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Background: Gemcitabine must be administered at high doses to elicit the required therapeutic 

response because of its very short plasma half-life due to rapid metabolism. These high doses 

can have severe adverse effects.

Methods: In this study, polymeric microparticulate systems of gemcitabine were prepared using 

chitosan as a mucoadhesive polymer and Eudragit L100-55 as an enteric copolymer. The physi-

cochemical and biopharmaceutical properties of the resulting systems were then evaluated.

Results: There was no endothermic peak for gemcitabine in any of the polymeric gemcitabine 

microparticulate systems, suggesting that gemcitabine was bound to chitosan and Eudragit 

L100-55 and its crystallinity was changed into an amorphous form. The polymeric gemcit-

abine microparticulate system showed more than 80% release of gemcitabine in 30 minutes in 

simulated intestinal fluid. When mucin particles were incubated with gemcitabine polymeric 

microparticulates, the zeta potential of the mucin particles was increased to 1.57 mV, indicat-

ing that the polymeric gemcitabine microparticulates were attached to the mucin particles. 

Furthermore, the F53 polymeric gemcitabine microparticulates having 150  mg of chitosan 

showed a 3.8-fold increased uptake of gemcitabine into Caco-2 cells over 72 hours compared 

with gemcitabine solution alone.

Conclusion: Overall, these results suggest that polymeric gemcitabine microparticulate systems 

could be used as carriers to help oral absorption of gemcitabine.

Keywords: gemcitabine, polymeric microparticulates, mucoadhesive, enteric coating, cellular 

uptake, oral absorption

Introduction
Gemcitabine hydrochloride (2′,2′-difluoro-2′deoxycytidine hydrochloride) has 

therapeutic activity against a variety of solid malignancies, including colon, lung, 

pancreatic, breast, bladder and ovarian cancers.1–4 Once transported into the cell, 

gemcitabine must be phosphorylated by deoxycytidine kinase into its active form, 

5′-triphosphategemcitabine, which is incorporated into the DNA strand, halting 

elongation and causing cell death. Gemcitabine action also involves ribonucleotide 

reductase inhibition.5 However, gemcitabine (pKa 3.58) is rapidly metabolized in the 

blood, liver, and kidneys by cytidine deaminase into 2′,2′-difluoro-2′-deoxyuridine, an 

inactive derivative.6 Gemcitabine has a very short plasma half-life when administered 

intravenously, which is a major limitation of this anticancer compound.7 Recently, 

it has been postulated that continuous treatment with oral gemcitabine might be 

efficacious in human malignancies, and that oral dosing would be more convenient 

for patients than intravenous administration. Oral gemcitabine at low dose levels is 
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well tolerated and the main pattern of toxicity observed is 

gastrointestinal, whereas very little hematologic toxicity 

is observed, consistent with the low systemic exposure of 

gemcitabine.8 This is due to extensive first-pass metabolism 

to 2′,2′-difluoro-2′-deoxyuridine, which has been reported 

to be present mainly in the liver in humans and the kidney 

in mice.9 Thus, oral alternatives to intravenous gemcitabine 

administration can be investigated by strategies that facilitate 

enhanced intestinal absorption and circumvent metabolic 

inactivation by cytidine deaminase in the liver.10 Some 

type of protection for the anticancer drug, gemcitabine, 

which undergoes rapid metabolism in the plasma, must be 

developed. Recently, several approaches have been attempted 

to decrease deamination of gemcitabine to 2′,2′-difluoro-2′-
deoxyuridine, such as coupling a long chain fatty acid or an 

isoprenoid chain of squalene to the terminal amino group 

of gemcitabine, thereby protecting it from deamination by 

cytidine deaminase.11–13

On the other hand, colloidal drug delivery systems have 

received increasing attention as a possible means to obtain 

a higher therapeutic effect, lower toxicity, higher intestinal 

uptake, and protection from in vivo metabolism of incorpo-

rated drugs.1 From a structural point of view, nanoparticles 

comprise different systems, including nanospheres and 

nanocapsules.2

A high dose of gemcitabine is needed because rapid 

metabolism induces a very short half-life and low oral 

bioavailability (9.5%).14,15 In this work, we prepared polymeric 

particulate systems of gemcitabine using chitosan and 

polymethacrylate polymers to develop an oral delivery system 

and evaluated its physicochemical characteristics. Chitosan 

confers the polymeric particulate systems with mucoadhesion, 

and Eudragit L100-55, a polymethacrylate polymer, makes 

them enteric-coated to prevent gastric irritation.

