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Abstract: Silica nanoparticles can be efficiently employed as carriers for therapeutic drugs 

in vitro. Here, we use zebrafish embryos as a model organism to see whether mesoporous 

silica nanoparticles (MSNPs) can be incorporated to deliver compounds in vivo. We injected 

35–40 nL (10 mg/mL) of custom-synthesized, fluorescently-tagged 200 nm MSNPs into the left 

flank, behind the yolk sac extension, of 2-day-old zebrafish embryos. We tracked the distribu-

tion and translocation of the MSNPs using confocal laser scanning microscopy. Some of the 

particles remained localized at the injection site, whereas others entered the bloodstream and 

were carried around the body. Embryo development and survival were not significantly affected 

by MSNP injection. Acridine orange staining revealed that MSNP injections did not induce 

significant cell death. We also studied cellular immune responses by means of lysC::DsRED2 

transgenic embryos. MSNP-injected embryos showed infiltration of the injection site with 

neutrophils, similar to controls injected with buffer only. In the same embryos, counterstain-

ing with L-plastin antibody for leukocytes revealed the same amount of cellular infiltration of 

the injection site in embryos injected with MSNPs or with buffer only. Next, we used MSNPs 

to deliver two recombinant cytokines (macrophage colony-stimulating factor and receptor for 

necrosis factor ligand) to zebrafish embryos. These proteins are known to activate cells involved 

in bone remodeling, and this can be detected with the marker tartrate-resistant acid phosphatase. 

Coinjection of these proteins loaded onto MSNPs produced a significant increase in the number 

of tartrate-resistant acid phosphatase-positive cells after 2–3 days of injection. Our results show 

that MSNPs can be used to deliver bioactive compounds into zebrafish larvae without producing 

higher mortality or gross evidence of teratogenicity.

Keywords: mesoporous silica nanoparticles, toxicity, immune cells, TRAcP, L-plastin, 

lysozyme

Background
Recent years have witnessed an impressive growth of fundamental and applied 

research in the field of nanoscience and nanotechnology.1 There is a wide variety of 

nanomaterials, including metal nanoparticles, nanoshells, fullerenes, quantum dots, 

polymer nanoparticles, dendrimers, and liposomes.2–8 In the future, these nanomaterials 

may be applied in disease diagnostics and for drug delivery targeted at specific sites 

(eg, in the treatment of cancer).9

The burgeoning field of nanomaterials brings several advantages to the design 

of new drug delivery systems (DDS), as they possess significant properties, such as 

a high surface area and a tunable pore size, shape, and diameter, resulting in high 

loading capacity of drugs. In addition, the outer surface can be easily modified to 

achieve targeted release.10
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The design of an efficient DDS is crucial for use in 

medical applications; therefore, it has to present a number 

of properties, such as manipulation of biological profiles 

(eg, pharmacokinetics and pharmacodynamics, biodistribu-

tion, and cellular uptake).11 There are two important chal-

lenges in these fields: (1) the DDS must protect their cargo 

from enzymatic degradation and induce a minimal immune 

response, and (2) it has to ensure delivery to the desired site 

followed by release of the active drug. To meet these chal-

lenges, the DDS has to present some prerequisites, such as 

biocompatibility with the biological environment, efficient 

cellular uptake, and controllable rate of release, to achieve 

an effective local concentration.12,13 Mesoporous silica nano-

particles (MSNPs) have the potential to satisfy all of these 

requirements.11

Previous studies have shown that nonphagocytic eukary-

otic cells can endocytose latex beads up to 500 nm in size, 

and that the efficiency of uptake decreases with increasing 

particle size.14 Particles around 200 nm in size or smaller are 

taken up with highest efficiency, whereas very little uptake 

is observed for the particles larger than 1 µm. Therefore, 

MSNPs can be efficiently employed as carriers for intra-

cellular drug delivery.14 It was found in other studies that 

the toxicity of nanoparticles may vary with size, structure, 

and composition.15,16 Acute toxicity occurs at nanoparticle 

concentrations in the order of milligrams per liter in the case 

of the medaka, Oryzias latipes, and the largemouth bass, 

Micropterus salmoides.17,18 Silica nanoparticles were found 

to be nontoxic to other human and mouse embryonic cells 

at up to 15  mg/L.19 In addition, silica nanoparticles have 

not been found to have general or overt toxicity between 

0.0025 mg/L and 200 mg/L.20

Mice have been used for studying nanoparticle biology.21 

Organs that can take up nanostructures in mice include the 

spleen, lymph nodes, and bone marrow. All of these are major 

organs of the immune system and contain large concentra-

tions of phagocytic cells that can ingest the nanostructures. 

Nanostructures that are coated with the polymer polyethylene 

glycol (PEG) have shown to be more resistant to uptake by 

phagocytic cells.22

Zebrafish transgenic lines that express green or red 

fluorescent proteins (DsRED2) under a neutrophil-specific 

promoter, such as the myeloperoxidase (mpx) promoter23,24 

or the lysozyme C (lyz) promoter,25 provide useful in vivo 

models for real-time imaging and genetic analyses of 

inflammatory responses. Neutrophils and macrophages in 

zebrafish larvae can be visualized by immunolabeling with 

anti-L-plastin antibody, whereas the expression of csf1r 

(colony-stimulating factor-1 receptor) and the lack of mpx 

and lyz expression in macrophages can be used to distinguish 

them from neutrophils.23,26 The elongated morphology of the 

cells expressing these markers further points to a macrophage 

identity.23 Both the neutrophil and the macrophage popula-

tions are involved in the innate immune response toward 

infection and injury.23–26 In order to understand the fate and 

interaction of nanomaterials with the immune cells, further 

studies are needed.

