
© 2012 Torres-Costa et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article  
which permits unrestricted noncommercial use, provided the original work is properly cited.

International Journal of Nanomedicine 2012:7 623–630

International Journal of Nanomedicine

Engineering of silicon surfaces at the micro- and 
nanoscales for cell adhesion and  
migration control

Vicente Torres-Costa1

Gonzalo Martínez-Muñoz2

Vanessa Sánchez-Vaquero3

Álvaro Muñoz-Noval1

Laura González-Méndez3

Esther Punzón-Quijorna1,4

Darío Gallach-Pérez1

Miguel Manso-Silván1

Aurelio Climent-Font1,4

Josefa P García-Ruiz3

Raúl J Martín-Palma1

1Department of Applied Physics, 
2Department of Computer Science, 
3Department of Molecular Biology, 
4Centre for Micro Analysis of 
Materials, Universidad Autónoma de 
Madrid, Madrid, Spain

Correspondence: Raúl J Martín-Palma 
Departamento de Física  
Aplicada, Facultad de Ciencias, 
Universidad Autónoma de Madrid,  
28049 Madrid, Spain 
Tel +34 91 497 4028 
Fax +34 91 497 3969 
Email rauljose.martin@uam.es

Abstract: The engineering of surface patterns is a powerful tool for analyzing cellular 

communication factors involved in the processes of adhesion, migration, and expansion, which 

can have a notable impact on therapeutic applications including tissue engineering. In this regard, 

the main objective of this research was to fabricate patterned and textured surfaces at micron- and 

nanoscale levels, respectively, with very different chemical and topographic characteristics to 

control cell–substrate interactions. For this task, one-dimensional (1-D) and two-dimensional 

(2-D) patterns combining silicon and nanostructured porous silicon were engineered by ion beam 

irradiation and subsequent electrochemical etch. The experimental results show that under the 

influence of chemical and morphological stimuli, human mesenchymal stem cells polarize and 

move directionally toward or away from the particular stimulus. Furthermore, a computational 

model was developed aiming at understanding cell behavior by reproducing the surface distribu-

tion and migration of human mesenchymal stem cells observed experimentally.
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Introduction
Human mesenchymal stem cells (hMSCs) are increasingly used in therapeutic 

applications for bone, cartilage, and fat transplantation and repair.1 MSC fates have 

been demonstrated to be controlled by oxygen, growth factors, substrate stiffness, 

geometry, micro-/nanostructure, and surface chemistry.2–4 Thus, in any biomaterial 

applications for bone tissue therapies, precise control of MSC adhesion and migration 

is a key factor. In this regard, surface micropatterns have been demonstrated to be a 

useful tool for the control of cell behavior.5,6 Additionally, surface nanotopography has 

been shown to exert influence over cell adhesion, morphology, proliferation, migration, 

differentiation, alignment, cytoskeleton organization, and gene expression in many cell 

types, including hMSCs.7,8 Cell migration on surfaces is a complicated process based on 

myriad cell–surface interactions, and plays a critical role in a variety of physiological 

and pathological phenomena.9,10 Cells respond to synthetic topographic surfaces in a 

wide variety of ways, which depend upon many factors including cell type, feature size 

and geometry, and the physicochemical properties of the substrate material.11–13

Although both micronscale and nanoscale surface topography have been known to 

be important in understanding cell–material interactions,14 typically only simple patterns 

(eg, parallel lines or aligned posts) have been used in studying cell morphology, migra-

tion, and behavior. This restriction has limited the understanding of the multidirectional 

aspects of cell–surface responses.15 Within this context, the main objective of this work 

is to fabricate patterned and textured surfaces at microscale and nanoscale levels, respec-
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tively, to control cell–substrate interactions. As such, here we 

present a method for the fabrication of surface patterns of 

different dimensionality (1-D and 2-D), aimed at studying cell 

adhesion and migration. The influence of surface morphology 

and chemistry on the adhesion and migration properties of 

hMSCs is studied. Although the basic mechanisms of ran-

dom cell movement are well characterized, no single model 

explains the complex regulation of directional migration.5 As 

such, here we propose a model to explain the surface migration 

of hMSCs in response to surface morphology and chemical 

state. For this task, computer simulations were performed 

with the aim of reproducing the experimental cell adhesion 

and migration characteristics of hMSCs.

