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Abstract: One of the persistent challenges confronting tissue engineering is the lack of 

intrinsic microvessels for the transportation of nutrients and metabolites. An artificial micro-

vascular system could be a feasible solution to this problem. In this study, the femtosecond 

laser ablation technique was implemented for the fabrication of pillared microvessel scaffolds 

of polylactic-co-glycolic acid (PLGA). This novel scaffold facilitates implementation of the 

conventional cell seeding process. The progress of cell growth can be observed in vitro by opti-

cal microscopy. The problems of becoming milky or completely opaque with the conventional 

PLGA scaffold after cell seeding can be resolved. In this study, PLGA microvessel scaffolds 

consisting of 47 µm × 80 µm pillared branches were produced. Results of cell culturing of 

bovine endothelial cells demonstrate that the cells adhere well and grow to surround each 

branch of the proposed pillared microvessel networks.

Keywords: femtosecond laser ablation, pillared microvessel scaffold, polylactic-co-glycolic 

acid, bovine endothelial cells

Introduction
The main challenges in tissue engineering are the seeding of specific cells onto the 

appropriate scaffold, and providing a suitable culturing environment and adequate 

growth information to modulate the differentiation and proliferation of cells.1,2 Cell, 

scaffold, and growth information are the basic elements of tissue engineering.  Scaffolds 

serve a number of purposes, functioning as the foundation for cell attachment and 

migration, for the exchange of nutrients, and delivering and retaining of cells and 

biochemical factors. One of the persistent challenges confronting tissue engineering 

is the lack of intrinsic microvessels for the transportation of nutrients and metabolites. 

One feasible solution to this problem is to make an artificial microvascular system to 

provide regular metabolic distribution.

In general, the structure of a microvascular network is much smaller than that 

of an artery or a vein. Conventional techniques for the fabrication of artificial 

blood vessels cannot be adopted as for the fabrication of a microvascular network. 

Soft lithography using polymers such as polydimethylsiloxane and polylactic-co-

glycolic acid (PLGA) has been studied and successfully used to make microvessel 

scaffolds for tissue engineering.3,4 Borenstein et al used deep reactive ion etching 

to make microstructures of a microvessel network on a silicon substrate as a rep-

lica mold. They cast microvessel scaffolds of polydimethylsiloxane from replica 

molds and O
2
 plasma-assisted bonding. Successful seeding of endothelial cells 

from human microvessels in polydimethylsiloxane scaffolds was carried out.5–7 

Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
1865

O R I G I N A L  R E s E A R C H

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/IJN.S29969

In
te

rn
at

io
na

l J
ou

rn
al

 o
f N

an
om

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

gjwang@dragon.nchu.edu.tw
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/IJN.S29969


International Journal of Nanomedicine 2012:7

Wang et al later utilized stainless steel electroforming and 

silicon  electroforming approaches for the manufacture of 

microvascular scaffolds of polycarbonate and PLGA for 

bovine endothelial cell seeding.8 The microvascular scaffold 

structure has been optimized for better cell adhesion based 

on fluid mechanics analysis and computer simulations.9,10 

In the aforementioned approaches, the microchannels of 

a scaffold are rectangular in cross-section and usually 

have dead volumes in the four corners. To solve the dead 

volume problem, the same group developed microvessel 

scaffolds with circular microchannels on both polydim-

ethylsiloxane and PLGA substrates using the photoresist 

melting approach.11,12 Borenstein et al have recently reported 

on the fabrication of another circular cross-sectional 

microvascular scaffold structure based on the polystyrene 

substrate.  Successful seeding of primary human umbilical 

vein endothelial cells was observed.13 The nanopatterned 

scaffold has been demonstrated to have greater potential 

for bovine endothelial cell adhesion and proliferation.14 

Wang et al further utilized the anodic aluminum oxidization 

approach for the fabrication of PLGA microvessel scaffolds 

with nanostructured inner walls.15

In conventional microvessel scaffolds, rectangular or 

circular microchannels form the branches, and it is hoped 

that the cells can grow along the inner wall of each branch. 

