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Abstract: Infection and epithelial downgrowth are major problems associated with maxil-

lofacial percutaneous implants. These complications are mainly due to the improper closure of 

the implant–skin interface. Therefore, designing a percutaneous implant that better promotes 

the formation of a stable soft tissue biologic seal around percutaneous sites is highly desirable. 

Additionally, the fibroblast has been proven to play an important role in the formation of biologic 

seals. In this study, titania nanotubes were filled with 11.2 kDa C-terminal CCN2 (connective 

tissue growth factor) fragment, which could exert full CCN2 activity to increase the biological 

functionality of fibroblasts. This drug delivery system was fabricated on a titanium implant 

surface. CCN2 was loaded into anodized titania nanotubes using a simplified lyophilization 

method and the loading efficiency was approximately 80%. Then, the release kinetics of CCN2 

from these nanotubes was investigated. Furthermore, the influence of CCN2-loaded titania 

nanotubes on fibroblast functionality was examined. The results revealed increased fibroblast 

adhesion at 0.25, 0.5, 1, 2, 4, and 24 hours, increased fibroblast viability over the course of 

5 days, as well as enhanced actin cytoskeleton organization on CCN2-loaded titania nanotubes 

surfaces compared to uncoated, unmodified counterparts. Therefore, the results from this in 

vitro study demonstrate that CCN2-loaded titania nanotubes have the ability to increase fibro-

blast functionality and should be further studied as a method of promoting the formation of a 

stable soft tissue biologic seal around percutaneous sites.

Keywords: anodization, titania nanotubes, adhesion, connective tissue growth factor, 

fibroblast

Introduction
The long-term success of percutaneous implants relies on the formation of a stable soft 

tissue biologic seal around the percutaneous site.1–3 Infection and epithelial growth are 

two of the principal causes of the failure of percutaneous implants.1,3–9 A biosynthetic 

soft tissue seal can act as a barrier against epithelial downgrowth and bacterial invasion 

on subepithelial connective tissues and the implant interface.1,10,11

The fibroblast plays an important role in the formation of a biologic seal. 

The biologic seal of skin is provided by both the epidermis and the dermis, which 

mainly consist of fibroblasts that produce extracellular matrix (ECM) and various 

essential components of connective tissues, including glycosaminoglycans and 

collagen in fibrous tissue.12,13 Previous studies have demonstrated that the quality 

of the connective tissue at the percutaneous area is more important than the quality 

of the epithelial attachment for the long-term success of maxillofacial implants.11,14 

Therefore, expediting the attachment and growth of fibroblasts could promote the 
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formation of a permanent biologic seal at the percutaneous 

area and prevent contamination of the implant.15

Currently, the percutaneous surfaces of implants are 

often made smooth to prevent the adhesion of bacteria.11 

Upon healing, the wound closure is likely to be generated 

by the contraction of fibrous connective tissues during the 

healing process. However, such smooth surfaces have been 

shown to lead to detrimental capsule.9,11 Current methods to 

improve the formation of a biologic seal are aimed at pre-

venting bacterial infection rather than promoting skin growth 

around the percutaneous site. These methods include alter-

ing surgical techniques, modifying the implant design, and 

coating its surface.16 Coating approaches have been shown 

to increase the antibacterial ability of implants by using 

fibroblast growth factor 2-embedded apatite composites17 and 

silver nanoparticles.18,19 Although these coatings reduced the 

presence of bacteria compared to their uncoated counterparts, 

the infection rate was still high and there was no reported 

effect on biologic seal formation. Therefore, there is a need 

for alternate ways to improve the formation of a biologic 

seal and decrease infection rates. An alternative strategy is 

to create a growth factor coating that can promote fibroblast 

growth around the percutaneous site, which would not only 

provide a stable biological seal but would also provide a 

permanent barrier against bacterial infection. By optimizing 

the surface structure, as well as the growth factor loading 

capacity and release rate, biosynthetic coating materials can 

achieve both of these goals.

A more suitable drug carrier for creating a growth factor-

eluting implant coating is titania nanotubes, which have 

already been shown to exhibit very good biomechanical 

compatibility.16,20–22 This material has served as a carrier for 

several agents such as proteins, antibacterial compounds, 

and other drugs.18,22–25 In addition, titania nanotubes are 

highly ordered with different diameters and lengths that 

can be easily fabricated to specification.26 CCN2 (con-

nective tissue growth factor) is an excellent candidate for 

loading drugs. CCN2 has been shown to be sufficient to 

promote fibroblast adhesion, and it also promotes fibro-

blast proliferation.27–33 Recombinant human CNN2,  a 

lower molecular weight isoform containing the 11.2 kDa 

C-terminal portion of the full length CNN2 protein, exerts 

full heparin binding, cell adhesion, and mitogenic CNN2 

activity. CNN2 is noncytotoxic at suitable doses and has 

satisfactory stability. Because the required dose of CNN2 

for biological activity is extremely low, it is possible 

to fabricate coatings with extended delivery times by 

controlling CNN2 release.