Methods and materials
Fabrication and characterization  
of surface micropatterns textured  
at nanoscale level
Surface patterns were engineered by defining areas of 

monocrystalline silicon (Si) and nanostructured porous silicon 

(nanoPS). This material can be succinctly described as a rather 

complex network of Si nanocrystals with a large specific 

surface area.16,17 Additionally, its biocompatibility strongly 

depends on its porosity and pore size.18 The surface micro-

patterns were fabricated as follows. Aluminum back contacts 

(∼3000 Å) were deposited on the back side of boron-doped 

(p-type) monocrystalline Si wafers of ,100. crystallographic 

orientation by electron-beam evaporation, followed by thermal 

annealing at 400°C for 5 minutes resulting in low-resistance 

ohmic electric contacts. Afterwards, the top surface of the 

silicon wafers was irradiated with MeV Si+ ions through micro-

masks (Gilder, Lincolnshire, UK) of different geometries, 

resulting in lowered conductivity in the exposed areas of the 

Si wafers. The MeV Si+ ion beam was supplied by the 5 MV 

electrostatic accelerator  of the Centre for Micro Analysis of 

Materials (CMAM, Universidad Autónoma de Madrid). Low-

ered electrical conductivity in irradiated areas might have its 

origin in damage to the Si crystal structure and/or B dopant 

deactivation.19,20 The 1-D and 2-D patterns with well-defined 

areas of different conductivities are used to selectively grow 

nanoPS regions on the surface of the Si wafers. Accordingly, 

after mask removal the silicon wafers were galvanostatically 

etched in HF:ethanol electrolytes under illumination following 

a standard nanoPS fabrication process.16,21 The resulting surface 

patterns reproduce the geometry of the masks on the substrate; 

ie, nanoPS is selectively grown in non-irradiated areas while 

monocrystalline Si remains in irradiated regions.

Scanning-electron microscopy morphological 

characterization of the Si/nanoPS surface micropatterns was 

performed using a Hitachi S-3000N (Tokyo, Japan) equipped 

with a conventional thermionic filament. The operation 

voltage was set at 20 KeV.

Cell culture and immunofluorescence
Two to four milliliters of human bone marrow samples 

from healthy donors were provided by the Hospital 

Universitario La Princesa (Madrid, Spain). Cells were col-

lected by centrifugation on 70% Percoll gradient and seeded 

at 200,000/cm2 in Dulbecco’s modified eagle’s medium–low 

glucose (DMEM-LG, Gibco, Paisley, UK) supplemented 

with 10% Fetal Bovine Serum (FBS) (Sigma). The medium 

was replaced twice per week. To perform the cell culture, 

the surface micropatterns were exposed to ultraviolet light 

for 10 minutes, thoroughly washed with phosphate-buffered 

saline (PBS), placed on a 24-multiwell plate (Falcon, Franklin 

Lakes, NJ) and seeded with 15,000 cells. The cells were then 

incubated for 72  hours with Dulbecco’s modified eagle’s 

medium–low glucose adjusted to 10% fetal bovine serum 

at 37°C in 5% CO
2
. After being washed twice with PBS the 

cells were fixed in 3.7% formaldehyde in PBS for 30 minutes 

at room temperature (RT). Cells were permeated with 0.5% 

Triton X-100 in C Buffer (100 mM NaCl, 10 mM Pipes pH 

6.8, 3 mM MgCl2, 3 mM EGTA and 0.3 M sucrose) for 30 

minutes at RT. Samples were blocked with 1% bovine serum 

albumin in PBS for 1 hour at RT. Surfaces were incubated 

in dark conditions for 1  hour with Alexa 488 phalloidin 

(1/100) and Dapi (1/5000) (Molecular Probes, Eugene, OR). 

Cells were visualized by a fluorescence vertical microscope 

Olympus IX81 coupled to a CCD color camera.

Results and discussion
Following the process described in the previous section, one- 

and two-dimensional surface micropatterns were fabricated 

using the appropriate mask for each case.

