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Abstract: This work aimed to develop a new therapeutic approach to increase the efficacy 

of 5-fluorouracil (5-FU) in the treatment of advanced or recurrent colon cancer. 5-FU-loaded 

biodegradable poly(ε-caprolactone) nanoparticles (PCL NPs) were combined with the cytotoxic 

suicide gene E (combined therapy). The SW480 human cancer cell line was used to assay the 

combined therapeutic strategy. This cell line was established from a primary adenocarcinoma 

of the colon and is characterized by an intrinsically high resistance to apoptosis that correlates 

with its resistance to 5-FU. 5-FU was absorbed into the matrix of the PCL NPs during synthesis 

using the interfacial polymer disposition method. The antitumor activity of gene E from the phage 

φX174 was tested by generating a stable clone (SW480/12/E). In addition, the localization of 

E protein and its activity in mitochondria were analyzed. We found that the incorporation of 5-FU 

into PCL NPs (which show no cytotoxicity alone), significantly improved the drug’s anticancer 

activity, reducing the proliferation rate of colon cancer cells by up to 40-fold when compared 

with the nonincorporated drug alone. Furthermore, E gene expression sensitized colon cancer 

cells to the cytotoxic action of the 5-FU-based nanomedicine. Our findings demonstrate that 

despite the inherent resistance of SW480 to apoptosis, E gene activity is mediated by an apoptotic 

phenomenon that includes modulation of caspase-9 and caspase-3 expression and intense 

mitochondrial damage. Finally, a strongly synergistic antiproliferative effect was observed in 

colon cancer cells when E gene expression was combined with the activity of the 5-FU-loaded 

PCL NPs, thereby indicating the potential therapeutic value of the combined therapy.

Keywords: colon cancer, combined therapy, 5-fluorouracil, gene therapy, E gene, poly 

(ε-caprolactone)

Introduction
Colorectal cancer is the third most frequently diagnosed malignancy in the world. 

The annual incidence of colon cancer is estimated to be around one million, with 

approximately 500,000 patients dying from the disease each year.1 Recent advances in 

chemotherapy (including the use of irinotecan, oxaliplatin, and fluoropyrimidines, as 

well as cetuximab and bevacizumab) and radiation therapy have increased the median 

survival of patients. However, advanced or recurrent colon cancer remains incurable 

by conventional treatments,2 therefore more effective treatment options are needed 

for the treatment of this disease.

Despite the efficacy of 5-fluorouracil (5-FU) against a wide variety of tumors,3 

this antitumor molecule suffers from several drawbacks. As a consequence of a very 

rapid in vivo metabolism, 5-FU has a short biological half-life. Furthermore, the drug 

displays nonuniform oral absorption (with significant patient-to-patient variations in 
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bioavailability), and tumor cells often undergo significant 

development of drug resistance. These characteristics lead 

to the use of high doses of 5-FU and subsequent severe 

dose-limiting toxicity in the clinical setting.3–5 To enhance 

the concentration of anticancer molecules in the tumor 

mass while minimizing their biodistribution and toxicity, 

nanoparticle-based drug-delivery systems are currently 

being widely investigated.6–8 Biodegradable nanocarriers 

formulated from poly(ε-caprolactone) (PCL) can protect the 

loaded antitumor drug from rapid elimination in vivo through 

metabolism, optimizing its therapeutic effect and keeping its 

associated toxicity to a minimum.9–11

The combination of chemotherapeutic agents with gene 

therapy (combined therapy) is an attractive strategy to over-

come the limitations of conventional cancer treatment. Sui-

cide gene therapy, either alone or in combination with tumor 

irradiation or chemotherapy, has been investigated for the 

treatment of intractable cancers.12 However, in colon cancer, 

gene therapy in combination with cytosine deaminase/5-

fluorocytosine (CD/5-FC) and herpes simplex virus thy-

midine kinase (HSV-tk), the two most widely used suicide 

prodrug systems, has obtained only limited results. In this 

context, therapeutic genes that encode cytotoxic proteins 

may provide alternatives to classical suicide-gene therapy. 

The products of these genes do not depend on prodrugs and 

may act by killing both quiescent and rapidly dividing tumor 

cells, possibly by inducing tumor cell apoptosis. Apoptosis 

deficiency is a critical factor in colorectal cancer therapy 

failure13,14 and the development of gene therapy strategies that 

improve apoptosis may therefore provide a complementary 

strategy for the treatment of colon cancer.

Toxic genes from noneukaryotic organisms such us 

bacteria, plants, viruses, and bacteriophages are being widely 

used in cancer gene therapy.15–17 The lysis gene from phage 

φX174 (gene E) has recently shown antiproliferative activity 

in cancer cells.18 The E protein (91 aa) has no detectable cell-

wall degrading activity, and its primary structure does not 

suggest any important enzymatic activity. However, electron 

microscopy images of cells undergoing E-mediated lysis 

have shown discrete 50–200 nm holes in the cell membrane. 

This observation has led to a proposed model in which the 

E protein oligomerizes to form a transmembrane tunnel 

that spans the entire cell envelope, thereby releasing the 

cytoplasmic contents.19

In this study, we investigated a new antitumor strategy 

for the treatment of colon cancer that combines 5-FU-

loaded nanoparticles (NPs) with gene therapy using gene E. 

We tested this approach using a SW480 human adenocarci-

noma colon cancer cell line that is resistant to both apoptosis 

and chemotherapy.