Many features of the zebrafish (Danio rerio) model make 

it well suited for studies of nanomedical applications. It has 

a short generation time (around 3 months) and a large clutch 

size (200–300 eggs), which allows high-throughput assays 

at low cost.27 Zebrafish embryogenesis is rapid, with most of 

the internal organs, including the heart, liver, intestine, and 

kidney, developed by 96 hours post fertilization.28 The optical 

transparency of zebrafish embryos and their fertilization and 

development outside the mother enable an easy and thorough 

observation of drug effects on internal organs in vivo.

The zebrafish is also a very attractive model for studying 

the mechanisms underlying bone formation,29,30 because the 

key regulators of bone formation are highly conserved between 

mammals and teleosts, and the corresponding orthologs share 

significant sequence similarities and an overlap in expression 

patterns when compared with mammals.31–33 Molecules essen-

tial to promoting osteoclastogenesis34 include (1) macrophage 

colony-stimulating factor (M-CSF), (2) receptor for activa-

tion of tumor necrosis factor kappa B (TNF-κB or receptor for 

necrosis factor [RANK]), and (3) RANK ligand (RANK-L, 

OPGL, or TRANCE).

The aims of this study are (1) to test the toxicity of MSNPs 

on zebrafish embryos, (2) to test the effect of MSNPs on 

immune cells, and (3) to see whether MSNPs can be used to 

deliver bioactive compounds into zebrafish larvae. For this 

latter objective we chose M-CSF and RANK-L because they 

have a clearly defined biological readout: the activation of 

osteoclasts.35

Materials and methods
Silica nanoparticle synthesis
MSNPs were synthesized via sol-gel chemistry using hexade-

cyl trimethyl ammonium bromide (CTAB) and mesitylene as 

templates.11 In a flask, 1.0 g (2.7 mmol) of CTAB and 480 mL 

of Milli-Q water (Millipore BV, Amsterdam, The Nether-

lands) were mixed and stirred at 80°C. Next, 3.5 mL of NaOH 

2 N (aq) and 7.0 mL (48.8 mmol) of mesytilene were added. 

After 2 hours, 5 mL (21.9 mmol) of tetraethoxysilane was 

added and the suspension was stirred for another 2 hours. The 
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suspension was filtered and a white powder was recovered 

(yield 60%). The CTAB and mesitylene were removed from 

the silica nanoparticles by acid methanol extraction. A total of 

1.5 g of MSNPs was suspended in 160 mL of methanol with 

9 mL of HCl 12 N, and the mixture was refluxed overnight 

under a nitrogen atmosphere. The MSNPs were recovered 

by filtration and dried overnight at room temperature under 

normal pressure. The removal of the template was confirmed 

using Fourier transform infrared spectroscopy (FT-IR).

Surface modification of the silica 
nanoparticles
A total of 100 mg of MSNPs was suspended in 10 mL of 

toluene. After sonication, 2-(methoxy [polyethyleneoxy] 

propyl) trimethoxysilane 0.1  mmol (0.431  g, 0.400  mL) 

was added, and the reaction mixture was refluxed overnight. 

The product was recovered via filtration, resulting in a white 

powder with a yield of 76%.

Synthesis of fluorescent MSNPs  
for imaging
The synthesis of fluorescent-labeled MSNPs was performed 

in accordance with a procedure by Lu et al.12 In brief, 5.5 mg 

(0.014 mmol) of fluorescein-5(6) isothiocyanate (FITC) was 

dissolved in 3 mL of absolute ethanol and 12 µL (0.051 mmol) 

of (3-aminopropyl) triethoxysilane (APTES). The mixture was 

stirred under nitrogen atmosphere for 2 hours. In a different 

flask, 0.5 g (13.5 mmol) of CTAB was dissolved in 240 mL of 

Milli-Q water with 1.75 mL of NaOH 2 N. The solution was 

heated to 80°C and stirred vigorously. Once the temperature 

stabilized, 2.5 mL (11.12 mmol) of tetraethoxysilane was 

added together with the solution of the functionalized APTES 

previously synthesized. The mixture was stirred for another 

2 hours at 80°C, and the MSNPs were recovered by filtration 

and dried overnight at room temperature under normal 

pressure. The MSNPs recovered were in the form of a yellow 

fine powder, giving a final yield of 60%. The CTAB template 

was removed from the silica nanoparticles by suspending 1.5 g 

of the particles in 160 mL of methanol with 9 mL of HCl 12 N 

and the mixture refluxed overnight under an inert atmosphere. 

The removal of the template was confirmed using FT-IR. The 

product was recovered via Büchner filtration, resulting in a 

yellow powder.