One-dimensional surface patterns
Figure  1A shows a characteristic 1-D Si/nanoPS surface 

pattern. Previous studies of surface morphology have dem-

onstrated that the surface of nanoPS shows larger root mean 

square (rms) roughness than Si.22 For scanning areas of 

2 × 2 µm2, the surface rms roughness of nanoPS areas was 

found to be 1.1 nm, much larger than that of the silicon areas 

(0.2 nm). Additionally, the different surface wettability of Si 

and nanoPS is of key importance since it will contribute to 

determining the cell adhesion and migration characteristics. 
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Figure 1 Perspective scanning-electron microscopy images from a cross-section performed in micropatterns showing (A) alternating Si and nanostructured porous silicon stripes, 
(B) and Si/nanostructured porous silicon square grids. (C) Characteristic fluorescence from nanostructured porous silicon areas from a top view of a 2-D square pattern.
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In a previous work23 the wettability of both surfaces was stud-

ied in biological buffer conditions; it was found that the water 

contact angle decreases drastically from a superhydrophobic 

behavior (water contact angle = 126°) in the case of Si, to 

a neat hydrophilic character (water contact angle = 10°) for 

nanoPS. Moreover, cytotoxicity assays in human mesenchy-

mal stem cells confirmed that porous silicon-based micro- 

and nanoparticles do not induce apoptosis.24 Accordingly, 

the definition of Si/nanoPS surface patterns at microscale 

level leads to simultaneous chemical and nanotopographic 

contrasts, which will be subsequently used for the control of 

cell adhesion and migration.

One-dimensional Si/nanoPS micropatterns consisting 

of alternating Si and nanoPS strips of different widths 

were fabricated, and the adhesion and migration of hMSCs 

studied after 72 hours of culture.22 The experimental results 

indicated that in the case of 1-D surface patterns consisting 

of 100 µm-wide Si stripes and 25 µm-wide nanoPS stripes, 

hMSCs are preferentially found on Si areas as inferred 

from the location of the actin cytoskeleton and nuclei. For 

1-D patterns consisting of alternating 50 µm-wide Si and 

25 µm-wide nanoPS stripes, the cells appear predominantly 

on Si but occasionally also on the surface of nanoPS. By 

further reducing the width of the Si stripes to 35 µm while 

keeping the width of the nanoPS stripes (25 µm), the surface 

distribution of hMSCs was found to dramatically change. In 

this case, the actin skeleton is preferentially concentrated on 

Si areas while the nuclear environment, with notably reduced 

actin fiber intensity, is preferentially located on nanoPS 

areas.22 The absence of hMSCs localized in nanoPS areas for 

large Si stripes and the inhibition of focal adhesion formation 

on nanoPS for any pattern suggest that the surface of nanoPS 

behaves as an antifouling platform given its surface roughness 

and particular chemistry as discussed above.

Two-dimensional surface patterns
In order to confirm the previous results and to further advance 

our understanding of the migration behavior of hMSCs, 

2-D patterns consisting of Si squares of 100 × 100 µm and 

25 µm-wide nanoPS stripes were fabricated. Figure 1B shows 

a top view of a typical 2-D Si/nanoPS surface micropat-

tern textured at nanoscale level. Fluorescence microscopy 

(Figure 1C) shows a typical 2-D Si/nanoPS surface pattern, 

in which red photoemission indicates the location of nanoPS 

areas on the Si wafer. Fluorescence in the visible wavelength 

regime from nanoPS is a manifestation of quantum size 

effects given the nanometric size of the Si grains which 

compose nanoPS.21 The experimental results show again 

that hMSCs respond to the particular structure of the 2-D 

patterns, as shown in Figure 2. In this case, the distribution of 

the cytoskeleton is not evident but observation of the nuclei 

clearly indicates that cells are preferentially found at the inter-

section of the nanoPS stripes, as shown in Figure 2A and B. 

With the aim of extracting a behavioral trend, a bar diagram 

of nuclei categorized as belonging to the Si square areas, to 

nanoPS stripes, or to nanoPS “intersections” has been rep-

resented (Figure 2C; see the schematic inset related to the 

different areas). It can be deduced from the area-normalized 

results that hMSCs migrate along the nanoPS stripes until 

they reach an intersection and nuclei are forced to assemble 

conformably. In cases when cells find themselves without 

neighboring competitors, they can adhere to and extend 

the cytoskeleton quasi-symmetrically at the intersection of 

two nanoPS stripes (Figure 2B). Finally, it is worth noting 

that the polarized structure of the actin cytoskeleton and the 

preservation of an internalized nucleus indicate that hMSCs 

cultured on the porous silicon-based micropatterns are far 

from an apoptotic stage.