Materials and methods
Materials
All chemicals used, except for 5-FU, poly(ε-caprolactone) 

and Pluronic® F-68 (Sigma-Aldrich, Munich, Germany), 

were of analytical quality and were obtained from Panreac 

(Barcelona, Spain). The pcDNA3.1/GFP and pcDNA3.1-

TOPO plasmids and the DH5α chemically competent Escher-

ichia coli were purchased from Invitrogen (Carlsbad, CA). 

The pTRE plasmid (Tet-Off gene-expression system) was 

obtained from Clontech Laboratories, Inc, (Mountain View, 

CA). Gene E was kindly provided by Dr Ramos (Zaidín 

Experimental Station, CSIC, Granada, Spain).

Synthesis and characterization  
of PCL NPs
PCL NPs were prepared using the interfacial polymer 

disposition method.11,20 Briefly, 200  mg of polymer was 

dissolved in 10 mL of dichloromethane under mechanical 

stirring (300 rpm). The resulting organic solution was 

transferred dropwise into 0.05 L of a 2% (w/v) aqueous 

solution of Pluronic® F-68 stirred at 1200 rpm. The organic 

phase was then completely evaporated using a Büchi 

Rotavapor® (Büchi, Flawil, Switzerland) rotary evaporator 

to obtain an aqueous suspension of pure PCL NPs. These 

were then cleaned using repeated cycles of centrifugation 

(45  minutes at 10,000 rpm, Centrikon T-124  high-speed 

centrifuge; Kontron, Paris, France) and resuspension 

in water, until the conductivity of the supernatant 

was #10 µS/cm.

Pure PCL NPs were loaded with 5-FU using an entrapment 

procedure. The method for drug absorption onto the NPs was 

similar to that described above except that the aqueous phase 

contained appropriate amounts of the chemotherapy agent. 

The influence of the concentration of stabilizing agent and 

polymer on drug absorption was also studied. Thus, the 

amount of polymer added to the organic solution was varied 

from 0.2 to 1 g, and the concentration of stabilizing agent in 

the aqueous phase was varied between 0 and 2% (w/v). The 

production performance (yield, %) of all the formulation 

conditions was also determined:

Yield
Amount of drug loaded NPs

Sumof materialsused inthe synt
(%)=

-

hhesisof the NPs
×100
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The mean particle size was determined by photon 

correlation spectroscopy (PCS; Malvern Autosizer® 4700; 

Malvern Instruments Ltd, Malvern, UK), at 25.0°C ± 0.5°C. 

The scattering angle was set at 60°, and after suitable dilu-

tion of the NP suspensions (≈0.1%, w/v) measurements 

were taken in triplicate. The stability of the formulations was 

evaluated by measuring the size of the NPs after 2 weeks of 

storage at 4.0°C ± 0.5°C in water. In addition to the mean 

diameter, the system reported a polydispersity index with a 

value between 0 and 1. A polydispersity index of 1 indicated 

great differences in particle size. On the opposite, a reported 

value of 0 means that size variation is absent.

To corroborate the size determinations and to elucidate 

the shape of the NPs, nanoformulations were checked through 

analysis by Zeiss DSM 950  scanning electron micros-

copy (Carl Zeiss, Oberkochen, Germany), and by STEM 

CM20  high resolution transmission electron microscopy 

(Philips, Amsterdam, The Netherlands). Prior to observa-

tion, dilute suspensions (≈0.1%, w/v) were sonicated for 

5  minutes, and drops were placed on copper grids with 

Formvar film. The grids were then dried at 25.0°C ± 0.5°C 

in a convection oven.

The stability of the formulations was evaluated by 

measuring both the size and 5-FU loading values after 

2 weeks of storage at 4.0°C ± 0.5°C in water. To that aim, 

the International Conference on Harmonisation guidelines 

were followed.21 The electrokinetic properties of the blank 

(nonloaded) and drug-loaded NPs (≈0.1%, w/v) were ana-

lyzed by electrophoresis measurements in deionized and 

filtered water (Milli-Q Academic, Millipore, France), using 

a Malvern Zetasizer 2000 electrophoresis device (Malvern 

Instruments Ltd,). These measurements were performed after 

24 hours of contact of NPs in water under mechanical stirring 

(50 rpm) at 25.0°C ± 0.5°C. The experimental uncertainty 

of the measurements was below 5%. The theory of O’Brien 

and White was used to convert the electrophoretic mobility 

(u
e
) into zeta potential (ζ) values.22

Analysis of the ability of PCL NPs  
to act as 5-FU nanocarriers: drugloading 
and in vitro release studies
To determine the 5-FU concentration in all the systems 

investigated, UV absorption measurements were performed at 

the maximum absorbance wavelength (266 nm) in a UV-Vis 

Dinko spectrophotometer (Dinko, Barcelona, Spain), with 

samples contained in quartz cells with 1 cm path lengths. 

Good linearity was observed at this wavelength, and the 

method was validated and verified for accuracy, precision 

and linearity under all conditions tested.

The loading of 5-FU onto the NPs was evaluated in 

triplicate by spectrophotometric determination of the drug 

remaining in the aqueous solution obtained upon filtration 

of the NP suspension through a membrane filter (pore size: 

0.1 µm), which was deduced from the total amount of 5-FU 

in the NP suspension. For the method to be accurate, we 

took into account the contribution of sources of absorbance 

other than the drug, for example, the surfactant agent. This 

contribution was calculated by measuring the absorbance 

of the supernatant produced under the same conditions but 

without the chemotherapy agent. The incorporation of 5-FU 

into PCL NPs was expressed in terms of 5-FU entrapment 

efficiency (%) (encapsulated drug [mg]/total drug in the NP 

suspension [mg] × 100), and 5-FU loading (%) (encapsulated 

drug [mg]/carrier [mg] × 100).

