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Abstract: Maturity onset diabetes of the young (MODY) is a heterogeneous group of disorders 

that result in β-cell dysfunction. It is rare, accounting for just 1%–2% of all diabetes. It is often 

misdiagnosed as type 1 or type 2 diabetes, as it is often difficult to distinguish MODY from these 

two forms. However, diagnosis allows appropriate individualized care, depending on the genetic 

etiology, and allows prognostication in family members. In this review, we discuss features of 

the common causes of MODY, as well as the treatment and diagnosis of MODY.
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Introduction
Maturity onset diabetes of the young (MODY) was a term first used in the 1970s1,2 

to describe inheritable diabetes distinct from type 1 (insulin-dependent) and type 2 

(noninsulin-dependent) diabetes. In these initial reports, MODY patients displayed a 

familial form of noninsulin-dependent diabetes, which showed autosomal dominant 

inheritance and which typically presented before the age of 25 years. The molecular 

genetic basis of MODY was subsequently recognized in the 1990s,3–7 indicating 

that genetic mutations result in diabetes primarily through their effects on β-cell 

dysfunction. The clinical features of patients with MODY are now known to be 

heterogeneous, depending on the genetic etiology.

To date, there are mutations in at least nine different genes (Table 1) that result in 

the MODY phenotype, which accounts for approximately 1%–2% of patients diag-

nosed with diabetes.8 This prevalence is likely underestimated, since large population 

screening studies have not been performed. Depending on the genetic etiology, the 

different genetic subtypes differ in terms of age of onset, pattern of hyperglycemia, 

response to treatment, and extra-pancreatic manifestations. Thus, it would be more 

appropriate to use the correct monogenic names for young-onset diabetes, since MODY 

is not a single entity.

Mutations in the genes encoding the nuclear transcription factor 1 homeobox A 

(HNF1A), the hepatocyte nuclear factor 4 homeobox (HNF4A), and the enzyme glu-

cokinase (GCK) are the most common causes of MODY, representing 52%, 10%, and 

32% of MODY cases in the UK, respectively.9 The reported prevalence of these causes 

varies across countries due to differences in the frequency of screening for diabetes. For 

example, in countries where glucose is more frequently performed to screen for diabetes 

in asymptomatic individuals, GCK mutations (manifesting with mild hyperglycemia) 

are detected more often. As a consequence, GCK mutations predominate in countries 
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such as Germany, Italy, France, and Spain.10,11 MODY has 

also been described in other ethnic groups.6,12 However, 

prevalence in other ethnicities may be underrepresented, 

since Asian patients make up only 0.5% of UK referrals for 

MODY testing, even though there is a significantly higher 

prevalence of diabetes in Asian patients.12

One of the challenges in diagnosing MODY is 

distinguishing individuals with MODY from those with 

type 1 or type 2 diabetes, as the clinical features may be 

similar and there is often an overlap in phenotypes. This 

review discusses the features of the most common forms 

of MODY, concentrating on patients presenting with young 

onset diabetes (between the ages of 10 and 40 years), as 

well as treatment options. We also discuss the selection of 

individuals for further genetic testing. Neonatal forms of 

diabetes, and other forms of monogenic diseases associated 

with diabetes, such as Donohue syndrome or lipodystrophy, 

are beyond the scope of this review.

How do patients with MODY  
present clinically?
Patients with MODY often have one or more of these 

features: a strong family history of diabetes of any type, 

insulin independence, absence of autoantibodies for 

pancreatic antigens,13 and evidence of endogenous insu-

lin production (detection of measurable C-peptide in 

the presence of hyperglycemia, low insulin requirement 

[,0.5 units/kg/d], or a lack of ketoacidosis when insulin 

is omitted outside the honeymoon period [typically 5 years 

following the diagnosis of diabetes]). These features are 

atypical for type 1 diabetes, thus increasing the probability 

of monogenic diabetes. However, in those with apparent 

type 2 diabetes, the absence of insulin resistance features 

(a lack of obesity, the absence of acanthosis nigricans, nor-

mal triglyceride levels, or elevated or normal high-density 

lipoprotein cholesterol [HDL-C]) can indicate the presence 

of monogenic β-cell forms of diabetes.

There are distinct phenotypes in clinical presentation, 

and these are dependent on the genetic etiology. The vari-

ous genes involved, and the associated clinical features, are 

described and then summarized in Table 1.