Scanning electron microscopy  
and transmission electron microscopy
MSNPs were suspended in methanol and sonicated in order 

to avoid aggregation. A total of 10 µL of suspension was 

deposited on an aluminum stub and coated with pure carbon 

with a sputter carbon coater. Transmission electron micros-

copy was performed with a JEOL 1010 instrument (Tokyo, 

Japan) at 60 kV. The sample was prepared as stated previously 

and was deposited on a carbon-coated copper grid and then 

air dried for 3 hours.

X-ray diffraction
The X-ray diffraction spectrum of the MSNPs was measured 

with a powder diffractometer with Cu radiation at 40 kV 

and 30 mA.

Loading of FITC-bovine serum albumin 
into MSNPs
For the loading of FITC-bovine serum albumin (BSA) into the 

MSNPs, 5 mL of phosphate-buffered saline (PBS; pH 7.24) 

containing 1 mg/mL of FITC-BSA was stirred for 24 hours 

at room temperature in the presence of 50 mg of MSNPs. The 

suspension was then centrifuged and the loading determined 

by measuring the absorbance of the Soret band of the BSA 

(280 nm) in the supernatant before and after the loading. 

The loading capacity of the PEG-MSNPs was determined 

with ultraviolet-visible (UV-vis) spectroscopy, resulting in a 

loading of 0.5 mmol of BSA per gram of PEG-MSNPs.

Release of FITC-BSA from MSNPs
Release of FITC-BSA from MSNPs was measured in 1 M 

PBS at pH 7.24 by preparing a suspension of 1 mg/mL of 

loaded MSNPs. MSNPs were washed twice in PBS to remove 

excess FITC-BSA. The release was determined by taking 

aliquots at different times. The aliquots were centrifuged, 

and the UV-vis absorbance of the FITC-BSA was measured 

to give quantitative information about the release.

Zebrafish embryos
All experimental procedures were conducted in accordance 

with the Netherlands Experiments on Animals Act, which 

serves as the implementation of “Guidelines on the protection 

of experimental animals” by the Council of Europe (1986), 

Directive 86/609/EC, and were performed only after a positive 

recommendation of the Animal Experiments Committee had 

been issued to the licensee. All procedures were carried out in 

accordance with humane care and treatment where required.

Maintenance of zebrafish (Danio rerio) adults took place 

at 26°C in aerated 5 liter tanks, in a 10:14 hour light: dark 

cycle. In each mating setup two females and one male fish 

were present. The eggs were collected within the first hour, 

cleaned, sorted, and transferred to Petri dishes filled with 
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egg water (0.21 gm Instant Ocean® salt (Salt Mentor, OH) 

in 1 liter of demi water). Embryos were anesthetized with 

0.04% MS-222 (tricaine methane sulfonate) at 2 days post 

fertilization (dpf) for microinjections.

Mesoporous silica nanoparticle injections
The embryos were divided into two groups: treatment 

(injected with MSNPs in PBS) and control (injected with PBS 

only). The embryos (2 dpf) were anesthetized and transferred 

to custom-made agarose gel moulds to hold them in place. 

The moulds were made with 5% agarose in PBS (molecular 

grade, Bioline Cat. BIO-41025; Bioline GmbH, Luckenwalde, 

Germany), boiled to dissolve, and then cooled. Borosilicate 

glass capillaries with 1 mm outer diameter × 0.78 mm inner 

diameter (Cat. GC100TF-10, Harvard Apparatus, Holliston, 

MA) were pulled using a needle puller. The resulting flex-

ible, thin, closed tip was snapped off to open the capillary 

for injecting. Each tip was calibrated for the release of fluid 

in oil, and the diameter of the droplet in oil recorded. About 

35–40 nL of MSNP suspension was injected into the left flank 

of each embryo caudal to the yolk sac extension with an air 

pulse provided by a Parker Picospritzer 3 (Parker Hannifin, 

Pneutronics Division, NJ) at a pressure of 30 psi and time 

10 µsec. The pulse was delivered immediately after the needle 

had been pushed through the epidermis.

Human recombinant M-CSF (R&D Systems, Inc, 

Minneapolis, MN; Catalog Number 216-MCC) 40 ng/mL 

and RANK-L (R&D Systems, Inc; Catalog Number 390-TN) 

400 ng /mL in combination were loaded into MSNPs by soak-

ing overnight. The protein-loaded MSNPs were then centri-

fuged, and the supernatant was removed. The resulting MSNPs 

were resuspended in 1 × PBS. This MSNP suspension in PBS 

was injected into 2-day-old embryos, and the embryos were 

fixated at 1 day, 2 days, 3 days, 4 days, and 5 days post injec-

tion for tartrate-resistant acid phosphatase (TRAcP) enzyme 

staining. We used pegylated and nonpegylated MSNPs to test 

the toxicity in zebrafish embryos (as mentioned in Toxicity 

testing). There was no difference in the toxicity between the 

pegylated and nonpegylated MSNPs; therefore, we used 

pegylated MSNPs for our studies, as pegylated beads were 

previously reported to be more resistant to phagocytosis.36,37 

After injection, the embryos were washed twice with fresh 

egg water and transferred into Petri dishes (30 embryos per 

dish) and maintained at 28°C until analysis.