In this study, the purpose was to investigate whether 

CNN2 could be incorporated into the nanotubes controllably 

and to evaluate the effect of CNN2-loaded titania nanotubes 

on the biological responses of fibroblasts.

Materials and methods
Substrate preparation and anodization
Circular pure titanium sheets 1  mm thick and 10  mm in 

diameter were used as the substrates. The substrates were 

ultrasonically cleaned in acetone, followed by ethanol, and 

deionized water for 10  minutes, respectively. They were 

anodized for 120 minutes in an electrolyte containing 0.3 

weight percent hydrofluoric acid and 1 M/L phosphoric 

acid using a direct current power supply with a platinum 

electrode as the cathode. The anodization process took 

place at a constant voltage of 20 V and 25 V. The titanium 

substrates were rinsed with large amounts of deionized water 

immediately after anodization, air dried, and sterilized under 

ultraviolet light for 3 hours per substrate side prior to cell 

culture experiments.

Surface characterization
Topography and composition of the surface
Structural characterization of the titania nanotube surfaces 

was performed using a field emission scanning electron 

microscope (S-4800; Hitachi High Technologies, Tokyo, 

Japan). Images with a range of scan sizes were acquired from 

the top and cross-sections.

Roughness
For quantitative surface roughness analysis, atomic force 

microscopy (Veeco Germany, Mannheim, Germany) was 

performed on both nanotubular and unmodified surfaces. 

Measurements were conducted in ambient air with a scan 

rate of 2  Hz. The scan area was 0.5  ×  0.5  µm2. Image 

analysis software was used to generate micrographs and to 

quantitatively compare the root mean square roughness and 

relative surface area of the nanotubular (20 V voltage) and 

unmodified titanium substrates.

Contact angle and surface free energy
Contact angle measurements were carried out by the sessile 

drop method on an EasyDrop Standard instrument (KRUSS 

GmbH, Hamburg, Germany) at room temperature. Three 

different liquids, ultrapure water, and diiodomethane were in 

the contact angle measurements. The surface free energy and 

its components were calculated using the van Oss acid–base 

method. The contact angle was measured by analyzing the 
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drop shape surface and the calculations of free energy using 

DSA1 software (KRUSS).

Fabrication of the titania nanotubular 
CNN2-loaded coating and release 
kinetics
Filling of the nanotubes
A simplified lyophilization method was chosen to load 

recombinant human CNN2 (PeproTech, Rocky Hill, NJ) 

into the nanotubes. This recombinant human CCN2, an 

11.2 kDa protein of 98 amino acid residues, is Escherichia 

coli-derived. A total of 5 µL of protein solution was pipetted 

onto the surface and spread to ensure even coverage. The 

surfaces were then allowed to dry under vacuum at room 

temperature in a freeze dryer for 2 hours. After drying, the 

loading step was repeated until the appropriate amount of 

protein (25 ng or 50 ng) was loaded. After the final drying 

step, excess drug was rinsed from the surface by pipetting 

500 mL of phosphate buffered saline (PBS) to analyze the 

loading efficiency.

Release of CCN2
To measure the release of the protein from the nanotubes, the 

surfaces were immersed in 500 µL of PBS in a 48-well plate 

at room temperature with orbital shaking at 70 rpm. A total of 

200 µL of samples was taken (replaced with 200 mL of fresh 

PBS) after specific intervals of time (15 minutes) for up to 

120 minutes to determine the release kinetics. The concentra-

tion of protein was monitored using a CCN2 enzyme-linked 

immunosorbent assay (PeproTech). The loading efficiency 

and the release kinetics for different doses of drug coatings 

were determined.