Genes involved in MODY
HNF1A
Mutations in the HNF-1α (or HNF1A) gene are the most 

common cause of MODY in the UK,14 and they are a com-

mon cause of MODY in other European countries, such 

as Germany,15 Finland and Sweden,16 Italy,17 and Spain.18 

Mutations in HNF1A have also been described in the 

Canadian,19 North American,20 Japanese,21 and Chinese 22 

populations.

The HNF1A gene consists of ten exons and studies 

of HNF1A knockout animals show a reduction in the key 

steps of glucose transport and metabolism.23 In β-cell lines, 

mitochondrial metabolism also appears to be reduced.24,25 

These HNF1A mutations demonstrate a high penetrance, 

Table 1 Classification of single gene mutations resulting in monogenic diabetes

Gene Prevalence amongst  
those with MODY

Other clinical features

HNF1A 30%–50%* Common mutation. Highly penetrant. Large (.5 mmol/L) rise in 2-hour glucose levels on 75 g–OGTT. 
Progressive β-cell failure. Sensitivity to sulphonylureas.

GCK 30%–50%* Common mutation. Raised fasting glucose levels, with small (,3 mmol/L) rise in 2 hour glucose 
following 75 g–OGTT. Mild hyperglycemia; generally does not require treatment.

HNF4A 5% Presents in similar manner to HNF1A mutations. Associated with higher birth weight and transient 
neonatal hypoglycemia. Progressive β-cell failure. Sensitivity to sulphonylureas.

HNF1B 5% Characterized by renal disease. Urogenital tract abnormalities in females.
INS ,1% Wide clinical spectrum. Most present with neonatal diabetes, but may also present in early childhood 

and adulthood.
IPF1 ,1% Average age of onset is 35 years.7 IPF1 regulates early pancreatic development. Pancreatic agenesis 

seen in homozygotes and compound heterozygotes.83,84

NEUROD1 ,1% (fewer than  
five families reported)

Very rare, adult onset (mid-20s). Reduced insulin production (developmental β-cell dysfunction). 
Individuals may be overweight or obese, similar to type 2 diabetes.

CEL ,1% (fewer than  
five families reported)

Very rare, adult onset (mean age 36 years). Exocrine pancreatic insufficiency (dysfunction of the 
mature acinar cell). Pathophysiology of endocrine dysfunction not clear.

PAX4 ,1% (fewer than  
five families reported)

Only two families described.

Note: *Dependent on the populations studied.
Abbreviations: HNF1A, hepatocyte nuclear factor 1 homeobox A; GCK, glucokinase; HNF4A, hepatocyte nuclear factor 4 homeobox A; HNF1B, hepatocyte nuclear factor 
1 homeobox B; IPF1, insulin promoter factor 1; NEUROD1, neurogenic differentiation 1; CEL, carboxyl ester lipase; PAX4, paired box 4.
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with 63% of carriers developing diabetes by 25 years of 

age, 79% by 35 years of age, and 96% by 55 years of age. 