Release of 5-FU from the NPs was studied using 

formulations prepared under optimal drugloading conditions 

of antitumor molecules fixed into the aqueous phase at a 

concentration of 10 mM. 5-FU release in vitro was studied in 

triplicate following the dialysis bag method, with phosphate-

buffered saline (PBS; pH 7.4 ± 0.1) as the release medium. 

The bags were first soaked in water at 25.0°C ± 0.5°C for 12 h 

before use. The dialysis bag (cut-off of Spectra/Por® 6, 2 kD 

dialysis membrane tubing; Spectrum, New Brunswick, NJ) 

retained the NPs but allowed the free anticancer molecules 

to diffuse into the dissolution medium. A 2 mL sample of the 

NP suspension (containing the antitumor drug at 1.3 mg/mL) 

was placed into the dialysis bag with the two ends fixed 

by clamps. The bags were then placed in a glass beaker 

containing 0.2 L of the dissolution medium and stirred at 

200 rpm. The temperature was maintained at 37.0°C ± 0.5°C 

during the drug-release experiments. At preset time intervals 

(0.25, 0.5, 1, 2, 3, 6, 9, 12, 24, 48, 72, and 96 hours), 1 mL 

of the medium was withdrawn and its 5-FU content analyzed 

by UV-Vis spectrophotometry (266 nm). An equal volume 

of PBS maintained at the same temperature was added after 

sample withdrawal to ensure sink conditions. The same 

analytical procedure used to estimate the drug loading was 

followed in this investigation.

Plasmid construction for E gene 
expression
The E gene was amplified from pMC22 by polymerase 

chain reaction (PCR) using primers with EcoRI and NheI 

sites incorporated (forward, 5′-GAATTCGATGGTACG
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CTGGACTTTG-3′; reverse, 5′-CCGGGCTAGCCATT

ACATCACTCCTTCCGC-3′). Cycling conditions were: 

94°C for 1 minute, 30 cycles at 94°C for 1 minute, 65°C for 

90 seconds, 72°C for 90 seconds, and 72°C for 10 minutes. 

The amplified product and pTRE were each digested with 

EcoRI and NheI and ligated with T4 ligase to obtain pTRE-E. 

To determine the intracellular localization of the E product, 

a GFP-E gene fusion was generated. Gene E was engineered 

to eliminate the stop codon. The amplified product was 

ligated into pcDNA3.1/GFP (Invitrogen) following the manu-

facturer’s protocol, to obtain pcDNA3.1/GFP-E. Finally, the 

E gene was also subcloned into pcDNA3.1-TOPO to obtain 

pcDNA3.1/E. Subcloning-efficiency DH5α E. coli were 

transformed with the generated plasmids and their correct 

sequences were confirmed by DNA sequencing.

Cell culture and drugs
The simple (ie, 5-FU-loaded PCL NPs and gene E therapy 

administered separately) and combined treatments were 

tested in the apoptosis- and chemoresistant SW480 human 

carcinoma cell line (Instrumentation Service Center, Granada 

University, Granada, Spain).23 Cells were grown in RPMI 

1640 medium (Sigma, St Louis, MO), supplemented with 

10% fetal bovine serum (FBS), 15  mM HEPES, 14  mM 

NaHCO
3
, 2  mM l-glutamine, 40 µg/mL gentamicin, and 

500  µg/mL ampicillin (Antibióticos S.A, Madrid, Spain). 

Cells were maintained in monolayer culture at 37°C in an 

atmosphere containing 5% CO
2
.

Production and selection of stable 
inducible SW480 cell clones
To analyze E gene activity against colon cancer, SW480 cells 

were transfected with pTRE-E using the Fugene 6 DNA 

transfection reagent (Roche, Madrid, Spain). Cells were 

initially transfected with pTet-On and successfully-

transfected clones were selected for geneticin (1  mg/mL) 

resistance and rtTA expression. Clones were then transfected 

with pTRE-E, a pTRE2hyg vector containing the E cDNA 

and selected for resistance to geneticin (1  mg/mL) and 

hygrovodamycin (0.4  mg/mL). Two of the four clones 

identified in the first transfection round were used in a 

second round of transfections with the pTRE-E expression 

plasmid to give a total of 12 derivative clones. All clones 

were cultured in the presence of doxycycline (Dox; 

0.2 mg/mL, 24 hours) to induce E gene expression, which 

was detected by reverse transcriptase (RT)-PCR. cDNA was 

generated using the Promega Reverse Transcription System 

(Promega, Madrid, Spain) using 1 µg of total RNA (Rneasy 

Mini kit; Qiagen, Hilden, Germany). PCR amplification 

of the E gene was then performed using specific primers 

(forward, 5′-GCTTTCCTGCTCCTGTTGAG-3′; reverse, 

5′-TTGACGCACGTTTTCTTCTG-3′) under the following 

conditions: 94°C for 1  minute, 35  cycles at 94°C for 

1  minute, 55°C for 30  seconds, 72°C for 30  seconds, 

and 72°C for 10  minutes. Amplif ication of β-actin 

(forward, 5′-ATCATGTTTGAGACCTTCAA-3′; reverse, 

5′-CATCTCTTGCTCGAAGTCCA-3′) was used to assess 

RNA integrity. Amplified PCR products were visualized by 

agarose gel electrophoresis and quantified using a Bio-Rad 

documentation system (Quantity One Analysis software; 

Bio-Rad Laboratories, Hercules, CA). Relative E expression 

was calculated as the ratio of E to β-actin. One transfected 

clone, SW480/12/E, presented significant gene E expression 

in the presence of Dox with no background expression, and 

was used to test the simple and combined treatments.

