blood–CSF barrier. Overall, these studies suggest 

that MS patients have increased intrathecal B cells which may 

contribute to MS pathogenesis through antibody-dependent 

or antibody-independent mechanisms.

Antigen-independent mechanisms 
through which B cells may 
contribute to MS pathogenesis
Treatment with rituximab (anti-CD20 antibody, Rituxan®) – 

a humanized mouse anti-CD20 antibody which depletes 

CD20+ cells (ie, pre-B cells, immature B cells, mature B cells, 

and memory B cells, but not stem cells or plasmablasts) – has 

made it possible to discern whether B cells themselves or their 

antibody products contribute to MS pathogenesis. In various 

studies, RRMS patients receiving rituximab showed substan-

tially reduced B cell numbers in their CSF and serum, reduced 

levels of emerging inflammatory brain lesions, and reduced 

frequency of clinical attack despite evidence that antibody 

levels in the CSF were not immediately decreased, suggest-

ing that B cells contribute to pathology via an antibody-

independent mechanism.21–24 Further, a large scale clinical 

trial wherein patients diagnosed with RRMS were treated 

with ocrelizumab (a fully humanized anti-CD20 monoclonal 

antibody with decreased antibody-dependent, cell-mediated 

cytotoxic effects compared to rituximab) showed that these 

patients had reduced numbers of yearly relapses, decreased 

neuroinflammation, and decreased peripheral B cell levels 

compared with placebo control patients.25 Therefore, at least a 

subset of MS patients treated with anti-CD20 therapy showed 

improvement of disease, suggesting that B cells can promote 

pathology through antibody-independent mechanisms.26,27

Beyond their role as producers of antibodies, B cells con-

tribute to the induction, maintenance, and reactivation of CD4+ 

T cells, they act as antigen-presenting cells, they are required 

for maintenance and reactivation of memory cells, and they 

modulate T regulatory (T
reg

) cell function.28–37 Recently, it was 

reported that the B cell CXC chemokine ligand 13 was elevated 

in serum in RRMS patients with active MS.38 In data obtained 

from clinical trials, the majority of RRMS patients treated 

with rituximab responded with a proportional decrease in 

expression of CXC chemokine ligand 13 in the CSF, decreased 

B cells in CSF and periphery, and reduced T cells in the CSF.39 

When B cell effector cytokine responses were compared 

between MS patients and matched controls, activated B cells 

derived from MS patients exhibited decreased production of 

the downregulatory cytokine interleukin-10, a cytokine largely 
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produced by naive B cells.40 Bar-Or et al showed that activated 

B cells derived from MS patients exhibited increased expres-

sion of the proinflammatory cytokines lymphotoxin T and 

tumor necrosis factor α, two cytokines largely produced by 

memory B cells.26 When peripheral blood mononuclear cells 

were subjected to ex vivo B cell depletion, there was reduced 

T cell proliferation from the cells obtained from MS patients 

compared with those from healthy controls.26 The authors pro-

posed that the abnormal expression of B cell-derived cytokines 

mediate “bystander activation” of proinflammatory T cells 

which may precipitate new relapsing MS disease activity.26 If 

true, these findings offer a potential alternative to antibody-

dependent mechanism through which rituximab improves MS 

symptoms in a subset of patients.

T
reg

 cells are negative regulators of immune responses to 

self- and foreign antigens and they play a critical role in main-

taining immune tolerance by suppressing pathologic immune 

responses.41 Compared to MS patients with SPMS or healthy 

controls, patients with RRMS have reduced numbers of T
reg

 

cells in their peripheral blood but increased numbers of T
reg

 

cells in the CSF, possibly in an attempt to downregulate local 

inflammation in the CNS.42,43 B cells have also been shown to 

influence T
reg

 cell development, proliferation, and survival in 

culture.34,35 Thus, B cells may promote effector T cell activation 

while paradoxically they may dampen the adaptive immune 

response through induction of T
reg

 cells. It may be, therefore, 

that B cells contribute to MS pathogenesis by inappropriately 

upregulating effector T cells or inappropriately decreasing T
reg

 

cells, required to maintain immune tolerance.