The age at diagnosis is partly determined by the location of 

the mutation: those with mutations in the terminal exons 

(8–10) are diagnosed on average 8 years earlier than those 

with mutations in exons 1–6.26

Typically, patients heterozygous for HNF1A mutations 

present in adolescence, or early adult life, with progressive 

β-cell failure and increasing hyperglycemia. In fact, β-cell 

dysfunction is seen to occur before the onset of diabetes 

in HNF1A mutation carriers. Even when blood glucose is 

in the normal range, HNF1A mutation carriers are seen to 

have a lower insulinogenic index and a lower early insulin 

response when compared to non-mutation carriers in the 

same family.27 This is clear when the individuals undergo 

an oral glucose tolerance test, with the 2-hour glucose level 

frequently being more than 6 mmol/L higher than the fast-

ing level, even when the fasting glucose level is less than 

6 mmol/L.28 Another feature of this group of patients is a low 

renal threshold for glucose. Glycosuria has been observed 

in young nondiabetic HNF1A mutation carriers.27 This is 

thought to be due to a reduced expression of the sodium-

glucose transporter-2, reducing glucose re-absorption 

through the proximal tubule.29

Due to its progressive nature, those with HNF1A muta-

tions are at considerable risk of microvascular and macro-

vascular complications,30,31 similar to those with type 1 and 

type 2 diabetes. The frequency of hypertension appears to be 

similar to type 1 diabetes.30 Raised, rather than low, HDL-C 

levels are observed in HNF1A MODY patients, which 

is potentially a useful feature for distinguishing between 

MODY and type 2 diabetes.32

Treatment
Another important distinguishing feature of HNF1A muta-

tions is that afflicted individuals are extremely sensitive to 

the hypoglycemic effects of sulphonylureas.33–35 A random-

ized cross-over trial, which assessed glycemic responses to 

the sulphonylurea gliclazide and the metformin, compared 

patients with HNF1A mutations and type 2 diabetes, who 

were matched for fasting glucose and body mass index.36 

While the effects of metformin and gliclazide were similar 

in those with type 2 diabetes, there was a fivefold greater 

response to gliclazide than metformin in those with HNF1A 

mutations. In addition, the response to gliclazide was four-

fold greater in these individuals than in type 2 diabetes 

patients, while the response to metformin remained similar 

in both groups.

This finding has large implications, particularly for those 

previously misdiagnosed with type 1 diabetes, as they may 

be able to discontinue insulin therapy and be treated with 

sulphonylureas without risk of ketoacidosis,37 even after 

insulin treatment for a mean of 20 years. A further report, 

where 34 patients were taken off insulin and given sulphony-

lurea after a diagnosis of HNF1A MODY, showed that 24 of 

34 patients were able to remain off insulin for over 3 years, 

with no deterioration in glycemic control.38 Nateglinide has 

been used in 15 patients with HNF1A MODY, suggesting 

that prandial secretagogues may be a useful alternative.39 

Although control may be maintained for many years, most 

patients eventually progress to insulin treatment.

GCK
GCK mutations are another common cause of MODY, and 

those with heterozygous mutations demonstrate mild, stable 

fasting hyperglycemia (5.5–8.0  mmol/L) that shows little 

deterioration with age. Patients are generally asymptomatic, 

and hyperglycemia is commonly discovered during routine 

screening, for example during pregnancy or through insur-

ance medicals.

GCK catalyzes the rate-limiting step of glucose phos-

phorylation, thus enabling the β-cell and the hepatocyte 

to respond appropriately to the degree of glycemia.40 

Heterozygous inactivating mutations reset the glucose 

threshold for the insulin secretion being regulated to a higher 

level, producing a higher fasting glucose level.41 The insulin 

production is adequate; therefore, the glucose levels in these 

individuals rapidly return to normal when they are given an 

oral glucose load. Most patients with mutations in the GCK 

have a small increase in plasma glucose (,3  mmol/L in 

70% of patients) 2 hours after an oral glucose load.28

The majority of patients with MODY due to GCK muta-

tions maintain glycated hemoglobin (HbA
1c

 level) below 

8%,42 and observational studies suggest that these patients 

do not develop diabetes-related microvascular complica-

tions, despite exposure to hyperglycemia over an average 

period of 50 years.43,44 Although there are little data on long-

term macrovascular complications, one larger cohort study 

seems to suggest there is no increase in the prevalence of 

dyslipidemia or hypertension in these patients, which raises 

the possibility that their macrovascular risk may not be sig-

nificantly elevated.43

Treatment
Given the mild hyperglycemia, the absence of long-term 

microvascular complications, and the observation that 
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treatment has little effect on glycemia in this group of 

patients,45 the general consensus is that the majority of these 

patients do not require treatment.46 The only exception is dur-

ing pregnancy, in which insulin may be required to prevent 

excess fetal growth.47 This is also dependent on whether 

the fetus has inherited the GCK mutation (50% chance). If 

it does not inherit the same GCK mutation as the mother, 

it will respond to maternal hyperglycemia by producing more 

insulin, resulting in excess growth. Conversely, if it does 

inherit the GCK mutation, it will produce normal amounts 

of insulin, despite the higher level of glycemia, and thus 

growth will be normal. The glucose-sensing threshold for 

insulin production is upregulated, such that if a person with 

the GCK mutation is given exogenous insulin, endogenous 

insulin secretion is lowered so that the glucose is maintained 

at their homeostatic set point. Thus treatment with insulin 

in this situation requires higher than replacement doses to 

lower the fasting glucose.47

HNF4A
While HNF1A and GCK mutations are the most common 

mutations encountered in monogenic diabetes, HNF4A muta-

tions are much less common, reportedly representing 2%–5% 

of all MODY cases.48–50 They present in a similar manner to 

HNF1A carriers, with progressive β-cell dysfunction, and 

many patients develop diabetes by the age of 25.

The detection of HNF4A mutation carriers amongst 

those presenting with type 2 diabetes may be difficult. 