Embryo imaging and analysis
Imaging (including time-lapse recording) was done with 

confocal microscopy (Zeiss Observer LSM 500 inverted 

microscope; Carl Zeiss BV, Sliedrecht, The Netherlands), 

immediately after injection, and 24 hours post injection, to 

assess the uptake and distribution of the fluorescent MSNPs 

in the body of the living embryo. We recorded mortality, 

malformations, and cell death as described in Supplementary 

information, Analysis of zebrafish embryos.

Transgenic lysC::DsRED2 embryos  
for neutrophils
The transgenic lysC::DsRED2 embryos used in this study 

have been described previously.25 The neutrophil specificity 

of this line is supported by other studies.38 Two groups, each 

consisting of 35 eggs, were injected with or without MSNPs. 

Embryos were imaged within 2–5 hours post injection, at 

24 hours, 2 days, and 3 days post injection with confocal 

microscopy.

L-plastin immunostaining
For L-plastin immunostaining, we used the procedure adapted 

from Cui et al.39 Incubation was done overnight at 4°C with 

rabbit anti-L-plastin40 in blocking buffer (PBS-TX contain-

ing 1% BSA, 1:500 dilution). Embryos were incubated for 

2 hours at room temperature in Alexa Fluor 405 goat-anti-

rabbit antibody (Invitrogen Corporation, Carlsbad, CA; 

1:200). They were stored at 4°C and imaged using confocal 

microscopy (Zeiss Observer LSM 500 inverted microscope) 

10× magnification.

TRAcP staining
TRAcP staining was done with TRAP kit 387A-1KT 

according to the manufacturer’s instructions (Sigma-Aldrich 

Chemie GmbH, Steinheim, Germany).

Quantitative analysis
For lysC::DsRED2 transgenic embryos and L-plastin immu-

nostaining, the quantitative analysis was done by counting the 

total number of cells present in the area around the injection 

site (ten embryos/group) from flattened z stacks of confo-

cal images. The total number of TRAcP+ cells was counted 

manually under a compound microscope from the whole 

body on both sides (ten embryos/group).

Statistical analysis
Statistical analyses and graphs were performed using 

GraphPad Prism software version 5.0 (GraphPad Software, 

Inc, La Jolla, CA). One-way analysis of variance was 

performed on the data from the mortality, malforma-

tions in zebrafish larvae, lysC::DsRED2, and L-plastin 
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immunohistochemistry and to analyze the impact of 

protein-loaded (M-CSFM-CSF and RANK-L) MSNPs on 

TRAcP-expressing cells. Tukey multiple-comparison post 

hoc tests were applied to further decompose group com-

parisons. Student’s t-tests (two-tailed) were performed to 

analyze the impact of MSNPs (10 mg/mL) on cell death 

analysis. Data are presented as mean ± standard error of 

the mean, and a probability level of 5% was used as the 

minimal criterion of significance.

Results
Characterization of MSNPs
We synthesized MSNPs via a sol-gel technique with a 

pore-expanding agent (mesitylene) to a CTAB-templated 

emulsion system. The template was removed with a metha-

nol acidic wash because CTAB has been shown to be 

toxic for cells41 due to its capability to damage biological 

membranes and cause the release of intracellular enzymes. 

The effective removal of CTAB was confirmed with 

FT-IR (Figure 1A and B). Next, the nanoparticle surface 

was pegylated in order to reduce cluster formations in 

physiological fluids. The nanomaterials thus synthesized 

present an inner structure comparable with the MCM-41 

(Mobil Crystalline Materials) as previously described,10,42 

with a honeycomb arrangement of the channels, as shown 

by the electron micrographs (Figure 1C and D).

The particle size of MSNPs was measured with dynamic 

light scattering in PBS solution (pH 7.2) before and after the 

pegylation step. The hydrodynamic diameter of the particles, 

before the surface functionalization, was 985 nm (polydis-

persity index [PDI] ± 0.21), indicating an elevated tendency 

of aggregation. However, after surface modification, the 

hydrodynamic diameter was 255 nm (PDI ± 0.198), showing 

that pegylation results in decreased clustering of the particles. 

Powder diffraction analysis of the particles revealed a sharp 

peak at 2.8 theta, showing the presence of a mesoporous 

structure with a pore diameter of approximately 8 nm.

We used BSA to study the loading and release capacity of 

MSNPs. BSA was modified with FITC (see Supplementary 

information) and used to measure the release profiles of 

MSNPs. Loading capacity of MSNP-BSA in the supernatant 

was 65 mmol of BSA per gram of MSNPs. The release graph 

shows the concentration of released BSA in the superna-

tant, as determined by UV-vis spectroscopy (Figure 1E). It 

shows a delay of ∼1 hour, due to two factors: (1) the steric 

hindrance of the BSA, and (2) ionic interaction between the 

silica scaffold of the nanoparticles and the positive charges 

of the amino acids of the chain.

Distribution of nanoparticles after 
injection into embryos
MSNPs conjugated with FITC were injected into the left 

flank of zebrafish embryos at 2 dpf, caudal to the yolk sac 

extension (Figure 2A). We found that some nanoparticles 

were seen circulating in the bloodstream (Figure 2A), whereas 

others were visible in the tissue at the site of injection and 

remained there for the duration of the experiment (ie, up to 

5 dpf [Figure 2B]; see Supplementary movie 1).  The earliest 

time examined was 10 minutes post injection with confocal 

laser scanning microscope, at which time the particles were 

already in the circulation (see Supplementary movie 2).