When a biodegradable material such as PLGA is used, the 

structure of the scaffold gradually turns opaque and milky 

over a period of 24 hours. This occurs due to absorption of 

the cultivation medium and the following hydrolysis, and 

makes it difficult to use optical microscopy to monitor the 

progress of cell seeding.12 In addition, dynamic seeding can 

be carried out using a peristalsis pump to give the seeded 

cells properties similar to those of the endothelial cells of 

a real capillary. This is the commonly used cell culture 

method. However, this method has disadvantages, such as 

aging and cracking of the connection conduit and probable 

virus infection. Although semidynamic seeding,10 which 

enables periodic exchanges of the cultivation medium 2–3 

times a day, can be used to reduce the probability of virus 

infection, it is not a foolproof solution. If a microvascular 

scaffold with pillared microvessel networks can be fabri-

cated to replace the reported microchannel-based scaffold, 

endothelial cells could be seeded around each pillared 

microvessel branch using the conventional cell-seeding 

process. This would overcome the disadvantages of the 

biodegradable microvessel scaffolds. Moreover, pillared 

microvessel networks can eventually be degraded by the 

cultivation medium or physiological metabolism. Hence, 

long-term culture of bovine endothelial cells until complete 

degradation of the pillared PLGA scaffold can result in an 

artificial microvessel network that is formed by the bovine 

endothelial cells surrounding the original pillared PLGA 

scaffold.

The unique characteristics of ultrashort laser pulses, 

eg, minimal thermal effects and mechanical damage, 

from a femtosecond laser can be used to remove or to 

modify the properties of a material. Femtosecond laser 

micromachining has been demonstrated to be a versatile 

tool for precise ablation of microscale and nanoscale 

features on materials.16–19 A variety of femtosecond laser 

microfabricated devices are being used in the photonic, 

microelectronic, biomedical, and microfluidic fields.20–28 

They are fabricated from various materials, such as 

metal, glass, ceramics, polymers, and semiconductors. 

However, the femtosecond laser micromachining of tis-

sue scaffolding fabricated from biodegradable material 

is still in the initial stages. Lim et al demonstrated that 

a femtosecond laser can be used to fabricate arbitrary 

patterns and pattern arrays on freestanding electrospun 

polycaprolactone membranes for use as functional tissue 

scaffolds.29 Melissinaki et al reported the production of 

three-dimensional scaffolds of polylactide-based materi-

als through layer-by-layer multiphoton polymerization.30 

Ovsianikov et al used the two-photon polymerization 

50 µm

80 µm

A B

Figure 1 Microvessel scaffold design.
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method to fabricate three- dimensional computer-designed 

scaffolds on  photosensitive methacrylamide-modified 

 gelatin.31 However, direct writing of the scaffold structure 

in a bulk biodegradable material by single femtosecond 

laser ablation has not yet been reported.

The main purpose of this study was to develop a novel 

method for the fabrication of artificial microvessel networks 

which allows a conventional cell seeding process to be 

implemented and the progress of cell growth to be observed 

in vitro by optical microscopy. Pillared microvessel scaffolds 

are fabricated in PLGA using femtosecond laser ablation. 

Following this process, bovine endothelial cells were cul-

tured on pillared biodegradable microvessel scaffolds using 

the conventional culturing method. It was expected that the 

milky or completely opaque appearance of the conventional 

PLGA scaffold after cell seeding, which occurs due to absorp-

tion of the cultivation medium and the cultivation medium 

contamination, could thus be solved.