Cell culture
Primary human skin fibroblasts were isolated from newborn 

foreskin as previously described.34 Cells were used at pas-

sages three to eight. Human skin fibroblasts were cultured 

separately in HyClone Dulbecco’s Modified Eagle Medium 

(Thermo Fisher Scientific Inc, Pittsburg, PA) with HyClone 

10% fetal bovine serum (Thermo Fisher) and 1% penicillin/

streptomycin (Sigma-Aldrich Corporation, St Louis, MO) 

under standard culture conditions at 37°C in humidified 5% 

carbon dioxide/95% air. When the density of fibroblasts 

reached a suitable population, they were seeded onto the 

experimental substrates (50 ng CCN2-loaded 20 V voltage 

nanotubular coated surface, 20 V voltage nanotubular sur-

face, and unmodified surface were chosen as the experimental 

substrates), which were placed in a 48-well polystyrene plate 

and stored in a carbon dioxide incubator. The cell media was 

replaced every 2 days.

Cell viability assay
The concentration of cells seeded onto the specimen substrate 

was 1000 cells cm-2 per substrate for cell viability experi-

ments in a standard 48-well culture plate under standard cell 

conditions. Cell viability was assayed with a Cell Counting 

Kit-8 (Dojindo Molecular Technologies Inc, Kumamoto, 

Japan). Briefly, after 1, 3, and 5  days of culture, culture 

medium was moved, and 200 mL of fresh culture medium 

mixed with 20 µL of Cell Counting Kit-8 reagent was added 

into each well. Then, the samples were incubated for 2 hours 

according to the manufacturer’s instructions. In addition, the 

same volume of culture medium and Cell Counting Kit-8 

reagent without cells was also incubated as the background 

control. An aliquot (150  mL) of incubated medium was 

pipetted into a 96-well plate and the absorbance at 450 nm 

was measured for each well as above. All experiments were 

performed with a sample size of n = 6.

Cell adhesion assay
Cell adhesion was assayed with a live cell labeling kit 

(Cellstain-CFSE; Dojindo). The fibroblasts (107 cells/mL) 

were labeled with carboxyfluorescein diacetate succinimyl 

ester (20 µM/mL) at 37°C for 15 minutes. We pelleted cells 

by centrifugation and washed the cells by resuspending the 

pellet in fresh media. This process was repeated for a total of 

three washes. Then the fibroblasts were seeded at a density 

of 25,000 cells per substrate for adhesion experiments in a 

standard 48-well culture plate under standard cell condi-

tions. At the indicated time points (0, 0.25, 0.5, 1, 2, 4, and 

24  hours), substrates were rinsed in PBS to remove any 

nonadherent cells and 200 mL of sodium dodecyl sulfate/

Tris (hydroxymethyl) aminomethane hydrochloride solution 

was added into each well to dissolve the fluorescent dye. An 

aliquot (150 mL) from each well was transferred to a new 

96-well plate. Fluorescence was measured using a fluorom-

eter plate reader (Synergy HT; BioTek, Winooski, VT). All 

experiments were performed with a sample size of n = 6.

Immunofluorescence of cytoskeletal actin
Epifluorescence microscopy was used to compare the mor-

phological alterations both in regard to the organization of 

the actin cytoskeleton and cellular shape. The distribution of 

actin was observed at 4 hours, 1 day, and 3 days of culture. 

After this period of time, the cells were washed with PBS 

and fixed in a 4% paraformaldehyde solution for 15 minutes. 
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The samples were then washed in PBS and treated with 

0.1% Triton X-100 (5 minutes at room temperature). The 

samples were then incubated at 37°C for 5 minutes in 1% 

bovine serum albumin/PBS, followed by washing with PBS 

and incubation with phalloidin-fluorescein isothiocyanate  

(Sigma-Aldrich) for 1 hour at 37°C. Actin staining was visu-

alized and analyzed under a laser scanning confocal micro-

scope (FV1000; Olympus Corporation, Tokyo, Japan).

Statistical analyses
All experiments were run in triplicate (at least) and repeated 

a minimum of three separate times. Experimental data were 

analyzed statistically using analysis of variance followed 

by Student’s t-tests. Statistical significance was considered 

at P , 0.05.

Results
Surface characterization
Scanning electron micrographs (Figure 1A and B) showed 

that the nanotubes were highly ordered and vertically aligned 

with a diameter of approximately 100 nm (20 V voltage) and 

120 nm (25 V voltage). It was estimated that the nanotubes 

were between 400  nm and 500  nm deep from the cross-

sectional image (Figure 1A and B). Representative atomic 

force microscope images of unmodified and 20 V voltage 

nanotubular anodized titanium were characterized by root 

mean square roughness and relative surface area (Figure 2A 

and B; Table  1). The results showed that the unmodified 

titanium surface was relatively smooth compared with the 

100 nm diameter nanotubular anodized titanium surface.