Toxicity testing
To see whether nanoparticles had an adverse effect on the 

development of the embryo we first recorded the cumulative 

mortality at 5 dpf (Figure 3A). Percentage mortality, pericardial 

edema, and morphological abnormalities are shown in 

Figure 3A. Mean mortality in the MSNP-injected group was 

5.8% and 4.1% in the control group (PBS only; Figure 3A). 

In the MSNP-injected group, 4.68% of embryos had pericardial 

edema and skeletal abnormalities, compared with 1.5% of 

controls. The skeletal abnormalities were of Meckel’s cartilage, 

the pharyngeal arches, and the ethmoid plate, as revealed by 

Alcian blue staining (Figure 3B and C). Cell death, as indicated 

by acridine orange staining (Figure 3E), was quantified for 

the whole embryo at 24 hours post injection, and was similar 

in MSNP-injected and control groups (Figure 3D). Statistical 

analysis showed that there was no significant difference between 

the MSNP-injected and control (PBS-injected) groups in terms 

of cell death, mortality, or malformations.

Immune cell response to injection
We examined the neutrophil response to the injection of 

MSNPs or PBS (control) in 2 dpf lyz::DsRED2 embryos from 

2 hours until 3 days after injection. At 2 hours post injection, 

the site of injection was already infiltrated by neutrophils 

(Figure 4A–C; for normal appearance of neutrophil distri-

bution in a healthy untreated zebrafish embryo see Figure 

S3A). Neutrophils were still in the vicinity of the injection 

site at 24 hours and 2 days post injection (Figure 4D and E, 

respectively) and 3 days post injection (Figure 4F). Large 

aggregations of neutrophils were seen at the site of injection 

regardless of whether MSNPs or buffer alone was injected 

(Figure 4A and B). There was no difference between MSNP-

injected and PBS-injected embryos in terms of neutrophil 

infiltration in the larvae 2 days after injection (see Figure S1). 

Additionally, we performed L-plastin immunostaining to 
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image and quantify the accumulation of all leukocytes. Like 

lyz::DsRED2 cells, L-plastin-positive cells accumulated 

around the injection sites in both MSNP-injected and PBS-

injected larvae (Figure  4G and H). Quantitative analysis 

revealed no significant difference between MSNP and control 

injections (Figure S2).

Compound delivery
In embryos injected with MSNPs loaded with a combination 

of 40 ng/mL of M-CSF and 400 ng/mL of RANK-L and then 

suspended in buffer, TRAcP+ cells were observed around 

the injection site (Figure 5A) and at many other locations 

distributed all over the body of the larvae (Figure 5A–F; there 
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Figure 1 Characterization of silica nanoparticles. (A) Fourier transform infrared spectroscopy (FT-IR) spectra of mesoporous silica nanoparticles (MSNPs) before removal 
of hexadecyl trimethyl ammonium bromide (CTAB) template, showing the C−H stretch of the alkyl chains of CTAB at 2750 cm-1. (B) FT-IR of MSNPs after the removal of 
CTAB template with acidic methanol washing. (C) Scanning electron microscopy image of MSNPs showing the homogeneous shape and diameter. (D) Transmission electron 
microscopy image of MSNP showing homogeneous displacement of parallel channels. (E) Release of fluorescein-5(6) isothiocyanate-bovine serum albumin from MSNPs. 
A delay of ∼1.5 hours is observed due to the interaction of the bovine serum albumin with the silica scaffold of the nanoparticle.
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A B

Figure 2 Fluorescent mesoporous silica nanoparticle (MSNP)-injected zebrafish embryos. (A) MSNPs (green) distributed anteriorly and caudally from site of injection 
(boxed area); the black cells are pigment cells (melanocytes). Scale bar = 100 µm. (B) MSNPs aggregated at the site of injection. Scale bar = 20 µm.
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Figure 3 Toxicity of mesoporous silica nanoparticles (MSNPs). (A) Graph showing percentage mortality in zebrafish larvae, larvae affected by pericardial edema, or larvae 
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injected and MSNP-injected groups (n = 25 per group). (D) Quantification of acridine orange-stained cells in control (buffer-injected) and MSNP groups. There was no 
significant difference after 24 hours of injection between the two groups (ten embryos per group). (E) Acridine orange-stained embryo with dead cells (green) in the eye, 
heart (h), and nasal placode (np). Scale bar = 100 µm.
Notes: Our result shows no difference between the embryos treated with nanoparticles and controls. P , 0.1, P , 0.01; P , 0.001. 
Abbreviation: ov, otic vesicle.
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Figure 4 Confocal images showing injection site of lysC::DsRED2 transgenic zebrafish embryos/larvae. (A) Buffer-injected 2 days post fertilization (dpf) embryo 2 hours post 
injection (overlay of tiles with z stacks). Note the neutrophils (red) at the injection site (arrow) and at more remote sites. (B) An overlay image of a different embryo showing 
mesoporous silica nanoparticles (MSNPs) (green) and neutrophils (red) at the injection site 2 hours post injection. (C) Representative overlay image of a different embryo 
injected at 2 dpf with MSNPs and analyzed at 2 hours post injection. This case shows a much smaller accumulation of MSNPs (green) and neutrophils (red) at the injection 
site than (B). (D) MSNP-injected embryo at 24 hours post injection. MSNPs (green), neutrophils (red). (E) MSNP-injected embryo at 2 dpf. MSNPs (green), neutrophils (red).  
(F) MSNP-injected embryo at 3 days post injection. MSNPs (green), neutrophils (red). (G) MSNPs (green) in 3 days post injection larva. Leukocytes (blue) detected by L-plastin 
immunolabeling. (H) Buffer-injected control larva 3 days post injection. Leukocytes (blue) detected by L-plastin immunolabeling. (B–H) Scale bar = 50 µm.