Materials and methods
Femtosecond laser micromachining 
system for fabricating PLGA scaffolds
A femtosecond laser micromachining system was used 

for patterning PLGA film. The femtosecond laser used 

in this study was a regenerative amplified mode-locked 

Ti:Sapphire laser (Spitfire; Spectra-Physics, Mountain 

View, CA), with a central wavelength of 800 nm, a repeti-

tion rate of 1 kHz, a pulse duration of about 120 fsec, and 

a maximum pulse energy of about 3.5 mJ. The polarized 

Gaussian laser beam was initially attenuated using a rotat-

able half-wave plate, then incident upon a polarizing beam 

splitter. The reflected component was routed to a power 

detector in order to measure the laser energy, while the 

transmitted component was passed through a mechanical 

shutter. The laser beam passed through a reflective mir-

ror system, in such a manner that it entered the objec-

tive lens (numerical aperture 0.26, M Plan Apo NIR; 

60 mW

1.5 mW

10 µm 10 µm 10 µm 10 µm 10 µm 10 µm 10 µm

1 µm1 µm1 µm1 µm1 µm

1.2 mW 0.9 mW 0.6 mW 0.45 mW

45 mW 30 mW 15 mW 6 mW 4.5 mW 3 mW

Figure 2 scanning electron microscopic images of polylactic-co-glycolic acid line patterns fabricated under a constant scanning speed of 0.05 mm/sec and a laser power 
of 0.45–60 mW.
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Figure 3 Ablation line width and depth as a function of laser power at scanning speeds of 0.05 mm/sec and 0.5 mm/sec.
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Mitutoyo, Singapore) mounted on a Z stage, and focused 

normally on the surface of a specimen mounted on an 

X–Y axial micropositioning stage, with a precision greater 

than 1 µm. The fabrication process was monitored by a 

charge-coupled device.

Microvessel scaffold design
Figure 1 shows two types of scaffolds. The thickness of each 

branch was 50 µm. The second type of scaffold, as shown in 

Figure 1B, has several additional elements (red circled areas) 

designed to enhance its stiffness, which prevents deflection 

due to absorption of the culture medium.

PLGA substrate preparation
PLGA is a copolymer comprised of lactic acid and glycolic 

acid. The mechanical properties and biodegradability of 

PLGA are determined by the ratio of lactide to glycolide used 

for polymerization (eg, PLGA 50:50 denotes a copolymer 

whose composition is 50% lactic acid and 50% glycolic 

acid). Because a pillared microvessel network with a high 

mechanical strength is needed to sustain the structure, 85:15 

PLGA was adopted in this study.

The PLGA solution was produced by dissolving 85/15 

POLY, IV 1.6–1.99 (dL/g), molecular weight 350,000–

500,000 Da (Sigma-Aldrich, St, Louis, MO) in acetone 

at a 1:4 w/w ratio. The admixture was then stirred by a 

magnetic agitator at 60°C for 30–60 minutes to ensure 

complete  dissolution. The PLGA solution was then shaken 

for 15  minutes using an ultrasonic shaker to expel bubbles 

generated during mixing. Finally, the PLGA solution was 

kept at 4°C for polymerization.

Zeta potential measurement
A DI3100 (Bruker, Karlsruhe, Germany) electric force micro-

scope was used to image the electrostatic surface potential of 

the laser micromachined surface of the PLGA scaffold.

surface roughness measurement
The same device used for electric force microscopy imaging 

was used in atomic force microscopy mode to measure the 

surface roughness of the laser micromachined surface on 

the PLGA scaffold.

Bovine endothelial cells
In this study, bovine endothelial cells (provided by Professor 

Chia-Ching Wu, Department of Cell Biology and Anatomy, 

School of Medicine, National Cheng-Kung University, Taiwan) 

were used to form the desired capillaries. Bovine endothelial 

cells (P
122

–P
125

) were isolated and cultured in T-75 under stan-

dard cell culture conditions (ie, 37°C, humidity 5%, CO
2
/95% 

air environment). Bovine endothelial cells were cultured in 

low glucose Dulbecco’s modified Eagle’s medium purchased 

from Gibco BRL (Grand Island, NY), supplemented with 10% 

fetal bovine serum and 100 U/mL penicillin-streptomycin, both 

purchased from Biological Industries (West Bank, Israel). Each 

time, 230 µL of cell suspension (about 80,000 cells) was coated 

on the pillared microvessel networks and kept at 37°C in 5% 

CO
2
 for the duration of the experiments.