Useful clinical features include the presence of a family 

history of diabetes, in particular when onset is before the 

age of 40, and the absence of insulin resistance markers or 

obesity in an individual with young-onset type 2 diabetes.51 

Using these criteria, and excluding those with features sug-

gestive of GCK deficiency, HNF4A mutations have been 

found to be as high as 10%–29% amongst those negative 

for HNF1A mutations.51,52 HNF4A mutations should be 

considered when HNF1A analysis does not detect a muta-

tion, but the clinical features are strongly suggestive of 

HNF1A mutations.53

HNF4A mutation carriers may also have a lower serum 

HDL-C, possibly due to reduced ApoA2 transcription,51 

resulting in lipid profiles not dissimilar to those with type 2 

diabetes. In addition, HNF4Amutation carriers tend to have 

a higher birth weight (mean 800 g greater), with 56% having 

macrosomia. Transient neonatal hypoglycemia (15% of 

mutation carriers) may precede the onset of diabetes at a 

later age.54 This is thought to reflect HNF4A-induced hyper-

insulinism during fetal and neonatal life, with a switch to 

defective insulin secretion later in life. The mechanism for 

this remains unclear.

Treatment
As β-cell dysfunction is progressive, treatment is required, 

and low-dose sulphonylureas (12.5% or less of the maximum 

licensed dose) appear to be effective for HNF4A diabetes,51 

which is similar to the response seen with HNF1A diabetes. 

In fact, treatment efficacy with sulphonylureas appears to 

be sustained even after three decades.55 Similar to those 

with HNF1A mutations, the homeostatic model assessment 

analysis suggested a marked β-cell defect in these subjects, 

but no reduction in insulin sensitivity.

Extra-pancreatic features  
and other etiologies
There are several rarer mutations resulting in diabetes-related 

extra-pancreatic features. Among this group of disorders, 

one of the more common mutations is in hepatocyte nuclear 

factor 1 homeobox B (HNF1B).

HNF1B
HNF1B is encoded by the TCF2 gene and plays a role in 

the tissue-specific regulation of gene expression in various 

organs, such as the liver, kidney, intestines, and pancreatic 

islets, thus influencing their embryonic development.56

Patients can develop renal disease, characterized by 

renal cysts, renal dysplasia, renal-tract malformations, or 

hypoplastic glomerulocystic kidney disease.57 Renal involve-

ment appears to be heterogeneous with a tubulointerstitial 

profile at presentation, and slowly progressive renal decline 

throughout adulthood in the absence of diabetic nephropathy. 

In addition, pancreatic atrophy, genital tract abnormalities 

in females, and abnormal liver levels have been observed in 

afflicted individuals.58–60 Birth weight is reduced by 800 g 

due to reduced insulin secretion in utero.61 About half of the 

HNF1B mutation carriers present with early-onset diabetes, 

which is similar to those with HNF1A mutations.62 Impor-

tantly, spontaneous de novo mutations occur relatively 

frequently; thus, testing for HNF1B mutation should not 

be discouraged by the absence of a family history of renal 

disease or diabetes.57

Other causes of diabetes  
with extra-pancreatic features
These are extremely rare and include the Wolfram syn-

drome, also known as the DIDMOAD (diabetes insipidus, 

diabetes mellitus, optic atrophy, and deafness) syndrome, 
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the thiamine-responsive megaloblastic anemia syndrome, and 

maternally inherited diabetes with deafness.63 The latter dis-

order is due to mutations within the mitochondrial genome, 

resulting in manifestations in metabolically active organs. In 

particular, in the case of diabetes, mitochondrial dysfunction 

in the pancreatic islets leads to abnormal β-cell function, 

reduction in β-cell mass, and insulin deficiency.64,65 Afflicted 

individuals can manifest with mitochondrial myopathy, 

encephalopathy, lactic acidosis, and stroke-like episodes. 

Although treatment with dietary modification and oral anti-

glycemic agents may help initially, insulin will usually be 

required eventually.66 Metformin is usually avoided due to 

the theoretical risk of exacerbating lactic acidosis.