Materials and methods
Materials
Gemcitabine hydrochloride was obtained from Dalian 

Wista Pharma Co, Ltd (Dalian, China). Polyvinyl alcohol 

(molecular weight 146–186,000), mannitol, and mucin were 

purchased from Sigma (Steinheim, Switzerland). Eudragit 

L100-55 [poly(methacrylic acid, ethyl acrylate) 1:1] was 

acquired from Degussa (Frankfurt, Germany). Chitosan 

(molecular weight 5–10,000) was purchased from Chitolife 

Co, Ltd (Pyungtaek, Korea). Sodium chloride was purchased 

from Samchun Chemical Co, Ltd (Pyungtaek). Dulbecco’s 

modified Eagle’s medium, fetal bovine serum, nonessential 

amino acid solution (10 mM, 100×), penicillin-streptomycin 

solution (10,000 U/mL penicillin and 10 mg/mL of strepto-

mycin), trypsin-EDTA solution (0.05% trypsin, 0.53  mM 

EDTA), N-(2-hydroxyethyl)piperazine-N′-2-ethane-sulfonic 

acid, and Hank’s Balanced Salt Solution with calcium and 

magnesium (without phenol red) were purchased from Gibco 

Laboratories (Cergy Pontoise, France). All other chemicals 

and solvents were of analytical reagent grade and used with-

out further purification.

Cell cultures
Caco-2  cells were purchased from the Korean Cell Line 

Bank (Seoul, Korea). Caco-2 cells (passage number 46–52) 

were cultured in Dulbecco’s modified Eagle’s medium 

supplemented with 10% fetal bovine serum, 1% nonessential 

amino acid solution, 100 units/mL penicillin, and 0.1 mg/mL 

streptomycin in a 5% CO
2
 atmosphere with 95% humidity 

in a 37°C incubator.

Preparation of polymeric gemcitabine 
microparticulates
Polymeric gemcitabine microparticulates were produced 

using a multiple emulsion method16,17 involving emulsification 

of an aqueous solution of the drug with a polymer solution 

in an organic solvent to form a w/o emulsion. This emulsion 

was further emulsified into a stirred aqueous processing 

medium containing an emulsion stabilizer to form a w/o/w 

emulsion, and the pH of each individual reaction solution 

was also measured. The organic solvent was removed over 

one hour by rotary evaporation (RE111 Rotavapor, Buchi, 

Switzerland). Briefly, 50 mg of gemcitabine was dissolved in 

1 mL of water and then mixed well with solubilized chitosan. 

At the same time, 500 mg of Eudragit L100-55 was dissolved 

in 10 mL of n-butanol. Gemcitabine including chitosan was 

slowly added to the organic Eudragit L100-55 solution and 

homogenized at 12,000 rpm for 10 minutes using a homog-

enizer (Ultra-Turrax T25, IkaWerk, Staufe, Germany) to 

form the primary emulsion (w
1
/o). The w

1
/o emulsion was 

further emulsified in 10 mL of a 1.0% aqueous solution of 

polyvinyl alcohol and 0.9% sodium chloride as an emulsion 

stabilizer at 5000 rpm for 10 minutes using a homogenizer, 

resulting in formation of a w
1
/o/w

2
 emulsion. These emul-

sions were rotary-evaporated to eliminate the organic phase, 

leaving hardened particles in an aqueous medium18 and then 

centrifuged at 3000 rpm for 10 minutes. Finally, 5 mL of 10% 

mannitol solution was added and the mixture was lyophilized. 

In this experiment, polymeric gemcitabine microparticulates 

containing chitosan were called F49–F53 according to the 

increase in amount of chitosan, ie, 10 mg, 25 mg, 50 mg, 
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100 mg, or 150 mg. The polymeric gemcitabine micropar-

ticulates without chitosan (F10) and the physical mixture 

of individual components of gemcitabine, chitosan, and 

Eudragit L100-55 were prepared as controls.

Assay of polymeric gemcitabine 
microparticulate
Polymeric gemcitabine microparticulates (10 mg) were dis-

solved in 10 mL of sodium phosphate buffer and methanol 

(9:1, v/v), sonicated for 10 minutes, and then centrifuged 

at 3000 rpm for 10 minutes. After centrifugation, 1 mL of 

supernatant was filtered through a membrane filter with a 

pore size of 0.2 µm and analyzed by high-pressure liquid 

chromatography. An Agilent 1100 liquid chromatography 

system with an autosampler and ultraviolet detector were 

used. A C18 column (4.6  ×  250  mm, 5  µm particle size 

Eclipse, Agilent Technologies, Santa Clara, CA) was used. 