Desired 
size

LaserPLGA scaffold
Designed 

size

Laser path

50 µm

47 ± 2 µm

A B
47 ± 2 µm

Figure 4 Fabrication strategy for the polylactic-co-glycolic acid scaffold and a scaffold fabricated under laser ablation. (A) Fabrication strategy and (B) fabricated scaffold.
Abbreviations: PLGA, polylactic-co-glycolic acid.

47 ± 2 µm

Top view

x18 Side view x5,000 1 µm

Side view

Roughness
(226 nm)

Figure 5 scanning electron microscopic images of the laser-fabricated scaffold.
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Bovine endothelial cell adhesion  
and growth
The adhesion and growth conditions for the bovine endothelial 

cell cultures on the pillared microvessel networks were exam-

ined after staining with phalloidin cell stain ( Sigma-Aldrich) 

for skeleton labeling (588 nm excitation wavelength) and 

DAPI nucleic acid stain (Invitrogen, Carlsbad, CA) for nucleus 

labeling (358 nm excitation wavelength). Briefly, the bovine 

endothelial cells were washed three times with a phosphate-

buffered saline and then incubated at room temperature 

in 4% paraformaldehyde (Sigma-Aldrich) for 15 minutes to 

 stabilize cells in their original adhesion position.  Following the 

incubation period, cells were soaked in a medium comprised 

of 0.5% (v/v) Triton X-100 (Sigma-Aldrich) in phosphate-

buffered saline for 30 minutes and then in 1% (w/v) bovine 

serum  albumin supplied by United States Biochemical 

(Cleveland, OH). The soaking durations for skeleton label-

ing and nucleus labeling were 30 minutes and 5 minutes, 

 respectively. Both the skeleton and nucleus fluorescent images 

were taken using an Eclipse 80i inverted microscope (Nikon, 

Tokyo, Japan) to examine bovine endothelial cell adhesion and 

growth conditions on the pillared microvessel networks.

Results and discussion
PLGA micromachining by femtosecond 
ablation
Figure 2 shows scanning electron microscopic images of 

line patterns fabricated on a PLGA film surface using a 

constant speed of 0.05 mm/sec, laser power in the range of 

0.45–60 mW, and a single pass. Due to the Gaussian prop-

erties of the irradiated laser beam profile, the middle of the 

scanning area was irradiated by a higher laser energy than the 

edges. The net peak energy intensity (NE
p
) of the focused laser 

beam was higher than the ablation threshold of the PLGA, and 

thus the center of the line was ablated, NE
p
 = N × E

p
, where 

N = 2ω
0
R/s is the number of laser pulses irradiated per focus 

spot diameter and E
p
 = E/(πω

0
2) is the peak energy intensity. 

Note that ω
0
 is the focus spot radius, R is the laser repetition 

rate, s is the scanning speed, and E is the laser pulse energy. 

As shown in Figure 2, the width of the line increases with 

increasing laser power, because the net peak energy per irradi-

ated focus spot diameter is also increased.

The variation of the measured ablation width and 

depth (obtained from the cross-sectional scanning electron 

A B C

1 µm1 µm1 µm

Figure 6 Electric force microscopy images for zeta potential analysis. (A) Electric force microscopy image, (B) phase image, and (C) phase image when the focal length was 
increased by 3 µm.

A B

C D

100 µm

100 µm

100 µm

100 µm

Figure 7 Optical microscopy images of bovine endothelial cell adhesion on the 
polylactic-co-glycolic acid scaffold. (A) One day’s seeding, (B) three days’ seeding, 
(C) five days’ seeding, and (D) seven days’ seeding.
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Figure 4 shows the fabrication strategy for the PLGA 

scaffold and a scaffold fabricated under laser ablation at a 

constant scanning speed of 0.05 mm/sec and a laser power 

of 60 mW. The width of an individual branch was downsized 

from the designed 50 µm to the desired 47 µm.