Proliferation assays
The antitumor effect of the 5-FU-loaded NPs, E gene therapy, 

and the combined treatment schedule was evaluated using 

the proliferation assay. Cells were seeded in a 96-well plate 

(6 × 103 cells per well). At different times, 20 µL of 3-(4,5-di-

methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

solution (5  mg/mL) was added to each well followed by 

incubation at 37°C for 4 hours. The medium was removed 

and 200 µL of dimethyl sulfoxide (DMSO) was added to 

each well. The optical density (OD) at 570 and 690 nm was 

determined using a Titertek multiscan colorimeter (Flow, 

Irvine, CA). To determine the percentage of relative cell 

viability (%RCV) we used the formula %RCV = (treated cells 

OD/untreated cells OD) × 100. In addition, the MTT assay 

was used to determine the cytotoxicity of the 5-FU-loaded 

NPs at a wide range of concentrations (10–200 mM).

Apoptosis analysis
Cells were harvested, washed two times with sample buffer 

(100 mg glucose; 100 mL PBS without Ca2+ or Mg2+) and 

fixed in 70% (v/v) cold ethanol for 1 hour before staining. 

The cells were pelleted and resuspended in a solution 

containing 50 µg/mL propidium iodide (PI) and 0.5 mg/mL 

RNase in sample buffer at pH 7.4, for 30 minutes in the dark. 

Apoptosis was evaluated using a fluorescence-activated cell-

sorter flow cytometer (Becton Dickinson, Franklin Lakes, 

NJ) and all data were analyzed using the Cellfit program. 

To determine possible caspase activation during E gene 

expression, a sample of transfected cells was preincubated 

in the pan caspase inhibitor zVAD-fmk (BD Pharmingen, 
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San Jose, CA) at 200 mM, 2 hours before the induction of 

E gene expression.

Fluorescent microscopy analysis  
of E protein localization
SW480 cells were transfected with pcDNA3.1/GFP-E using 

Fugene 6 (Roche), as described above, to determine the intrac-

ellular localization of the E protein. For mitochondrial staining, 

the medium was changed to DMEM containing 500  nM 

MitoFluor Red (MitoTracker; Invitrogen, Barcelona, Spain), 

incubated for 15 minutes, and then replaced with normal 

medium. For nuclear staining, 1 mL of DAPI (Invitrogen) at 

100 nM was added to fixed cells in a 60 mm dish, and incubated 

for 20 minutes at room temperature. The cells were then rinsed 

with PBS and mounted. GFP was excited at 488 nm, DAPI 

nuclear stain at 364 nm, and MitoFluor Far Red at 588 nm. 

Fluorescent microscopy analysis was carried out using a Nikon 

Eclipse Ti (Nikon Instruments Inc, Melville, NY).

Measurement of the mitochondrial 
membrane potential (∆Ψm) and the 
caspase activation
To measure levels of ∆Ψm disruption, cells were washed 

twice with cold PBS and incubated with 40 nM DiOC6(3) 

(Invitrogen) for 15 minutes at 37°C. Cells were then washed 

with ice-cold PBS and resuspended in 500 µL of PBS. The 

fluorescence intensities of DiOC6(3) were analyzed using 

a FACScan flow cytometer with excitation and emission 

settings of 484 and 500 nm, respectively. Caspase activation 

was evaluated by western blot analysis using 30 µg of cell 

protein extract separated by SDS-PAGE (Mini Protean II 

cell; Bio-Rad Laboratories) and transferred to a nitrocellulose 

membrane (20 V at room temperature for 30  min). The 

blots were treated with blocking solution (20  mM Tris, 

0.9 NaCl, 10% nonfat milk) for 3 hours and then incubated 

with primary rabbit polyclonal IgG anti-caspase-3 (1:1000 

dilution), anticaspase-8 (1:200 dilution), anti-caspase-9 

(1:500 dilution) and anti-β-actin antibodies (1:5000 dilution; 

Abcam, Cambridge, MA) overnight at 4°C. After addition of 

the peroxidase-conjugated secondary antibody, the proteins 

were detected by enhanced chemiluminescence (ECL; Bonus, 

Amersham, Little Chalfont, UK). A protein extract from 

transfected cells treated with zVAD-fmk as described above 

was also included in the study.

Morphological analysis
Cells were analyzed by optical and transmission elec-

tronic microscopy (Hitachi H7000 transmission electron 

microscope; Hitachi, Tokyo, Japan) according to Prados 

and colleagues.24

Statistical analysis
The SPSS software package (v. 14; SPSS Inc, Chicago, IL) was 

used for all statistical analyses. Results were compared using 

Student’s t-test. All data were expressed as means ± standard 

deviations of sample means. Differences were considered 

statistically significant at a P value ,0.05.

Results and discussion
Particle geometry, surface charge,  
and stability
The interfacial polymer disposition method allowed the 

formation of well-stabilized spherical PCL NPs with 

an average diameter of 140  ±  20  nm and a narrow size 

distribution (polydispersity index: 0.046) (Figure  1). 

No presence of aggregates or bulky sediments was observed. 