The flow rate of the mobile phase was 1.2 mL/minute and 

the detection wavelength was set to 275  nm. The mobile 

phase was a mixture of 97% monosodium phosphate buffer 

and 3% methanol. The column temperature was maintained 

at 35°C. The amount of gemcitabine in the polymeric 

microparticulates was determined by examining the drug 

loading and entrapment efficiency. The percentage drug 

loading was calculated by multiplying 100 by the ratio of 

total amount of drug extracted from the polymeric matrix of a 

known weight of microparticulates to the total weight of the 

microparticulates used before extraction. The encapsulation 

efficiency was calculated by multiplying 100 by the ratio of 

weight of drug present in a batch of microparticulates to the 

weight of drug used in the formulation.

Physicochemical characterization  
of polymeric gemcitabine microparticulates
The morphology and surface characteristics of the 

gemcitabine polymeric microparticulates were examined by 

scanning electron microscopy (Model JEOL, JSM-7000F, 

Japan) operating at an accelerating voltage of 20 kV. The 

material was mounted on aluminum holders with carbon-

conducting glue and coated with a 20 nm gold layer in a 

Balzer’s MED 010 sputtering device. The particle size and 

zeta potential of the polymeric gemcitabine microparticu-

lates were determined by dynamic laser scattering (ELS-

8000 particle size analyzer, Otasuka Electronics, Japan). 

Differential scanning calorimetry was performed using a 

Perkin-Elmer DSC-7 instrument (SC S-650, Scinco, Korea) 

and Pyris software (version 5). The temperature axis and cell 

constant were calibrated using indium. A weighed sample 

(1.8 mg) of gemcitabine or polymeric gemcitabine micropar-

ticulates in a pin-holed aluminum pan was heated from 20°C 

to 400°C at a rate of 20°C per minute.

In vitro gemcitabine release profiles
A weighed amount of polymeric microparticulates (50 mg) 

containing 2.5  mg of gemcitabine based on entrapment 

efficiency data was dissolved in 100 mL of simulated gastric 

fluid or simulated intestinal fluid as the release medium using 

a paddle dissolution tester (Labfine Scientific Instruments, 

Anyang, Korea) based on Korean Pharmacopeia (KP) IX. 

At a predetermined time, 1 mL samples were withdrawn and 

replaced with the same volume of fresh medium adjusted to 

37°C. The samples were filtered through a membrane filter 

with a pore size of 0.2 µm and analyzed by high-pressure 

liquid chromatography.

Mucoadhesion test
We also evaluated the mucoadhesion forces of the polymeric 

gemcitabine microparticulates. The mucin particle method19 

is a simple mucoadhesion test in which commercial mucin 

particles are used. Mucoadhesion was examined by measuring 

the change in zeta potential of the mucin particles in a certain 

concentration of polymeric gemcitabine microparticulates. 

Briefly, mucin particles were suspended in distilled water at a 

concentration of 1% w/v and then dissolved in an appropriate 

amount of polymeric gemcitabine microparticulates in simu-

lated intestinal fluid at room temperature. After incubation 

for 12 hours, the zeta potential was measured.

Cytotoxicity assay
After a 72-hour incubation of the cells (70% confluent) 

with gemcitabine, cytotoxicity was determined by MTT 

assay according to the manufacturer’s protocol. Briefly, 

after incubation of cells with gemcitabine, MTT (3-(4,5-

dimethylthiazol-2yl)-2,5-diphenyl-2H-tetrazolium bromide) 

was added to each well and incubated for 2 hours at 37°C. 

The crystals of viable cells were solubilized in isopropanol. 

Absorbance was determined at 570 nm in a microplate reader 

(Sunrise, Tecan, Austria). Cell viability (%) was represented 

with the (optical density [OD] of samples-treated cells 

divided by OD of cells incubated without samples) × 100.

Cellular uptake study
One day before the uptake experiments, Caco-2 cells (passage 

number 46–52) were seeded in 24-well plates at a density of 

5 × 105 cells/well. The cells were washed twice with serum-

free Dulbecco’s modified Eagle’s medium and then exposed 
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to either 10  mM of gemcitabine solution or polymeric 

gemcitabine microparticulates for 72  hours. The cellular 

uptake studies were subsequently terminated by aspirating the 

medium and washing the cells three times with phosphate-

buffered saline. The cells were then lysed with 0.2 N NaOH, 

sonicated for 10 minutes, and then centrifuged at 3000 rpm 

for 10  minutes. The supernatant was filtered through a 

membrane filter with a pore size of 0.2 µm and analyzed by 

high-pressure liquid chromatography. The amount of protein 

in each sample was determined using the bicinchoninic acid 

method (Sigma, Steinheim, Switzerland).