Computer simulations
In order to get a deeper insight into cell surface distribution on 

1-D and 2-D patterned substrates, cell surface migration was 

modeled and simulated. The basic idea behind our approach 

was to reproduce cell migration and final distribution on 

the patterned and textured substrates by the use of a simple 

mathematical model. In our model, cells are considered cir-

cular (with radius equal to 50 µm) and rigid, although they 

are allowed to partially overlap. With these assumptions, 

computer simulations follow two basic criteria, (1) cells tend 

to balance their adherence to the substrate and (2) cells tend 

to avoid overlapping with other cells.

According to criterion (1), cells tend to be attached to the 

Si substrate by distributing their adhesion surface equally 

around their center. This configuration is exemplified in 

Figure 2A where most cells show their actin fibers evenly 

distributed around the nuclei mainly on the surface of Si. In 

addition, the density of actin fibers increases with distance 

from the nuclei. Following these observations we have mod-

eled how cell adherence is balanced around the nucleus by a 

vector – that we will name “center of adherence” – which is 

proportional to the center of “mass” of the cell, where only 

regions of the cell onto the Si areas are considered to have 

adherence or “mass.” In other words, the nanoPS areas are 

considered to have perfect antifouling properties and hence 

no cell parts on the nanoPS will exert any adherence force. 

In order to be balanced, cells tend to move to positions where 
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the modulus of the center of adherence is zero. As such, cells 

perform a gradient descent on the center of adherence modu-

lus. Figure 3A–D shows the adherence vector modulus for 

cells located on a line perpendicular to the 1-D stripe patterns 

for 100 µm-wide Si/25 µm-wide nanoPS alternating stripes 

(Figure  3A), 50  µm-wide Si/25  µm-wide nanoPS stripes 

(Figure 3B), 35 µm-wide Si/25 µm-wide nanoPS stripes (Fig-

ure 3C), and 2-D grid patterns consisting of 100 µm-wide Si 

and 25 µm-wide nanoPS stripes (Figure 3D). The coordinate 

origin has been placed in the center of the nanoPS stripes. 

The position of the nanoPS stripes has been marked with a 

black rectangle at the bottom of the plot (Figure 3A–C). In the 

case of 2-D patterns (Figure 3D), the black line indicates the 

location of the frontier between the Si surface and the nanoPS 

stripes. As such, the inner part corresponds to the Si surface 

whereas the outer part corresponds to the nanoPS stripes. 

Areas where a single cell is in equilibrium correspond to zero 

modulus areas. These areas correspond in the grid pattern 

to the center region of the Si area, the center region along 

the nanoPS side, stripes and to the intersections of nanoPS 

stripes. For the stripe patterns, the equilibrium regions for a 

single cell are along the center between two nanoPS stripes 

and on the nanoPS stripes.

Regarding criterion (2) it is considered that cells deform 

themselves to adapt to their neighboring cells to avoid overlap-

ping, as experimentally observed. This behavior has not been 

explicitly modeled, but in contrast cells, being considered circu-

lar, are allowed to partially overlap. However, cells tend to move 

in order to reduce the area that overlaps with other cells.

For the simulation, forces coming from criteria (1) and 

(2) have to be of the same order of magnitude. If too much 

weight is placed in (1) the simulation would finish with 

several cells at the same nanoPS intersections. On the other 

hand, if too much strength is given to (2) then all cells will 

finish packed independently of the substrate.

Migration of a cell located at position rj

r
 can be described 

as the gradient descent with respect to rj

r
 of the function

f r c Ad r K Ov
i j

r rj k k j

k

i j

ri rj

( ) ( ) ( , )
*

r r r r r= +
≠

∑ ∑
− <50µm

The first term of the summation corresponds to the 

modulus of the center of adherence and runs over all k parts 

of the cell that lie on the Si substrate, ck

r
 being the center of 

adherence and Ad r j( )
r

 the adherence surface of part k. The 

second term of the summation corresponds to the interaction 

with other cells and runs over all cells being at a distance of 

less than 50 µm from the cell of interest. Here Ov r ri j( , )
r r

 is 

the overlapping surface between cells at positions rj

r
 and rj

r
, 

and K is a constant used to balance the relative strengths of 

both components.