The size of the polymeric particles and the quality of the 

suspensions did not vary significantly when loaded with 

different amounts of 5-FU (Table  1). This particle size 

could be considered as particularly suitable for facilitating 

the cellular uptake of the nanomedicine; it is assumed that 

NPs with a diameter in the range 100–200 nm can easily 

be internalized by receptor-mediated endocytosis, whereas 

larger particles are generally taken up by phagocytosis.25 

Given an appropriate cellular uptake of PCL NPs with a mean 

diameter of 140 nm ± 20 nm, a significant enhancement of 

the 5-FU concentration in tumor cells might be expected. No 

antitumor drug release and/or precipitation, NP aggregation 

or change in the size of particles was detected after two 

weeks of storage at 4.0°C  ±  0.5°C in water. Thus, if the 

nanoparticulate preparations were not used immediately 

A B

Figure 1 Scanning electron microscope (A) and high resolution transmission 
electron microscope (B) images of PCL NPs. 
Note: All scale bars shown in the figure are 150 nm. 
Abbreviations: NPs, nanoparticles; PCL, poly(ε-caprolactone).
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after formulation, they were kept under the aforementioned 

storage conditions until use.

The zeta potential values of the nonloaded and 5-FU-

loaded PCL NPs in deionized and filtered water were found 

to be −18.3 ± 0.4 and −19.1 ± 0.6 mV, respectively. Such data 

clearly shows how similar are the surface electrical charges 

of these NPs which points out that the antitumor agent was 

not adsorbed onto the polymeric surface. Consequently, a 

very efficient drug entrapment has led to 5-FU-loaded PCL 

NPs which, from an electrokinetic point of view, are indis-

tinguishable from nonloaded PCL.

Analysis of the capabilities of PCL NPs  
as 5-FU nanocarriers: drug loading  
and in vitro release studies

It is possible that 5-FU loading onto PCL NPs benefit 

from electrostatic attractive forces that may exist between the 

positively charged drug molecules (generated by protonation 

of the NH group of the 5-FU chemical structure),26 and the 

negatively charged polymeric NPs.11 While this might be the 

case, we attempted to improve drug loading by introducing 

the 5-FU molecules before the interfacial polymer disposition 

process to induce mechanical drug trapping. Furthermore, 

a stabilizing agent (Pluronic® F-68) was added to facilitate 

the opening of the polymeric chains and to yield a noncom-

pact structure into which 5-FU could be incorporated.11,27 

Figure 2A shows the entrapment efficiency (%) and loading 

(%) of 5-FU onto the PCL NPs as a function of drug con-

centration. This figure indicates that the 5-FU concentration 

positively affects the entrapment efficiency. An initial drug 

concentration of 10–4 M in the entrapment medium gave 

entrapment efficiency and loading values of 4.7% ± 0.9% 

and 0.015% ± 0.003%, respectively, while one of 10–2 M gave 

entrapment efficiency and loading values of 34.5% ± 3.3% 

and 11.219% ± 1.074%, respectively.

Table 2 shows the influence of the Pluronic® F-68 and 

PCL concentrations used in the formulation of the NPs on 

5-FU loading (%). Drug loading was markedly lower in the 

absence of the surfactant agent, but increased considerably 

and remained unaltered at and above 0.5% (w/v) Pluronic® 

F-68 in the concentration range tested. Interestingly, the yield 

of 5-FU-loaded polymeric NPs was always higher than 94% 

in all formulations tested with surfactant agent, but decreased 

Table 1 Influence of 5-FU loading (%) on size of PCL NPs

5-FU loading (%) Size (nm)

0 140 ± 20
0.015 ± 0.003 135 ± 25
0.252 ± 0.023 120 ± 20
0.709 ± 0.075 140 ± 30
4.829 ± 0.342 125 ± 30
11.219 ± 1.074 150 ± 25

Abbreviations: 5-FU, 5-fluorouracil; NPs, nanoparticles; PCL, poly(ε-caprolactone).
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Figure 2 5-FU loading and in vitro release studies. (A) Efficiency of 5-FU 
entrapment (%) into PCL NPs as a function of antitumor drug concentration (inset: 
corresponding 5-FU loading values, %). The lines are guides for the eye and have 
no other significance. (B) 5-FU release (%) from PCL NPs at 37.0°C ± 0.5°C as a 
function of incubation time in PBS (pH 7.4 ± 0.1). 
Abbreviations: 5-FU, 5-fluorouracil; NPs, nanoparticles; PBS, phosphate-buffered 
saline; PCL, poly(ε-caprolactone).

Table 2 Influence of PCL and Pluronic® F-68 concentration 
on 5-FU entrapment efficiency (%) and 5-FU loading (%) by 
entrapment into the polymeric NP network

PCL 
(%, w/v)

Pluronic® F-68 
(%, w/v)

5-FU entrapment 
efficiency (%)

5-FU loading (%)

0.5 1 32.7 ± 2.8 10.634 ± 0.911
1 1 34.5 ± 3.3 11.219 ± 1.074
2 1 33.1 ± 1.9 10.764 ± 0.618
1 0 4.3 ± 0.4 1.398 ± 0.127
1 0.5 35.2 ± 3.1 11.447 ± 1.009
1 2 34.7 ± 2.6 11.284 ± 0.846

Note: The NPs were synthesized into an aqueous solution containing 10–2 M of 
antitumor molecules.
Abbreviations: 5-FU, 5-fluorouracil; NPs, nanoparticles; PCL, poly(ε-caprolactone).
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to below 9% in the absence of this macromolecule. It can 

therefore be assumed that smaller polymeric NPs with a 

narrower size distribution were obtained after addition of 

the surfactant to the aqueous solution, without influencing 

the drug incorporation into the polymer. Similarly, the PCL 

concentration did not significantly influence drug loading 

onto the NPs.