Statistical analysis
The Student’s t-test was used to compare groups. 

A P value ,0.05 was considered statistically significant.

Results and discussion
Surface morphology
The polymeric gemcitabine microparticulates using various 

amounts of chitosan showed a round morphology (Figure 1). 

Some smooth spherical microparticulates were self-aggre-

gated and showed a sponge-like shape that might be attributed 

to the extrusion of aqueous internal droplets from the poly-

meric matrix to the external aqueous region during particle 

formation because of the relative instability of the quasi w/o 

emulsion.20–22 The particles were not only irregular balls with 

uneven surfaces, but also showed high surface aggregation 

forms. The amount of chitosan had no effect on the size and 

shape of the polymeric gemcitabine microparticulates.

Differential scanning calorimetry study
In order to assess the changes in the solid state of the poly-

meric gemcitabine microparticulates, differential scanning 

calorimetry analysis was performed. The thermal curve of 

gemcitabine was typical of a crystalline substance, with an 

endothermic peak at around 280.69°C (Figure 2). An endo-

thermic peak of gemcitabine was observed in the physical 

mixture, but there was no endothermic peak of gemcitabine 

in the polymeric gemcitabine microparticulates, suggesting 

that gemcitabine was chemically bound to chitosan and 

Eudragit L100-55, and subsequently its crystallinity had 

changed into the amorphous form. Furthermore, in the case 

of F10 without chitosan, there was no endothermic peak of 

gemcitabine. These results implied that Eudragit L100-55, 

which is a polyelectrolyte, played an important role in the 

transformation of gemcitabine by electrostatic interaction 

into an amorphous form.

Particle size and zeta potential
The particle size and zeta potential of polymeric gemcitabine 

microparticulates were evaluated to determine their physico-

chemical properties. In particular, as the amount of chitosan 

was increased from 10 mg to 150 mg, the zeta potential values 

for all the polymeric gemcitabine microparticulates except 

for F10  showed a tendency to increase (Figure 3). These 

data were consistent with those reported previously,23,24 sug-

gesting that gemcitabine and chitosan were electrostatically 

complexed during particle preparation and that the particles 

became aggregated. The pH of the gemcitabine aqueous 

solution was 2.1 and that of the gemcitabine aqueous solu-

tion and solubilized chitosan mixture was 2.4. After Eudragit 

L100-55 solution with a pH of 1.75 was added to the above 

mixture, the pH became 2.3. Subsequently, after polyvinyl 

alcohol solution having a pH of 5.3 was added to the w
1
/o 

emulsion, the pH of the final w
1
/o/w

2
 was 3.1. The zeta 

potential of gemcitabine itself was 0.95 ± 0.37 mV and that 

of chitosan was 6.1 ± 0.30  mV. The zeta potential of the 

polymeric gemcitabine microparticulates without chitosan 

CNU SEI 5.0 kV X5,000 1 µm WD 9.8 mm

CNU SEI 3.5 kV X5,000 1 µm WD 9.7 mm

CNU SEI 3.5 kV X3,000 1 µm WD 9.6 mm

CNU SEI 3.5 kV X10,000 1 µm WD 9.6 mm

CNU SEI 3.5 kV X1,500 10 µm WD 9.7 mm

CNU SEI 3.5 kV X3,000 1 µm WD 9.6 mm

F50 F51

F52 F53

F10 F49

Figure 1 Scanning electron micrographs of polymeric gemcitabine microparticulates.
Notes: F10 is polymeric gemcitabine microparticulates without chitosan and F49–
F53 is polymeric gemcitabine microparticulates according to the increase in chitosan 
amount, ie, 10 mg, 25 mg, 50 mg, 100 mg, or 150 mg.
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(F10) was −16.7 ± 1.82  mV, suggesting that gemcitabine 

and Eudragit L100-55 solutions were strongly repulsed, and 

subsequently showed the fewest microparticulates.