Figure 5 shows the scanning electron microscopic images 

of the scaffold shown in Figure 4 for further examination of 

its surface morphology. The holey substrate beneath the scaf-

fold in Figure 5A represents the silver glue used for fixing the 

scaffold. The thickness of an individual branch was measured 

to be 47 µm (as shown in Figure 5A). Figure 5B shows the 

nanostructure of the lateral surface of a pillared branch. A sur-

face roughness of 226 nm was detected. Given that the designed 

thickness was only 50 µm, the energy of the laser beam during 

ablation could be easily absorbed into the PLGA material, 

allowing the nanostructure surface to be created. However, 

it has been reported that the nanostructure could enhance the 

adhesion of bovine endothelial cells on the lateral surface.14

A B

Figure 8 Fluorescent images of cultured cells on the scaffold. (A) DAPI-labeled nuclei and (B) labeled skeletons and nucleus.

#1 #2

#4#3

Figure 9 scaffolds for cell cover ratio estimation.

 microscopic image) as a function of the laser power for 

 scanning speeds of 0.05 and 0.5 mm/sec can be seen in 

Figure 3. It can be observed that a lower scanning speed 

results in a pattern with greater width and depth. When the 

irradiated laser power is fixed, a low scanning speed increases 

the number of laser pulses, ie, N = 2ω
0
R/s. This results in an 

increase in the net peak energy intensity per irradiated focus 

spot diameter. The thermal energy deposited by subsequent 

pulses must diffuse out through a large area of irradiated 

material and the width and depth of the pattern grows.

Microvessel scaffold fabrication
Based on the above analyses of femtosecond laser ablation, 

the laser focus point is required to move according to the 

designed geometry, which has dimensions equaling the 

desired geometry plus the effect size due to laser ablation. 

Hence, the final dimension of the scaffold after ablation can 

reach its desired value.
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An electric force microscopy image of the laser 

 micromachined PLGA surface is shown in Figure 6A. 

The phase image of Figure 6A is illustrated in Figure 6B. 

 Figure 6C shows the phase image when the focal length was 

increased by 3 µm. There is no sign of an electrical field in 

Figure 6C. This indicates that there is neither a positive nor 

negative potential on the PLGA surface. The zeta potential 

of the free surface exhibited no repulsion to the negative-

charged surface of the bovine endothelial cells and enabled 

better cell adhesion.

Bovine endothelial cell culture
Figure 7 shows optical microscopy images of the bovine 

endothelial cell adhesion and proliferation on the PLGA scaf-

fold, as already shown in Figure 3A. It can be observed from 

Figure 7A that cells had not yet adhered to the pillared microve-

ssel networks after 1 day of seeding. Figure 7C is the image after 

5 days of culturing. It can be seen that cells had adhered well 

to the scaffold and plate. After 7 days of seeding (Figure 7D), 

the growth of cells reached saturation conditions.

Figure 8 shows fluorescent images of adhering cells on 

the PLGA scaffold as shown in Figure 4 at 200× magni-

fication 10 days after plating. Figure 8A is an image of a 

DAPI-labeled nucleus. The light spots, which denote the 

locations of the nuclei, indicate that cells definitely adhered 

to and grew on the pillared scaffold, although the branches 

of the scaffold were slightly deformed due to absorption of 

the cultivation medium. Figure 8B shows an image combin-

ing the phalloidin-labeled skeletons and the DAPI-labeled 

nucleus excited by different light sources. Firm adhesion of 

cells could be further confirmed.

The cell cover ratio was estimated based on these four 

scaffolds, and is shown in Figure 9. The rectangle in each 

scaffold is selected as the area for counting of cell numbers. 

The average cell cover ratio was estimated as follows:

 Cell cover ratio =
Cell area Cell amount

Scaffold area

×
× 100%  

where the cell area denotes the average cover area of each 

cell on the scaffold and was calculated to be 1090 ± 157 µm2. 

Accordingly, the average cell cover ratio was calculated to 

be 90.83 ± 3.85% (Table 1).