5-FU release from the polymeric matrix followed a 

biphasic process typical of PCL at pH 7.4,11,20,28 with an 

initial fast drug release (up to ≈ 27% in 3 hours) and the 

remaining 5-FU being released in a sustained manner over 

a further period of 93 hours (Figure 2B). The initial fast 

5-FU release is attributed to the leakage of surface-bound 

and/or poorly entrapped drug, which rapidly diffused 

into the incubation medium. It is likely that the sustained 

release phase corresponds to the 5-FU fraction (ie, ≈ 73%) 

that was deeply embedded into the polymeric nanomatrix, 

which must follow a longer diffusion path before leakage. 

This suggests that the majority of the 5-FU was entrapped 

in the polymeric network rather than being adsorbed onto 

the NP surface.

Antitumor activity of 5-FU-loaded  
PCL NPs on SW480 cells
We initiated this investigation with an analysis of the 

cytotoxic activity of blank (nondrug-loaded) PCL NPs 

on SW480  human adenocarcinoma colon cancer cells. 

As shown in Figure  3A, the MTT assay results indicate 

that there were no significant differences between the 

absorbance of the negative control and the wells treated with 

blank NPs after incubation for 72 hours (P . 0.05). Thus, 

PCL NPs show no cytotoxicity and may be considered to be 

appropriate for drug-delivery purposes. We then compared 

the ability of 5-FU and 5-FU-loaded PCL NPs to inhibit the 

proliferation of SW480 cells. These cells have an inherent 

resistance to apoptosis that correlates with chemoresis-

tance to 5-FU23 and, along with cell lines SW620, HCT-8 

and DLD1/5FU, are amongst the most resistant colon cell 

lines to this drug.29 This is of interest given the relationship 

between colon cancer drug resistance and invasive/meta-

static ability.30 The nanomedicine inhibited cell prolifera-

tion in a dose-dependent manner with a much lower IC
50

 

(concentrations of the drug needed to reduce population 

growth by 50% in vitro) value (0.1 µM) than that reported 

previously for SW480  cells (IC
50

 5-FU: 4 µM),31 show-

ing that the antitumor effect of 5-FU-loaded PCL NPs 

in SW480 was 40-fold higher than that for the free drug 

(Figure 3B).

Antitumor activity of gene E  
on SW480 cells
The stable SW480/12/E clone was used to determine the 

antitumor activity of gene E in apoptosis-resistant colon 

cancer cells. Cultivation of these cells in the presence of 

Dox showed effective expression of the E gene compared 

to the same cells without Dox. Analysis of RT-PCR 

products amplified from gene E cDNA, normalized to the 

corresponding β-actin signal, showed a slight time-dependent 

increase in E expression (2- and 2.7-fold higher at 48 and 

72 hours versus cells at 24 hours; Figure 4A). Cells showed 

a corresponding significant and time-dependent decrease in 

viability (30.5%, 41.9%, and 70.4% at 24, 48, and 72 hours, 

respectively; Figure 4B).

Most colon cancer gene therapy assays investigated 

to date have used a prodrug therapy system in which the 

anticancer molecule is activated by exogenous genes that 

encode enzymes, such as HSV-tk and CD. However, assays 
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Figure 3 In vitro cytotoxicity of PCL NPs over a range of concentrations (10–
200 mM) (A) and cytotoxicity of 5-FU-loaded PCL NPs in comparison to 5-FU (B) 
in colon cancer SW480 cells after 3 days of incubation. Data are represented as 
means ± SD of quadruplicate cultures. To calculate the %RCV (see Materials and 
methods) SW480 cells without treatment were used as control. 
Abbreviations: 5-FU, 5-fluorouracil; NPs, nanoparticles; PBS, phosphate-buffered 
saline; PCL, poly(ε-caprolactone); %RCV, percentage of relative cell viability;  
SD, standard deviation.
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in which either of these enzymes were used produced only 

limited results.32–34 The use of specific promoters, such us the 

promoter of Cox-2 or uPAR, improves its tissue specificity 

but not its efficacy.27,35 Recently, Lee and colleagues36 used 

a combination of shMDR and HSV1-tk to significantly 

decrease (63.3%) the volume of tumors generated in mice 

by HCT-15 colon cancer cells. However, prodrugs continue 

to be one of the main limiting factors of these strategies.37 

In this context, the transfection of cDNA constructs that 

encode toxins with direct antitumor activities represents 

a good alternative. These toxin genes have been success-

fully used in pancreatic cancer (diphtheria toxin gene),15 

hepatocellular carcinoma (staphylococcal enterotoxin 

C2),38 breast and prostate cancer (Clostridium perfringens 

enterotoxin and Pseudomonas aeruginosa exotoxin A),39 

and breast cancer and melanoma (gef gene).40,41 Expressed 

bacteriophage genes, such as that coding for the lambda-

holin protein, have led to a substantial reduction (more 

than 98%) of cell viability in breast cancer cells.42 We have 

previously shown that E gene expression efficiently inhibits 

proliferation of melanoma and colon cancer drug-sensitive 

cells.18,43 Our present findings show that E gene expression 

is able to induce a significant antiproliferative effect in a 

drug-resistant SW480 cell line.