was no expression of TRAcP in control larvae in the head 

region [Figure S3C and D]). We made a quantitative analysis 

of the total number of TRAcP+ cells throughout the body 

of the larvae 1–5 days after the injection of protein-loaded 

MSNPs. We found a significant increase in the number of 

TRAcP+ cells from 2 days post injection up to 4 days post 

injection, compared with the controls. This increase in 

number seems to be transient, as it returns to normal after 

5 days. There was no significant difference in the number of 

L-plastin+ cells in the cytokine and cytokine-MSNP-injected 

embryos 2 days and 3 days post injection (Figure S2). There 

was also the rare presence of apparently multinucleated 
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TRAcP+ cells in cytokine-loaded MSNP-injected embryos 

(Figure 6A–D). Hematoxylin and TRAcP double-staining 

showed three to five nuclei in a cell (Figure 6B). One of these 

apparently multinucleated TRAcP+ cells in the somite area of 

a 3 days post injection larva in Figure 6C was counterstained 

with 4′,6-diamidino-2-phenylindole to visualize the nuclei 

(Figure 6D, boxed area). Quantitative analysis of pegylated 

cytokine-loaded MSNPs or buffer-loaded MSNPs in 2 days 

post injection and 3 days post injection groups showed that 

the number of TRAcP+ cells significantly increased, compared 

with the buffer-loaded MSNP-injected controls (Figure 6E). 

It is important to note that effectiveness of MCSF and RANK-L 

when injected alone was checked for the expression of TRAcP. 

There was TRAcP expression in large areas of the body of 

embryo (Figure S3E and F).

Discussion
We have tested the toxicity and the capacity for controlled 

drug delivery of MSNPs injected into living zebrafish 

embryos. We find that there is no significant difference 

between the toxicity of MSNP injections and buffer-only 

injections, as measured by several parameters (mortality, 

cell death, gross malformations). Injection of MSNPs led 

to an influx of immune cells at the site of injection that 

persisted for 2–3 days. However, the same type of influx 

was also seen in embryos injected with buffer alone, 

suggesting that it is not the MSNPs that are responsible 

for the immune response but some aspect of the injec-

tion procedure itself (eg, tissue damage). Indeed, it has 

previously been shown that trauma to zebrafish embryos 

(eg, a fin clip or mechanical wounding with an injection 

A B

C D

E F

Figure 5 Tartrate-resistant acid phosphatase (TRAcP) enzyme staining in mesoporous silica nanoparticle (MSNP)-injected larvae. (A) TRAcP+ cells at the site of injection 
in the tail of 3 days post injection larva (arrows). (B) TRAcP+ cells in the head region under the eye (arrows) of a 3 days post injection larva. (C) TRAcP+ cells in the 
heart region of 3 days post injection larva (arrows). (D) TRAcP+ cells in caudal fin of a 4 days post injection larva. (E) TRAcP+ cells in ventral side of head of 4 days 
post injection larva (arrows). (F) Phosphate-buffered-saline-injected larva 3 days post injection with no TRAcP+ cells below the eye. Scale bar A, B, C, F = 50 µm; 
D = 100 µm; and E = 200 µm.
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needle) causes an influx of macrophages and neutrophils 

to the wound site.23–26

In all the studies reported here we used pegylated MSNPs 

because pegylation is thought to avoid triggering an immune 

response against the particles.22,43 With time-lapse imaging it 

is clear that some MSNPs remain at the site of injury, whereas 

others travel in the bloodstream from the site of injection. 

The MSNPs localized at the site of injection were found to 

be there even after 3 days. In some embryos, however, the 

MSNPs stayed in the injection site and did not distribute in 

the bloodstream.

Due to the high loading capacity of MSNPs we used these 

particles as a drug carrier for the in vivo delivery of cytokines. 

This small size helps in fast endocytosis by nonphagocytic 

cells.44 In our studies we found no significant toxic effects of 

injected MSNPs in the living embryos. This means that at low 

concentrations, MSNPs could be a very good delivery system 

in the whole organism. Nanomaterials such as fullerenes have 

been found to be excreted following oral administration or 

injections in mice,45 whereas others were shown to be taken 

up by immune cells. We observed very little coexpression 

of lyz::DsRED2-labeled cells and MSNPs. This may be 

suggestive of the possibility that few of the particles are 

phagocytosed by neutrophils. With L-plastin immunolabeling, 

which stains all leukocytes, more overlap with the fluorescent 

signal of the particles was observed, suggesting that part of 

the MSNPs may be phagocytosed by immune cells.