Evidence that antibodies contribute 
to MS pathogenesis
Immune components and soluble proteins such as serum 

antibodies pass through the BBB very poorly, if at all.44 

However, sera from MS patients in exacerbation were shown 

to have significantly reduced expression of the proteins 

occludin and vascular endothelial-cadherin compared to MS 

patients not in exacerbation or compared to normal controls.45 

These proteins are major components of the tight-junctions 

which help create the BBB and their decreased expression 

in MS patients may result in a more permeable BBB. An 

in vitro model of BBB serum from SPMS patients showed 

decreased transendothelial electrical resistance suggesting 

that serum from SPMS patients affects the permeability of 

this BBB model.46 With increased permeability, the brain may 

be exposed to a multitude of lymphocytes, blood proteins, and 

antibodies from which they are usually isolated.47 Because 

the BBB may be transiently semipermeable in at least some 

MS clinical disease subtypes, it is conceivable that circulating 

antibodies may enter the CNS and, if they share affinity for 

antigens found in the brain, contribute to pathology.2,5,48 

Indeed, serum levels in a patient with RRMS showed higher 

serum myelin oligodendrocyte glycoprotein (MOG) and 

myelin basic protein (MBP) antibodies in times of relapse 

relative to times of remission further indicating that the BBB 

in patients with MS may be transiently semipermeable.47

The majority of patients with MS present with elevated 

intrathecal antibody titers.14,49–51 When CSF obtained from 

patients with MS has been subjected to isoelectric focusing, 

a technique used to separate proteins by their electrical 

charge, a pattern of oligoclonal bands becomes evident.48,52–54 

Because they have limited heterogeneity, intrathecal B cells 

undergoing clonal expansion and somatic hypermutation 

of the expressed antibody gene rearrangement are visual-

ized as oligoclonal bands.12,55,56 In contrast, serum-derived 

antibodies are produced by a myriad of heterogeneous B 

cells and thus show a pattern of polyclonal banding upon 

isoelectric focusing.55–57 The majority of oligoclonal bands 

are complement-activating immunoglobulin (Ig) G1 isotype.58 

Histopathology performed on pattern II demyelinating lesions 

obtained from MS patient biopsies and autopsies showed 

prominent antibody deposition and complement compo-

nents at sites of active myelin destruction.15 Other studies 

showed that patients with pattern II histopathologic lesions 

responded well to plasma exchange.59 Through magnetic 

resonance imaging and examination of CSF from patients 

in the early phases of MS, it was determined that an asso-

ciation between intrathecal antibody synthesis and cortical 

lesions was highly predictive of an earlier CIS conversion to 

MS and of higher disease activity.60 Further, in contrast with 

patients diagnosed with RRMS or PPMS, patients diagnosed 

with SPMS who responded positively to treatment with 

rituximab showed a decline in intrathecal antibody produc-

tion as well as decreased B cell numbers.61 Thus, in at least 

subsets of MS patients, antibodies likely contribute to MS 

pathogenesis.59,62–64

There is precedence that autoantibodies contribute to 

neurological pathology and disease. Although recently 

defined as pathologically distinct from MS, many clinicians 

still consider neuromyelitis optica (NMO; optic-spinal MS) 

as a part of the MS disease spectrum.65 NMO-associated IgG 

antibodies are present in the serum of 70% of patients with 

NMO.66 Patients with NMO respond positively to plasma 

exchange, which suggests that autoantibodies contribute 

to the pathogenesis of this autoimmune disease.67 Through 

a series of elegant experiments, researchers at the Mayo 
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Clinic showed that NMO-associated antibodies precipitated 

Aquaporin 4 from astrocyte cell membranes and definitively 

established that Aquaporin 4 is the target.67 Hence, because 

a pathogenic autoantibody contributes to the neuroinflam-

matory disorder NMO, it is reasonable to speculate that 

distinct pathogenic autoantibodies may contribute to other 

neuroinflammatory disorders such as MS.