Surface energy calculations from contact angle measure-

ments indicated that the greater surface roughness at the 

nanoscale level correlated with an increased surface energy. 

Specifically, the 100 nm diameter nanotubular titanium had 

a surface energy significantly higher than that of unmodified 

titanium (Table 2).

Analysis of the CCN2 loading efficiency 
and release curve
The loading efficiency was expressed as the percentage 

of loaded drug after washing according to the following 

formula:

η =
-D D

D
0 r

0

where η is loading efficiency, D
0
 is drug dose used to fill the 

nanotubes, and D
r
 is the drug dose in the rinse solution.

Loading efficiencies for 100  nm diameter nanotubes 

loaded with 25 ng and 50 ng of CCN2 and 120 nm diam-

eter nanotubes loaded with 50 ng of CCN2 are shown in 

Figure 3A. These results indicated that 77%, 81%, and 76% 

of the drug, respectively, was retained in the nanotubes after 

an initial wash.

Figure  3B–D show the CCN2 release kinetics from 

the coating in PBS with orbital shaking. The amount of 

released CCN2 diminished gradually with immersion time. 

As expected, there was a slower and more sustained release 

from the 100  nm diameter nanotubes loaded with 50  ng 

CCN2 compared to 100 nm diameter nanotubes loaded with 

25 ng CCN2 and 120 nm diameter nanotubes loaded with 

50 ng. Kinetic analysis of the nanotubes loaded with 50 ng 

of CCN2 indicated that the maximum drug had eluted within 

105 minutes. Alternately, kinetic analysis of the 100 nm diam-

eter nanotubes loaded with 25 ng of CCN2 and the 120 nm 

diameter nanotubes loaded with 50  ng indicated that the 

maximum drug in both had eluted within 90 minutes.

Cell viability
The cell viability of fibroblasts grown on the above substrates 

and the corresponding incubation times are summarized in 

Figure 4. As shown, cell growth on the CCN2-loaded titania 

nanotubular surface was significantly higher than the other 

A B C

S-4800 15.0 kV 12.7 mm × 10.0 k SE(M) 5.00 µm 5.00 µm 1.00 µmS-4800 20.0 kV 7.8 mm × 10.0 k SE(M) S-4800 20.0kV 10.7 mm × 50.0 k SE(M)

Figure 1 Scanning electron microscope images of (A) 20 V voltage nanotubular anodized titanium under low magnification and high magnification, and nanotubular anodized 
titanium cross-sections; (B) 25 V voltage nanotubular anodized titanium under low magnification and high magnification, and nanotubular anodized titanium cross-sections; 
and (C) unmodified titanium.
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two kinds of surfaces at days 1, 3, and 5 after incubation 

(P , 0.05). However, the difference between the nanotubular 

surface and the unmodified surface was not obvious from sta-

tistical analysis. This finding indicates that titania nanotubes 

with a CCN2 coating release growth factor in a sustainable 

manner that promotes cell mitosis continuously.

Fibroblast adhesion
Results of the present study demonstrate increased fibroblast 

adhesion to the CCN2-loaded titania nanotubular surface 

compared to nanotubular titanium and unmodified titanium 

surfaces (Figure  5). There was not a statistically signifi-

cant (P , 0.05) difference in fibroblast adhesion between 

the nanotube anodized titanium compared to unmodified 

titanium. As expected, the results also showed increased 

(P , 0.05) adhesion of fibroblasts to the CCN2-loaded titania 

nanotubular surface.

Morphological alterations and 
cytoskeletal actin
These results showed a strong initial interaction between 

the cells and the modified surface (Figure 6). Notably, the 

morphology of cells grown on these surfaces was different 

after different times during the culturing. At 4 hours, many 

stress fibers were apparent around the periphery of the cells 

on the CCN2-loaded titania nanotubular surface. However, 

the cells grown on the other two kinds of surfaces at this 

point, whilst showing lamella formation, had fewer stress 

fibers. Within 1 day, cells on the CCN2-loaded titania nano-

tubular surface displayed thick, contractile stress fibers. In 

contrast, the cells on the other two surfaces had noticeably 

fewer contractile stress fibers. Within 3 days, cells on the 

CCN2-loaded titania nanotubular surface exhibited thick 

stress fibers and a more voluminous cell body and began 

to become confluent, whereas fewer cells on the other two 

surfaces were confluent.

Discussion
CCN2-loaded titania nanotubular surfaces promoted excel-

lent cellular responses throughout the 5-day study period. 