E gene expression induces caspase-3-  
and caspase-9-mediated apoptosis  
in SW480 cells
As shown in Figure  5A, SW480/12/E cells at 24  hours 

after induction with Dox showed an apoptosis fraction of 

41.5% ± 0.4%. This was significantly higher than that for 

the control groups (2.1% ±  0.47% for SW480/12/E and 

1.5% ± 0.32% for parental cells). After 48 and 72 hours 

of transfection, the percentage of apoptotic cells increased 

to 62.3% ± 0.52% and 85.07% ± 0.9%, respectively. These 

results show that E gene expression induces an intense 

apoptosis phenomenon in apoptosis-resistant SW480 

colon cancer cells (85.07% at 72  hours). This result is 

of particular interest as apoptosis resistance is one of the 

characteristics implicated in colon cancer development and 

metastasis.30 In addition, defects in apoptotic machinery 

are a major cause of cytotoxic drug resistance.44 Although 

the mechanism underlying apoptosis resistance is not clear, 

colon cancer cells may contain high levels of antiapoptotic 

proteins (PED, cFLIP, Bcl-xL, and Bcl-2).45 Recently, it 

was shown that the gene inhibitor of apoptosis 2 (cIAP2) 

is upregulated in DLD-1/FU-resistant cells (with char-

acteristics similar to SW480, SW620, and HCT-8 cells). 

Interestingly, downregulation of cIAP2 by siRNA induced 

an efficient caspase-3-mediated apoptosis.29 Apoptosis 

induction was eff iciently inhibited by zVAD-fmk in 

transfected SW480  cells (Figure  5A), suggesting the 

involvement of the mitochondrial apoptotic pathway. 

Western blot analysis confirmed caspase-9 and capase-3 

activation, whereas caspase-8  showed no modulation of 

expression (Figure 5B). Treatment of SW480/12/E cells 

with zVAD-fmk efficiently inhibited E-induced caspase-3 

and caspase-9 activation, which appeared to be at similar 

levels to that in SW480/12/E cells without Dox exposure 

(Figure 5B). E-induced modulation of apoptosis may there-

fore be a promising new strategy in colon cancer treatment, 

especially in those that exhibit apoptosis resistance.
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Figure 4 Growth arrest by E gene expression in SW480 cells. (A) RT-PCR detection 
of E gene expression in SW480 transfected cells (SW480/12/E) before and after Dox 
exposure. Amplified RT-PCR products of E and β-actin mRNA at different time 
periods were separated by 2% agarose gel electrophoresis and visualized with ethidium 
bromide. RT-PCR of gene E: Lane 1: SW480/12/E cells in the absence of Dox; lanes 
2–4: SW480/12/E cells 24, 48, and 72 hours after Dox induction, respectively. RT-
PCR of β-actin: Lane 5: SW480/12/E cells in absence of Dox; lanes 6–8: SW480/12/E 
cells 24, 48. and 72 hours after Dox induction, respectively. Lane 9: DNA ladder; lane 
10: pTRE-E (positive control); lane 11: parental SW480 cells (negative control). (B) 
MTT assay of SW480/12/E cells induced with Dox showed a significantly higher rate 
of cell death than for SW480/12/E cells in the absence of Dox, parental cells and cells 
transfected with empty vector (P , 0.05). To calculate the %RCV (see Materials and 
methods) SW480 cells without transfect reagents were used as control. Data are 
represented as means ± SD of quadruplicate cultures. 
Abbreviations: Dox, doxorubicin; 5-FU, 5-fluorouracil; NPs, nanoparticles; PCL, 
poly(ε-caprolactone); %RCV, percentage of relative cell viability; SD, standard deviation.
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cells after 48  hours, when cells were swollen, and after 

72 hours, when the number of spherical cells increased rap-

idly (Figure 5). As shown in Figure 7A, a significant decrease 

in ∆Ψm was detected in SW480/12/E cells induced with Dox 

at 24, 48, and 72 hours in comparison with SW480/12/E 

cells not exposed to Dox, or SW480 parental cells (data not 

shown). This decrease in fluorescence intensity reflects the 

E gene-induced depolarization of the inner mitochondrial 

membrane, and defines an early, but already irreversible, 

stage of apoptosis.

To further investigate the nature of E gene-mediated 

cytotoxicity, SW480/12/E cells were analyzed by transmis-

sion electron microscopy. The most significant morphological 

change in the SW480/12/E cells induced with Dox was the pro-

nounced swelling of the mitochondria, which showed disrupted 

cristae after 24 hours of treatment (Figure 7B (b) and (c)). The 

mitochondria in noninduced cells remained unaffected. In some 
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Figure 5 Apoptosis signals after E gene expression in SW480 cells. (A) SW480/12/E 
cells before and after Dox induction at times indicated were analyzed by FACScan to 
determine apoptotic cell death. The apoptosis was assessed after propidium iodine 
staining by calculating the percentage of cells in the sub-G1 fraction. SW480/12/E cells 
treated with zVAD-fmk were also analyzed at 72 hours. SW480 parental cells were 
used as the control. Data shown are representative results from four independent 
experiments. (B) Activated (cleaved) caspase-3, caspase-9, and pro-caspase-8 were 
detected by Western blot analysis using specific antibodies at the indicated time 
points after Dox treatment. zVAD-fmk was applied to determine whether caspases 
were involved in the apoptotic process in SW480/12/E cells induced with Dox 
(72 hours). The filter was probed with a β-actin antibody to determine whether 
the amounts of protein in each lane were comparable. Immunoblots were visualized 
using an enhanced chemiluminescence detection system. 
Abbreviation: Dox, doxorubicin.