Assay of gemcitabine polymeric 
microparticulates
The concentration of gemcitabine in the polymeric micropar-

ticulates was quantified by measuring the yield, drug loading, 

and entrapment efficiency of gemcitabine. Fifty milligrams 

of polymeric gemcitabine microparticulates were assayed 

and entrapment efficiency was calculated. Poor entrap-

ment of alendronate sodium in poly(lactide-co-glycolide) 

microspheres prepared by w/o/w emulsification has been 

reported previously.25 It was suggested that because alen-

dronate sodium was water-soluble (10 mg/mL), it had a 

tendency to escape to the external aqueous phase during 

microsphere formation and during washing of the formed 

microspheres. Therefore, drug hydrophilicity is a major 

challenge in the development of microspheres with high 

entrapment efficiency.22,26,27 It was found that when the drug 

loading was lowered, entrapment efficiency was also lowered. 

Except when no chitosan was present or a low chitosan 

dose of 10 mg was present in the polymeric microparticu-

lates, drug loading was determined to be 4.5%–5.8% and 

entrapment efficiency was determined to be 88.7%–97.9% 

(Table  1). However, there was no significant relationship 
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Figure 2 Differential scanning calorimetric thermograms of polymeric gemcitabine microparticulates.
Notes: The differential scanning calorimetric runs were conducted at 20°C–400°C and a rate of 20°C per minute. F10 is polymeric gemcitabine microparticulates without 
chitosan and F49–F53 is polymeric gemcitabine microparticulates according to the increase in chitosan amount, ie, 10 mg, 25 mg, 50 mg, 100 mg, or 150 mg.
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amount, ie, 10 mg, 25 mg, 50 mg, 100 mg, or 150 mg.
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between amount of chitosan and drug loading and entrap-

ment efficiency. Jang et al28 reported that when the solvent 

evaporation rate was increased from 20 rpm to 280 rpm, 

the entrapment efficiency increased from 28.8% ± 3.3% to 

52.5% ± 6.8%, inferring that rapid membrane formation is 

an important phenomenon, preventing leakage of salmon cal-

citonin to the outer water phase. Also, the salmon calcitonin 

diffusion-delaying effect of high molecular weight polyvinyl 

alcohol (86,000) was greater than that of low molecular 

weight polyvinyl alcohol (66,000), which resulted in higher 

salmon calcitonin entrapment efficiency. In this study, 

the authors used high molecular weight polyvinyl alcohol 

(146,000–186,000) and increased the solvent evaporation rate 

to obtain higher entrapment efficiency (Table 1).

In vitro gemcitabine release profiles
There was less than 10% release of gemcitabine from the 

polymeric microparticulates after 2 hours in simulated gas-

tric fluid, due to enteric coating of the gemcitabine primary 

emulsion by Eudragit L100-55 (data not shown). In contrast, 

the polymeric gemcitabine microparticulates showed more 

than 80% release of gemcitabine in 30 minutes in simulated 

intestinal fluid (Figure 4). Rapid release of gemcitabine might 

occur due to fast dissolving of Eudragit L100-55 in simulated 

intestinal fluid. However, there was no relationship between 

the percentage of gemcitabine released and the amount of 

chitosan.

Mucoadhesion test
The mucoadhesion of polymeric gemcitabine microparticulates 

was evaluated using commercially available porcine mucin 

particles in a simple mucoadhesion test. The surface properties 

of the mucin particles were expected to change due to adhesion 

of the polymeric gemcitabine microparticulates if the micropar-

ticulates had mucoadhesive properties. After the mucin particle 

suspensions were mixed with polymeric gemcitabine micropar-

ticulates dissolved in simulated intestinal fluid to remove the 

enteric coating of Eudragit L100-55, the zeta potential of the 

mucin particles was measured (Figure 5). This polymer has 

mucoadhesive properties due to its positive charges at neutral pH 

that enable electrostatic interaction with mucus or a negatively 

charged mucosal surface.19 The zeta potential of 1% mucin 

particle suspensions alone (pH 4.1) was −16.14 ± 2.75 mV 

and that of 1% mucin particle suspensions when incubated 

with 10 mg of chitosan was −1.17 ± 0.32 mV, suggesting that 

the zeta potential was increased due to adhesion of chitosan to 

the mucin particles. Therefore, the negative charge of the mucin 

particles appeared to be neutralized by the positive charge of 

chitosan absorbed onto their surface. When the amount of 

chitosan was increased from 10 mg to 150 mg, the zeta poten-

tial increased from -22.14 ± 2.50 mV to -1.22 ± 0.18 mV. 

As a reference, the zeta potential of F10 to mucin particles 

was -4.52 ± 1.67 mV.