Computer simulations were performed for the four surface 

patterns discussed above (ie, alternating Si/nanoPS stripes 

of different widths and 2-D square grid). All simulations 

are initialized with 150 cells randomly located in an area of 

1000 × 1000 µm square. One hundred simulations are carried 

out for each pattern. Figure 3E and F shows screen captures 
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Figure 2 (A) Fluorescence microscopy images of hMSCs on 100 µm Si/25 µm nanostructured porous silicon square micropatterns. Actin is stained green and nuclei are 
stained blue. (B) Detailed image at an intersection, and (C) histogram of hMSC population from image (A) with absolute % and area normalized population (left and right 
columns respectively).
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of the program developed to perform the simulations at two 

different times (t = 0 seconds and t = 400 seconds). These two 

times correspond to the initial and equilibrium (final) states of 

the system, corresponding to the previous migration experi-

ments, although the time scales are different. The position of 

Figure 3 Adherence vector modulus for cells located on a line perpendicular to the 1-D stripe patterns for (A) 100 µm-wide Si/25 µm-wide nanostructured porous silicon 
(nanoPS) alternating stripes, (B) 50 µm-wide Si/25 µm-wide nanoPS stripes, (C) 35 µm-wide Si/25 µm-wide nanoPS stripes, and (D) one 2-D grid pattern of 100 µm-wide Si 
and 25 µm-wide nanoPS stripes. Screen capture of the program developed to perform the simulations and (E) t = 0, and (F) t = 400 seconds.

Table 1 Surface distribution of the cells for the different Si/ 
nanostructured porous silicon micropatterns

Area Initial distribution  
(%)

Final distribution  
(%)

100 μm Si/25 μm nanoPS stripes
Si 80.0% 54.9%
NanoPS 20.0% 45.1%

50 μm Si/25 μm nanoPS stripes
Si 67.9% 47.6%
NanoPS 32.1% 52.4%

35 μm Si/25 μm nanoPS stripes
Si 57.3% 26.7%
NanoPS 42.7% 73.3%

100 μm Si/25 μm nanoPS 2-D square grid
Si 63.5 27.2
NanoPS (stripe) 32.5 52.7
NanoPS (intersection) 4.0 20.1

Abbreviation: nanoPS, nanostructured porous silicon.

the hMSCs on a single square grid is shown. Table 1 shows 

the distribution of the cells for each pattern. Columns 2 and 3 

indicate the initial and final percent distribution of hMSCs on 

the different substrates respectively. The final distributions are 

obtained after the system is in equilibrium.

The simulation results are in good agreement with the 

experimental behavior observed experimentally. In the case 

of 1-D patterns, reduction of the width of the Si stripes results 

in increased cell surface coverage of the nanoPS areas. In the 

particular case of 1-D patterns with 35 µm-wide Si stripes, 

hMSCs are forced to locate preferentially on the surface of 

an antifouling surface (nanoPS) even though the percentage 

of Si surface is larger than that of nanoPS. In the case of 2-D 

patterns, the simulations reproduce the counterintuitive pref-

erence of hMSCs for the intersections of nanoPS stripes.

Conclusion
One- and two-dimensional micropatterns of silicon and 

nanostructured porous silicon were engineered by ion beam 

irradiation and subsequent electrochemical etch. These 

chemically and morphologically patterned surfaces have 
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been exploited to control the surface distribution and shape of 

human skeletal progenitor cells and, at the same time, to study 

cell adhesion and migration characteristics. It was found that 

these cells are sensitive to surface patterns and that migra-

tion can be controlled, so that cells arrange in response to 

the particular surface topography and chemistry. As such the 

extra-cellular matrix impacts the mode and efficiency of cell 

migration. Finally, a mathematical model was developed and 

implemented, and allowed us to further understand surface 

cell distribution as a function of the dimensionality and size 

of the particular surface pattern. The proposed model is based 

on rather simple assumptions and parameterized through a 

center of adherence and the tendency of the cells to avoid 

overlapping. We have found that it constitutes a reasonable 

approach for the description of cell behavior on 1-D and 2-D 

surface micropatterns textured at nanoscale level.
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