E protein is located in the mitochondria, 
induces the loss of mitochondrial 
membrane potential, and changes the cell 
morphology of SW480 cells
SW480  cells transfected with pcDNA3.1/GFP-E were 

used to determine the mitochondrial localization of E pro-

tein. Immunofluorescence microscopy produced a merged 

image with yellow regions where green (GFP-E) and red 

(MitoFluor) fluorescence overlap (Figure  6). Significant 

morphological changes were observed in the transfected 
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Figure 6 Mitochondrial localization of the GFP/E fusion protein in SW480 cells. 
Representative fluorescent microscopy images of transfected SW480 cells expressing 
fusion protein E-GFP at 24 (×10), 48 (×40), and 72 hours (×40). The dotted pattern 
of GFP-E fluorescence is shown in green. The majority of expressed GFP-E was 
found to be colocalized with MitoFluor (shown in red color). Colocalization is 
shown in yellow. Cell nuclei were counterstained with DAPI.
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cases, significant accumulations of intermediate filaments were 

also observed around the nucleus (Figure 7B (d)), along with 

a dilated endoplasmic reticulum (Figure 7B (e)), although this 

was not always the case.

Effect of the combined use of  
5-FU-loaded PCL NPs and the cytotoxic 
suicide gene E on SW480 cancer cells
After independently establishing the effect of 5-FU-loaded 

PCL NPs and E gene on the SW480 colon cancer cells, we 

investigated the antitumor effect of the combined treatments. 

The modulation of cell proliferation was determined at 6, 12, 

and 24 hours. Treatment with both 5-FU-loaded PCL NPs and 

with Dox (to induce E gene expression) produced a decrease in 

viability of SW480/12/E cells of 87% ± 3.1%. This is greater 

than the sum of the effects of separate treatments with 5-FU PCL 

NPs (40.8% ± 2.6%) and E gene expression (30.5% ± 1.8%), 

suggesting a synergistic antitumor effect. Treatment with free 

5-FU and E gene expression in SW480/12/E cells resulted 

in a much lower synergistic effect than that of 5-FU-loaded 

PCL NPs and E gene expression (Figure 8A). Furthermore, 

this combined therapy (5-FU-loaded PCL NPs and E gene 

expression) in SW480/12/E cells induced an increase in the 

percentage of apoptotic cells at 24 hours (83% ± 4.6%) greater 

than that obtained from the independent use of 5-FU-loaded 

PCL NPs and E gene expression (22% ± 2.5% and 41% ± 5%, 

respectively), suggesting the combined use of these treatments 

has an important enhancement of the apoptotic effect in this 

resistant tumor cell line (Figure 8B).

Novel advances in the use of combined therapy for the 

treatment of lung,46 bladder,47 pancreatic,48 and hepatocel-

lular cancer,49 have been reported. In colon cancer, Abaza 

and colleagues50 have recently demonstrated that antisense 

c-myc in combination with cytotoxic drugs (including 5-FU) 

increased caspase-3 (amongst other apoptotic signals) and 

exhibited a marked apoptotic effect compared to each com-

ponent treatment alone. Our objective, to explore the ability 

of the E gene to enhance the cytotoxic effect of drugs against 

colon cancer cells, was similar. In light of previous results 

obtained with 5-FU-loaded PCL NPs against SW480 cells, 

we assayed a combined therapy involving 5-FU-loaded PCL 

NPs and cytotoxic E suicide gene expression, and found it 

to induce a decrease in SW480 cell viability around 20% 

greater than the sum of the individual treatments. This find-

ing supports the hypothesis that a synergistic effect occurs 

when both treatments are administered together.
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Figure 7 Mitochondrial damage caused by E protein in SW480 cells. (A) SW480 
parental cells and SW480/12/E before and 24, 48, and 72 hours after Dox induction 
were stained with DiOC6, and analyzed by flow cytometry to determine the 
mitochondrial membrane potential (∆Ψm) disruption caused by E gene expression. 
Data shown are representative results from four independent experiments.  
(B) Ultrastructural analysis showed that the morphology of SW480/12/E cells not 
induced by Dox was similar to that of SW480 parental cells, with a typical presence 
of a large nucleus and light cytoplasmic complexion containing well-preserved 
organelles including mitochondria (a, 2000×). In contrast, E gene expression in 
SW480/12/E after Dox exposure generated a large number of altered mitochondria 
with disrupted cristae (b, 6000×). These cells eventually presented noticeably dilated 
mitochondria (c, 12,000×). Furthermore, mitochondrial changes in some cells were 
accompanied by the presence of dilated smooth endoplasmic reticulum (d, 9000×), 
and the presence of clusters of intermediate filaments (e, 4000×).
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Conclusion
We have described the most advantageous synthetic 

conditions for producing 5-FU-loaded PCL NPs. 5-FU 

entrapment into the polymeric NPs has resulted in important 

drug loading and sustained drug-release properties, thereby 

opening up opportunities for improved delivery of 5-FU to 

cancer cells. 5-FU PCL NPs exhibited a 40 times greater in 

vitro antitumor activity than free 5-FU. Furthermore, the 

utility of E gene expression for the induction of growth arrest 

in colon cancer cells with an apoptosis-resistant phenotype 

was analyzed. E gene expression was found to strongly 

induce apoptosis mediated by the mitochondrial pathway 

in these resistant cells, and to significantly enhance the cell 

growth inhibition induced by 5-FU-loaded PCL NPs. These 

results suggest that this combined antitumor strategy may 

be a promising therapy in patients with advanced-stage 

colon cancer. Future studies will, however, be necessary to 

determine its in vivo utility.
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