We observed no differences in the number of leukocytes 

that infiltrated an injection site when nanoparticles were used 

or when PBS only was injected. We cannot exclude the pos-

sibility that nanoparticles had additional effects on immune 

cells. However, a good positive control for this experiment 

does not really exist, because any toxic chemical or material 

injected might induce its own unique effects at the level of 

gene expression in immune cells, for example. In addition, 

these possible effects might be very local, and it is technically 

impossible to exclude that changes in gene expression occur 

locally in the cells that accumulate at the injection site.

Other studies have shown that in the presence of artifi-

cially provided cytokines like M-CSF and RANK-L, immune 

cells are activated into TRAcP+ osteoclasts.46 It is important 

to note that we found highly increased TRAcP expression in 

the zebrafish larvae compared with controls after injecting 

cytokines (M-CSF and RANK-L) alone. We were not able 

to combine the double-staining of fluorescent immune cells 

with the histochemical staining of TRAcP enzyme activity, 

because the two protocols were not compatible. Using single 

labeling we found a significant increase of TRAcP+ cells in 

zebrafish larvae injected with MSNP cytokines, whereas there 

was no significant increase in the total number of immune 

cells in these embryos. Some of these TRAcP+ cells had 

multiple nuclei, as shown by 4′,6-diamidino-2-phenylindole 

staining. By 4–5 days post injection, TRAcP+ cells appeared 

to become small and darkly stained. One possible explanation 
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Figure 6 (A) Tartrate-resistant acid phosphatase (TRAcP) expression in the somites of a 3  days post injection larva with apparently multinuclear cell. (B) TRAcP+ 
cells counterstained with hematoxylin. (C) TRAcP+ zebrafish larva showing apparently multinuclear cells (box). (D) TRAcP enzyme-stained larva counterstained with 
4′,6-diamidino-2-phenylindole (DAPI) showing five to six nuclei same area as C (box). Scale bar ABC = 12.5 µm and D = 12 µm. (E) Quantitative analysis of TRAcP+ cells at 
2 days post injection (dpi) and 3 dpi. Ten larvae/group were used to quantify the number of TRAcP+ cells. Statistical analysis was done with one-way analysis of variance.
Notes: *P , 0.1; ***P , 0.001. “C” means control (ie, phosphate-buffered-saline injected) and “T” means treated (ie, protein-loaded-MSNP injected).
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for these observations is that the TRAcP+ cells were tran-

siently induced by the injected cytokines in the early period 

(2–4 days) after injection, and returned to a normal level 

later on. It is important to note here that the cytokines have 

been found in our pilot studies to have effectively activated 

the TRAcP expression in the embryos.

Further work is required to clarify the differentiation 

status of the TRAcP+ cells. If it can be confirmed that young 

larvae have inducible osteoclast-like cells, this would be 

interesting because zebrafish larvae have not previously 

been reported to have osteoclasts at the stages studied here. 

Furthermore, the presence of osteoclast-like cells in zebrafish 

larvae could lead to a disease model for bone disorders and 

for the study of effects, for example, of antiosteoporotic 

drugs. What is clear from our findings is that MSNPs can be 

used for drug or compound delivery in the zebrafish embryo, 

with no excess of gross toxic effects or immune responses 

attributable to the nanoparticles themselves.
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Supplementary information
Silica nanoparticles as a compound 
delivery system in zebrafish embryos
Fluorescent labeling of bovine serum albumin  
and loading of mesoporous silica nanoparticles
To detect the release of protein from silica nanoparticles, bovine 

serum albumin (BSA), a protein of 66 kDa, was used instead of 

receptor for necrosis factor ligand (RANK-L) and macrophage 

colony-stimulating factor (M-CSF) human recombinant proteins. 

This is because it is commercially available in much larger 

quantities and at much lower cost than the cytokines used in 

this study. BSA (50.2 mg, 0.7 µmol) was dissolved in 20 mL of 

0.1 M sodium bicarbonate solution, pH 9.0. A solution 0.1 mM 

of fluorescein-5(6) isothiocyanate (FITC) isomer 1 was prepared 

in dimethyl sulfoxide, and 5 mL of this solution was added in 

drops to the protein solution and stirred at room temperature 

for 2 hours, followed by 12 hours at 4°C. After this, 42 mg of 

ammonium chloride was added to the solution, and the mixture 

was stirred for another 2 hours at room temperature. The result-

ing FITC-labeled protein was then purified via dialysis using a 

dialysis membrane with a cut-off of 10,000 MW. After freeze 

drying, the labeled protein was recovered as an orange solid, 

yielding 82% (41.164 mg, 0.574 µmol) of final product. The 

isolated FITC-BSA was then characterized via ultraviolet-visible 

(UV-vis) absorption spectroscopy, and the labeling efficiency 

was determined to be 1.5 moles FITC per 1 mole of protein. 

The UV-vis absorbance spectra were measured with a UV-vis 

spectrophotometer (Perkin-Elmer Ltd, Beaconsfield, UK).

Analysis of zebrafish embryos
Mortality
The number of dead embryos was recorded every 24 hours 

for up to 3 days after injection.