At 0.25, 0.5, 1, 2, and 4 hours, the number of cells initially 

adhered to the CCN2 coating were higher than the other two 

surfaces. Cells adhered to the implant surfaces by attaching 

to the ECM, and cytoskeletal organization is an important 

criterion of cell–ECM interactions. Cytoskeletal organization 

is also extremely important in modulating cell morphology, 

motility, and adhesion. In the present study, when the cell 

initially responded to the CCN2-coated nanotubular surface, 

the cytoskeleton was formed faster for these cells than for 

those reacting to control surfaces. Additionally, with time, 

denser and thicker parallel-oriented stress fibers were noticed 

on the surface. Therefore, there were most likely more stable 

cell substrate interactions on the CCN2-coated surface.

Infection and epithelial downgrowth are major problems 

with percutaneous implants and both are mainly due to the 

improper closure of the implant–soft tissue interface.16 Most 

current methods are aimed at preventing bacterial infection 

rather than repairing the lack of connective tissue growth 
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Figure 2 Atomic force microscope images of (A) nanotubular anodized titanium (20 V voltage) and (B) unmodified titanium.

Table 1 Surface roughness of unmodified and nanotubular 
titanium (20 V voltage) surfaces

Substrates Relative surface 
area (μm2)

Root mean square 
roughness (nm)

Unmodified titanium 0.3260 ± 0.017 6.940 ± 0.75
Nanotubular titanium   0.521 ± 0.045* 9.340 ± 0.59*

Note: *P , 0.05 nanotubular titanium compared with unmodified titanium.
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around the percutaneous site.18,24 A better strategy is to 

create an implant surface with a growth factor coating that 

can promote connective tissue growth around the surgical 

site, which would not only prevent epithelial downgrowth 

but also provide a permanent barrier for bacteria invasion. 

Delivery of drugs locally from an implant surface coating 

rather than systemically can reduce unnecessary side effects 

and the amount of drug required to reach the same or better 

therapeutic efficacy.35 This implant surface with a growth fac-

tor coating not only offers the advantage of a high localized 

drug concentration but is also an effective way of deliver-

ing growth factors directly to the percutaneous site. Several 

previous studies have tried to fabricate implant surfaces with 

growth factor coatings by adsorbing antibiotics or growth 

factors directly to the implant surface with bone cements36,37 

or by loading agents in collagen sponges, porous coatings, or 

polymer-based matrices.38,39 However, all of these approaches 

have shortcomings, which include chemical instability and 

local inflammatory reactions due to material composition.

The titanium nanotube was chosen as the drug carrier 

for making the growth factor coating because it has been 

shown to have good biocompatibility. In addition, previous 

research has clearly proven that nanotube surfaces promote 

bone, skin, and other tissue growth more than current con-

ventional surfaces.16,20–22 Several papers have been published 

that have focused on the applications of titanium nanotube 

drug coatings, but none of them has examined the use of this 

delivery system at the percutaneous site.18,23,24,35 Titanium 

Table 2 Contact angle (in degrees) and surface energy components of unmodified and nanotubular titanium (20 V voltage) surfaces  
(in mJ/m2)

Substrate Contact angle Surface energy components

Water Formamide Diiodomethane λλs
LW λλ++s λλ−−s λλs

AB λλs

Unmodified titanium 60.6 52.2 19.3 46.6 0.3 24.8 -5.4 41.2
Nanotubular titanium 28.7 16.2 20.7 47.8 0.4 2.8 7.8 55.6
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nanotube drug-eluting coatings on the implant surface can 

have a variety of applications. However, the present study just 

focused on their use for percutaneous implants. In the present 

study, these nanotube surfaces showed increased hydrophi-

licity compared to unmodified surfaces. Therefore, these 

surfaces can be easily modified by organic molecules.

Recombinant human CCN2 is an 11.2 kDa C-terminal 

protein that has a positive effect on fibroblasts and is a 

model drug. It has been shown to be sufficient to promote 

fibroblast adhesion via integrins, and it also promotes fibro-

blast proliferation.27–30 CCN2 has also been shown to play a 

key role in mediating the formation of attachments between 

fibroblasts and the ECM at focal adhesions.40 CCN2 gene 

knockout mice also display decreased expression of ECM 

components and matrix metalloproteinases.12 It is envisioned 

that other drugs with fewer detrimental side effects but of a 

similar size could also be loaded into nanotubular titanium to 

improve the interface between the implant and the soft tissue. 
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Figure 4 Cell viability on CCN2 (connective tissue growth factor)-loaded nanotubular titanium, nanotubular titanium, and unmodified titanium surfaces.
Notes: n = 6; *P , 0.05 compared to nanotubular titanium; **P , 0.05 compared to unmodified titanium.
Abbreviations: CNN2, connective tissue growth factor; Ti, titanium.
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The results of the present study indicate that CCN2 released 

from titania nanotubes improved the functionality of fibro-

blasts on the titanium surface.