Cytotoxicity and cellular uptake
Before the cellular uptake study of the polymeric gemcit-

abine microparticulates, a cytotoxicity study of gemcitabine 

against Caco-2 cells was performed to determine the IC
50

 of 

gemcitabine. Gemcitabine showed cytotoxicity at concentra-

tions above 50 mM in Caco-2 cells. The cell viability dropped 

Table 1 Formulation of polymeric gemcitabine microparticulates 
with chitosan

Formula  
number

Chitosan  
(mg)

Yield  
(%)

Drug  
loading (%)

Entrapment  
efficiency (%)

F10 0 86.4 1.8 33.4
F49 10 86.4 1.7 33.9
F50 25 91.7 5.8 93.7
F51 50 80.8 5.0 88.7
F52 100 100.8 4.5 97.9
F53 150 99.5 4.7 93.0
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Figure  4 In vitro release profile of gemcitabine from polymeric gemcitabine 
microparticulates in simulated intestinal juices.
Notes: F49–F53 is polymeric gemcitabine microparticulates according to the 
increase of chitosan amount, ie, 10 mg, 25 mg, 50 mg, 100 mg, or 150 mg.
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Figure 5 Zeta potential after incubation of polymeric gemcitabine microparticulates 
with mucin particles.
Notes: F10 is polymeric gemcitabine microparticulates without chitosan and F49–
F53 is polymeric gemcitabine microparticulates according to the increase in chitosan 
amount, ie, 10 mg, 25 mg, 50 mg, 100 mg, or 150 mg.
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suddenly at a gemcitabine concentration of 70–100  mM 

in Caco-2 cells, and subsequently the IC
50

 of gemcitabine 

against Caco-2 cells was determined to be 52.4 mM (Fig-

ure  6A). Therefore, gemcitabine solution or polymeric 

gemcitabine microparticulates corresponding to a gemcit-

abine 10 mM was added to each well and the percentage of 

gemcitabine uptake into Caco-2 cells was measured (Fig-

ure 6B). The gemcitabine solution showed 8.65% ± 3.64% 

intestinal cellular uptake of gemcitabine into Caco-2 cells 

over 72 hours because gemcitabine was released from the 

polymeric microparticulates in the cell culture medium (pH 

7.85). In particular, polymeric gemcitabine microparticulates 

containing 150  mg of chitosan (F53) showed a 3.8-fold 

increase in intestinal cellular uptake of gemcitabine into 

Caco-2 cells over 72 hours compared with uptake of gem-

citabine solution. As the amount of chitosan increased, the 

zeta potential values (Figure 3) and cellular uptake of gem-

citabine polymeric microparticulates also increased. It has 

previously been suggested that chitosan has mucoadhesive 

properties, as shown in Figure 5, and improves permeation 

of gemcitabine through Caco-2 cells.24 This is consistent with 

a report showing that microparticles prepared with chitosan 

and glyceryl monooleate exhibited mucoadhesive proper-

ties and a four-fold increase in cellular uptake.29 Chitosan 

is a hydrophilic, biodegradable, biocompatible, positively 

charged polysaccharide with low toxicity that in recent years 

has found applications in cosmetic, biotechnology, and drug 

delivery systems. The relationship between mucoadhesive-

ness of polymeric gemcitabine microparticulates in mucin 

particles with cellular uptake of gemcitabine from polymeric 

gemcitabine microparticulates into Caco-2 cells could not 

be explained because Caco-2  cells do not secrete mucin. 

Also, it could not be distinguished whether polymeric gem-

citabine microparticulates were actually internalized across 

Caco-2  cells or were bound onto the Caco-2 cell surface 

due to the mucoadhesive properties of chitosan. The authors 

recently reported that formulation of alendronate micropar-

ticles including chitosan showed a three-fold increase in 

uptake of alendronate into Caco-2 cells and caused a sig-

nificant 42.4% enhancement of alendronate permeability 

across Caco-2 monolayers.24 Therefore, further studies on the 

internalization of polymeric gemcitabine microparticulates 

and their absorption in vivo will be performed.

Conclusion
Polymeric microparticulate systems containing gemcit-

abine were prepared using various amounts of chitosan as a 

mucoadhesive polymer and Eudragit L100-55 as an enteric 

copolymer. F53 polymeric gemcitabine microparticulates 

showed a 3.8-fold increase in uptake of gemcitabine into 

Caco-2 cells over 72 hours compared with uptake of gemcit-

abine solution. Overall, these results suggest that polymeric 

microparticulate systems could improve the cellular uptake 

of gemcitabine.
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