Identification antibodies targets 
which contribute to MS 
pathogenesis
Foreign antigens
Previous infection with Epstein-Barr virus (EBV) – a virus 

with lifelong persistence in the host’s B cells – is an estab-

lished MS risk factor.68,69 Whether antibodies against viral 

proteins contribute to MS pathogenesis by binding to the 

viral antigen or by binding self-antigens – which share sig-

nificant morphology to the viral antigen – is currently under 

investigation. Jaquiery et al assessed EBV-specific humoral 

and cellular immune responses in the CSF of patients with 

early MS compared to persons with other inflammatory 

neurological diseases, noninflammatory neurological dis-

eases, or neurotropic herpesvirus cytomegalovirus (used 

as a control).70 They observed enriched intrathecal CD8+ 

cytotoxic T cells and increased antibody indexes for viral 

capsid antigen and EBV nuclear antigen 1 (EBNA-1), but 

not cytomegalovirus antibody indexes, in early MS as com-

pared with other inflammatory neurological diseases and 

noninflammatory neurological diseases patients.70 Further, 

in a survey of 100 subjects with CIS, RRMS, or PPMS over 

a 5-year period, all of whom had serologic evidence of pre-

vious EBV infection, patients with RRMS had significantly 

higher anti-EBNA-1 titers (a marker of the latent phase of the 

virus) and gadolinium-enhanced lesions on magnetic reso-

nance images compared with patients with PPMS or CIS.71 

In contrast, Jafari et al – who evaluated anti-EBV antibody 

response in serum and CSF from a large cohort of patients – 

determined that there was no evidence for elevated intrathecal 

anti-EBNA-1 IgG synthesis in MS patients relative to control 

patients when total IgG content of paired serum and CSF 

samples were normalized.72 Further, it was determined that 

although MS risk tended to be higher in individuals with 

high titers of neutralizing antibodies against EBV compared 

to those with low titers, this association was attenuated after 

adjustment for anti-EBNA-1 IgG antibody titres.73 Therefore, 

although there appears to be a strong association between 

prior EBV exposure and risk of MS, whether antibodies 

against viral proteins contribute to MS pathogenesis has not 

yet been definitively established.

Self-antigens
It has proven challenging to definitively identify the antibody 

targets to which pathogenic autoantibodies bind. While there 

is evidence that autoantibodies derived from MS patients 

bind lipids,54 carbohydrates,74,75 and DNA,76 the vast major-

ity of research has focused on investigating proteins which 

comprise the myelin sheath such as MBP, MOG, and pro-

teolipid protein as autoantibody targets. Elevated antibody 

titers against MBP and/or MOG have been reported in serum 

and CSF derived from MS patients77,78 and serum antibodies 

to MBP and MOG were observed in subgroups of patients 

with MS,79,80 which suggests that autoantibodies specific for 

myelin-derived proteins may contribute to MS pathogenesis. 

However, myelin-specific antibodies can also be detected in 

healthy controls suggesting that these targets are not defini-

tively predictive of disease.81,82 Further, although recombinant 

monoclonal antibodies generated from B cells obtained from 

CSF from MS patients showed reactivity to sites of degrad-

ing myelin and axons, specific reactivity to MOG, MBP, 

or proteolipid protein could not be confirmed.83–85 Thus, 

pathogenic antibodies which specifically contribute to MS 

disease remain elusive,49 and it may be beneficial to expand 

autoantibody screening beyond myelin-based proteins. CSF 

and sera from control and MS patients have been screened 

for autoantibodies using several approaches including phage 

display libraries, which are constructed using short peptides 

to mimic epitopes,86–89 a human brain complementary DNA 

expression library,90 human antigen microarrays,91,92 and 

a cell-based proteomic approach.93 Such techniques use short, 

linear amino acid segments to represent antibody binding 

sites, but these artificial targets fail to identify autoantibod-

ies whose epitopes are comprised of nonadjacent amino 

acids brought into close proximity through conformational 

folding of the antigen. Alternatively, they use recombinant 

antigens which lack posttranslational modification which 

may be critical for antibody–antigen binding. Studies focused 

on identifying pathogenic autoantibody targets, which take 

into account epitopes comprised of nonadjacent amino acids 

and/or posttranslational modifications, are needed to identify 

MS biomarkers and therapeutic approaches to prevent or 

combat MS.

Conclusion
Although the vast majority of MS patients have elevated 

intrathecal antibody levels, identification of the definitive 
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antibody targets has remained elusive. Beyond their role in 

antibody production, intrathecal B cells may contribute to 

activation/reactivation of effector T cells and the modula-

tion of T
reg

 cells, which may contribute to MS pathogenesis. 

Targeted depletion of pathogenic intrathecal plasma 

cells/B cells which both eliminate pathogenic antibody 

production and thwart inappropriate T cell responsiveness 

may serve as an effective preventative or treatment method 

in patients with MS.
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