In the present study, the nanotubes were 100  nm in 

diameter. Although a diameter wider than 100  nm may 

significantly allow more solvent and more drug to enter 

the nanotubes, more drug would be lost during the rinse 

step as a result of the larger diameter and the lower pack-

ing density. Results showed that the loading efficiency and 

release time of 120 nm diameter nanotube were both lower 

than those of the 100 nm diameter nanotube. Another paper 

also demonstrated that larger diameter nanotubes (300 nm) 

can elute less drug than smaller nanotubes (100 nm) of the 

same length.23 Using a simplified lyophilization step to fill the 

nanotubes with CCN2, the loading efficiencies of the drug 

coating groups were both higher than 75%. This means that 

there was little waste in the drug filling process. Other stud-

ies have also shown that the nanotube surface is hydrophilic 

enough for solvents to reach the maximum depth attainable by 

using only a capillary force-dependent filling method. Thus, 

any further improvements in drug loading would require the 

application of another filling method.23

To release protein from the nanotubes, the surfaces were 

immersed in PBS with orbital shaking. The release kinet-

ics showed that the time of release for CCN2 was about 

105 minutes. Some reports have shown elution times over 

weeks for loading with paclitaxel, sirolimus, bovine serum 

albumin, or silver nanoparticles that were seemingly based 

on different sampling without shaking.18,23 Other reports have 

shown similar release times.22,24 The 105  minute-released 

CNN2  mainly enhanced initial adhesion and cytoskeletal 

development of the fibroblast. Rapid and strong adhesion 
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Figure 6 Fluorescent images of actin cytoskeleton among fibroblasts reacting to (A, D, and G) CCN2 (connective tissue growth factor)-loaded nanotubular titanium, 
(B, E, and H) nanotubular titanium, and (C, F, and I) unmodified titanium surfaces after (A–C) 4 hours, (D–F) 1 day, and (G–I) 3 days.
Note: Bar = 10 µm.
Abbreviations: CNN2, connective tissue growth factor; d, days; h, hours; Ti, titanium.
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and rapid growth of the fibroblast on the implant surface 

would promote the formation of a permanent liquid bacte-

rial seal in the percutaneous area and would prevent early 

contamination of the implant site,15 which is very important 

for the successful formation of a permanent biologic seal. 

Initial adhesion and cytoskeletal development of the fibro-

blast means rapid growth in the subsequent period, which 

were proven in the results.

In the present study, although the nanotubular titanium 

had greater nanoscale surface roughness and higher surface 

energy than that of unmodified titanium, there were no statisti-

cally significant differences between the unmodified surface 

and the nanotubular surface in regard to fibroblast response. 

Recent reports have shown better cell attachment to nanotu-

bular surfaces that are more hydrophobic than unmodified 

surfaces.20,41,42 But according to some results in the literature, 

fibroblasts prefer a smooth surface to a rough surface.43

To prevent any side effect of CNN2 in the bone healing 

process, a two-stage solution may be a good choice for the 

further clinic application of the CNN2-loaded titania nano-

tube surface on percutaneous implant. This would involve 

initially attaching a conventional component to the bone and 

subsequently, when the wound has already healed, inserting 

the percutaneous component with CNN2-loaded titanium 

nanotube surface.

Conclusion
This study showed the effect of a CCN2-loaded nanotubu-

lar titanium coating on fibroblast functionality. By using a 

simplified lyophilization method, CCN2 was loaded into 

nanotubes. These titania nanotubes coated with CCN2 under-

went the elution process at a regular release rate with a release 

time of approximately 105 minutes. Moreover, the present 

study provides evidence of enhanced fibroblast adhesion 

and viability due to this CCN2-loaded titania nanotubular 

coated substrate under in vitro conditions, which also pro-

moted actin cytoskeleton organization. The results suggest 

that a CCN2-loaded nanotubular titanium coating may be 

useful for percutaneous implants due to the beneficial effects 

on the formation of a soft tissue biological seal around the 

percutaneous site of the implant surface.
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