Morphology
The live larvae were analyzed for malformations, namely 

edema of the pericardium and/or yolk sac, microphthalmia, and 

abnormal body curvature, every 24 hours. Furthermore, gross 

abnormalities of the chondral skeleton were assessed in 5-day-

old zebrafish embryos fixed and Alcian blue-stained larvae.

Cell death
For necrosis assay the larvae from both the treatment and 

control groups 24 hours post injection were live stained with 

5 mg/L acridine orange solution in egg water for 30 minutes 

in the dark. They were then assessed with confocal micros-

copy at an excitation wavelength of 488  nm to count the 

number of positive cells in the entire body of the living larva. 

The necrotic cells were counted from the confocal images 

after z stack was flattened to get a clear picture of all the cells 

through the thickness of the embryo.

Alcian blue staining
The larvae were fixed at 5 days post fertilization (dpf) in 4% 

paraformaldehyde in PBS at 4°C overnight, then rinsed in 

Milli-Q water 5 × 5 minutes and dehydrated in a graded series 

of ethanols (25%, 50%, 70%), rinsed in acid alcohol (1% con-

centrated hydrochloric acid in 70% ethanol) for 10 minutes, 

and placed in filtered Alcian blue solution (0.03% Alcian 

blue) in acid alcohol for 1  hour. They were then washed 

2 × 30 minutes in distilled water, cleared in 70% glycerol, 

and stored until imaging. Twenty-five embryos each from 

the treatment and control groups were observed.

Morphometric analyses of cell death, neutrophil, 
leukocyte/macrophage, and tartrate-resistant acid  
phosphatase-positive cells
Acridine orange-stained cells were counted from confo-

cal images of whole zebrafish embryos under anesthesia 

(MS222). Ten embryos each were used for morphometric 

analyses per group (ie, treatment and control). Similarly, 

tartrate-resistant acid phosphatase-positive cells were counted 

manually under a compound microscope. The cell count 

was done for seven embryos per group for both types of 
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Figure S1 Morphometric analysis of immune cells in lysC::DsRED2 transgenic embryos. (A) Number of neutrophils 2 days post-injection (dpi) of phosphate-buffered saline 
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Figure S2 (A) Number of neutrophils 2 and 3 days post injection (dpi) with proteins (prot) or mesoporous silica nanoparticles (prot+MSNP). (B) Number of neutrophils 2 dpi 
and 3 dpi of phosphate-buffered saline (PBS) and protein. (C) Number of neutrophils 2 dpi and 3 dpi of MSNPs with or without proteins. (D) Number of leukocytes 2 dpi or 3 dpi 
of MSNP+PBS or proteins+MSNP. (E) Number of leukocytes 2 dpi or 3 dpi of protein or protein+MSNP. (F) Number of total leukocytes 2 dpi or 3 dpi of PBS or protein. Note 
that the protein means the macrophage colony-stimulating factor and receptor for necrosis factor ligand loaded into the nanoparticles, which in turn are suspended in PBS.
Note: *P , 0.1.
Abbreviation: ns, not significant.
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Figure S3 (A) Additional figures showing a control larva without any injection after 24 hours of injection. Neutrophils (red) are normally distributed in the hematopoietic 
tissue. No cells are found in the tissue of the somites. (B) Embryo showing cell death by acridine orange staining in the posterior region of the body injected with mesoporous 
silica nanoparticles (MSNPs) after 24 hours of injection. Note here that the arrow shows the MSNPs in the area of injection and arrowheads point toward lateral line organs. 
(C) Head region of a control larva after tartrate-resistant acid phosphatase (TRAcP) enzyme staining with no TRAcP stained cells. (D) Another view of head region of a 
control larva after TRAcP enzyme staining with no stained cells. (E) 5 dpf zebrafish larva after cytokine only injection (10 µg/mL M-CSF and 100 µg/mL RANK-L) without 
using MSNPs. Tartrate-resistant acid phosphatase enzyme staining reveals a highly increased TRAcP expression in the tail region (scale bar = 20 µm); inset shows the posterior 
region of the same larva at a low magnification (scale bar = 100 µm). (F) Another image of the same embryo (scale bar = 20 µm).
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cells (lysozyme-positive neutrophils and L-plastin-positive 

leukocytes). For acridine orange and tartrate-resistant acid 

phosphatase, cells in the entire body of the embryo were 

counted. For immune cells, only the area around the injec-

tion site was counted.

Supplementary movie 2  A different, 2-days post-fertilization zebrafish 
embryo, injected with fluorescent nanoparticles (green) in the left flank behind 
yolk sac extension showing the movement and distribution of mesoporous silica 
nanoparticles later than 2.5 hours. The recording was done from 2.5 hours post 
injection to 5 hours post injection. There was an interval of 10 minutes between 
each frame. Available from: http://youtu.be/_6sY-110_Oc.
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Supplementary movie 1 Two-days post-fertilization zebrafish embryo injected 
with fluorescent nanoparticles (green) in the left flank behind yolk sac extension 
showing the movement and distribution of mesoporous silica nanoparticles for the 
first 2.5 hours after injection. There was an interval of 10 minutes between each 
frame. Available from: http://youtu.be/mPsLIGAApUg.
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