Table 1 Cell cover ratio on the scaffold

Scaffold Scaffold  
area (μm2)

Cell  
amount

Cell cover  
ratio (%)

1 45,585 38 90.86
2 13,583 11 88.27
3 10,191 9 96.26
4 9917 8 87.93
Average 90.83 ± 3.85

Front view

2000X
Side view

10000X

2000X 1000X 

BEC

BEC

10 µm EHT = 2.36 kV Mag = 1.00 k X Mixing = On Mix signal = 0.4000
Signal A = SE2
Signal B = InLens

Date : 17 Aug 2011

Time : 13:42:56Noise reduction = Line AvgWD = 4.5 mm

2 µm EHT = 2.36 kV Mag = 2.00 k X Mixing = On Mix signal = 0.4000
Signal A = SE2
Signal B = InLens

Date : 17 Aug 2011

Time : 13:44:23Noise reduction = Line AvgWD = 4.5 mm

1 µm EHT = 2.36 kV Mag = 10.00 k X Mixing = On Mix signal = 0.4000
Signal A = SE2
Signal B = InLens

Date : 17 Aug 2011

Time : 13:47:05Noise reduction = Line AvgWD = 4.5 mm

2 µm EHT = 2.36 kV Mag = 1.00 k X Mixing = On Mix signal = 0.4000
Signal A = SE2
Signal B = InLens

Date : 17 Aug 2011

Time : 13:47:53Noise reduction = Line AvgWD = 4.5 mm

Figure 10 scanning electron microscopic images of bovine endothelial cells cultured on a branch of a pillared microvessel network for 14 days.
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To confirm further the adhesion and growth of bovine 

endothelial cells on the proposed pillared microvessel 

networks, further scanning electron microscopic images 

were acquired. Figure 10 illustrates the scanning electron 

microscopic images of bovine endothelial cells cultured on 

a branch of the pillared microvessel network for 14 days. 

On the front side, multiple stacks of bovine endothelial cells 

can be observed in the 2000× magnification image. Although 

it was difficult to take a clear side image, bovine endothelial 

cells were found through a 10,000 magnification image.

These culturing results demonstrate that bovine 

endothelial cells adhere and grow to surround each branch 

of the proposed pillared microvessel networks fabricated 

by femtosecond laser ablation. The milky and completely 

opaque problems seen in real-time observation of cell 

growth in conventional PLGA scaffolds after cell seeding 

can be resolved. Our results are promising, revealing that 

an artificial microvessel network for tissue engineering can 

be realized. Because the size of the pillared branch in this 

study was 47 µm, the size of capillaries formed by bovine 

endothelial cells after PLGA degrading is likely to be less 

than 47 µm. However, it is still much larger than the smallest 

capillary (about 3 µm) in the human body. Resolution of the 

femtosecond laser ablation on soft material such as PLGA 

requires further improvement.

Conclusion
A conventional microvessel scaffold usually consists of 

microvascular networks of microchannels made from bio-

degradable materials. For those biodegradable microvessel 

scaffolds, the scaffold structure gradually turns opaque and 

milky after 24 hours of cell seeding due to absorption of the 

cultivation medium, followed by hydrolysis. This makes it 

difficult to monitor the progress of cell seeding using opti-

cal microscopy. In this study, the femtosecond laser abla-

tion technique was implemented for fabrication of pillared 

microvessel scaffolds in PLGA, so the conventional cell 

seeding process could be implemented and the progress of 

cell growth could be observed in vitro by optical  microscopy. 

Cell culturing results illustrated by fluorescent images dem-

onstrated that bovine endothelial cells could adhere well 

and grow, surrounding each branch of the proposed pillared 

microvessel networks. Because the bovine endothelial cells 

were not cultured in a microchannel-based scaffold, the 

milky and completely opaque problems of the conventional 

PLGA scaffold after cell seeding and cultivation medium 

contamination problems could be resolved.

In our current work, long-term culture of bovine 

 endothelial cells until complete degradation of the pillared 

PLGA scaffold is in progress. An artificial microvessel 

network formed by bovine endothelial cells surrounding the 

original pillared PLGA scaffold is expected to be obtained. 

It is hoped that the endothelialized networks produced by 

the proposed method in this study can be further applied to 

therapeutic devices, such as engineered tissue constructs and 

organ assistance systems.
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