Other etiologies
Mutations in other genes (predominantly transcription 

factors), such as neurogenic differentiation 1 (NEUROD1)67–69 

and paired box 4 (PAX4),70 are exceedingly rare causes of 

MODY; thus, limited data is available. Mutations in the 

gene encoding the enzyme carboxyl ester lipase have been 

shown to result in both diabetes and pancreatic exocrine 

dysfunction.71,72

Why is the diagnosis  
of MODY important?
Although the diagnosis of MODY is rare, and constitutes 

only a small proportion of the people afflicted with diabetes, 

it has important implications. For the individual, it informs 

optimal treatment options in some instances (eg, the efficacy 

of sulphonylureas in HNF1A and HNF4A mutations) and 

obviates the need for treatment in others (in the case of mild 

hyperglycemia in GCK mutations). It also allows the future 

course of the illness to be predicted. It can guide management 

for the next generation (as in the case of a pregnant GCK 

patient). Furthermore, once the mutation in the index case is 

known, this information can be used to quickly and readily 

confirm the diagnosis in affected family members.

Interestingly, common variants in several genes involved 

in MODY are associated with an increased risk for developing 

type 2 diabetes. In recent meta-analyses conducted on type 

2 diabetes in East Asians and South Asians, HNF4A single 

nucleotide polymorphisms were found to be associated with 

increased risk for type 2 diabetes.73,74 Similarly, an insulin 

(INS) common variant has also been implicated in increased 

type 2 diabetes risk.75 Elucidating the pathophysiology behind 

monogenic forms of diabetes can help unravel some of the 

mysteries underlying the pathogenesis of the more common 

type 2 diabetes.

How is MODY diagnosed?
MODY is diagnosed through sequencing of the suspected 

gene, and detecting a mutation. However, molecular genetic 

testing is expensive and not widely available. It is also evident 

from the description of the various MODY phenotypes that 

the clinical spectrum is extremely varied and has significant 

overlap with both common types of diabetes, making it a 

challenge to identify MODY patients. As a consequence, 

many patients with MODY remain undiagnosed. A targeted 

selection of individuals for genetic testing is necessary to 

improve the yield of diagnosis, particularly in situations 

where there are limited resources.

How can we identify patients  
for testing using clinical criteria?
Individuals with a strong family history of diabetes, 

presenting from the second to the fifth decade, should prompt 

further assessment. The best clinical practice guidelines pro-

duced in 2008 advocate assessment for MODY, particularly 

when the age of presentation for diabetes is ,25 years old.53 

The next step would be to look for features inconsistent with 

the diagnosis of type 1 diabetes (insulin independence, per-

sistently detectable C-peptide, and negative antibody status) 

or type 2 diabetes (lack of insulin resistance and its markers). 

Even using these criteria, the detection of MODY is low.76

Specific features may increase the likelihood of cer-

tain genetic defects and improve the cost-effectiveness of 

targeted molecular diagnostic testing. This will hopefully 

improve detection rates for this currently under-diagnosed 

condition. For example, a low renal threshold (glycosuria 

at blood glucose levels ,10 mmol/L) or a large increase of 

.5 mmol/L on OGTT may raise the suspicion of a HNF1A 

mutation. Recently, genome-wide association studies have 

found that common variants mapping near the HNF1A gene 

are associated with small alterations in serum C-reactive 

protein (CRP) levels in healthy individuals.77 The presence of 

HNF1A binding sites on the CRP promoter,78 and the loss of 

CRP expression resulting from a loss of HNF1A binding,78 

further supports the hypothesis that HNF1A expression 

and binding influences CRP expression. Motivated by this 

finding, high-sensitivity CRP was studied and found to be 

significantly lower in individuals with HNF1A gene muta-

tions.79 This has since been replicated in larger cohorts.80,81 In 

combination with clinical criteria, the use of high-sensitivity 

CRP has been shown to greatly improve sensitivity in the 

detection of HNF1A MODY (up to 90%), without much 

loss of specificity.81 As another example, mutations in the 

GCK gene result in mild fasting hyperglycemia or a small 
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increment of ,3 mmol/L of glucose on the OGTT.53 However, 

it is clear that many MODY individuals remain undiagnosed,9 

or do not fulfill the criteria for referral.82

Conclusion
MODY is a genetically and clinically heterogeneous group 

of conditions. Its identification remains a challenge for 

physicians, and the condition is largely underdiagnosed. 

Yet diagnosis has important implications for the individual, 

allowing individualized care to be tailored to the underlying 

genetic causes, and it provides information about the natural 

history of the disease in individuals. Knowledge of these 

rare causes of diabetes, the use of additional clinical clues, 

and other biomarkers will hopefully improve its detection 

rates, allowing appropriate care and advice to be given to the 

afflicted person and their family members.
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