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Abstract: Diseases such as tuberculosis, hepatitis, and HIV/AIDS are caused by intracellular 

pathogens and are a major burden to the global medical community. Conventional treatments 

for these diseases typically consist of long-term therapy with a combination of drugs, which 

may lead to side effects and contribute to low patient compliance. The pathogens reside within 

intracellular compartments of the cell, which provide additional barriers to effective treatment. 

Therefore, there is a need for improved and more effective therapies for such intracellular 

diseases. This review will summarize, for the first time, the intracellular compartments in which 

pathogens can reside and discuss how nanomedicine has the potential to improve intracellular 

disease therapy by offering properties such as targeting, sustained drug release, and drug delivery 

to the pathogen’s intracellular location. The characteristics of nanomedicine may prove advanta-

geous in developing improved or alternative therapies for intracellular diseases.
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Introduction
Worldwide, a number of diseases (eg, HIV/AIDS [human immunodeficiency virus/

acquired immune deficiency syndrome], hepatitis, and tuberculosis [TB]) are 

caused by intracellular pathogens. Such diseases can be due to viral,1–8 bacterial,9–16 

fungal,17,18 or other parasitic19–21 infection, as summarized in Table 1. The prevalence 

of each disease may differ geographically, but the intracellular nature of these patho-

gens, which may protect them from a variety of antibiotic therapies and host immune 

responses, presents a treatment challenge for the global medical community. Some 

antibiotic drugs like aminoglycosides and ß-lactams have limited cellular penetration, 

whereas others such as fluoroquinolones or macrolides have the ability to penetrate 

host cells but are poorly retained and therefore inefficient.22 Therapeutic drugs tar-

geting the intracellular pathogens should overcome the cell membrane barriers and 

release and retain the drug intracellularly at the therapeutic level for a desired time 

period. Moreover, multidrug resistance is increasing23–29 and is making intracellular 

disease treatment more challenging. Therefore, there is a need for the development of 

advanced treatment methods to better control intracellular infections. This review will 

summarize the status of intracellular disease treatments and the current therapeutic 

strategies against common intracellular diseases, and present how nanomedicine 

is emerging as an attractive platform for advanced intracellular drug therapy. Note 

that therapeutic treatments that tune the cell-mediated immune responses against 

intracellular pathogens are important but will not be discussed here.
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Intracellular pathogens and current 
treatment approaches
A wide variety of pathogens are capable of causing intracellu-

lar diseases such as HIV/AIDS, hepatitis, and TB (see Table 1). 

In this section, a brief description of selected viral and bacte-

rial diseases is given along with a discussion of the current 

therapeutic strategies against the causative pathogens.

Tuberculosis
TB is a disease caused by Mycobacterium tuberculosis 

(M. tuberculosis). It is estimated that up to 2.2 billion people 

carry latent TB infections worldwide.30 Exposure to TB does 

not necessarily lead to an active infection, as normal human 

immune systems are able to effectively control bacteria, 

and most people remain in a symptom-free latent stage of 

infection.30 However, susceptible individuals with poor immune 

response or complicating factors such as HIV infection may 

develop an active TB infection.31 People with active infections 

typically experience pain in the chest and a cough with blood or 

sputum (phlegm) lasting more than 3 weeks.32 These symptoms 

could also be accompanied by fatigue, weight loss, fever, chills, 

or night sweats.33 M. tuberculosis is a gram-positive bacterium 

with a very thick cell wall, which is characteristic of the Myco-

bacterium species. The thick cell wall provides an excellent 

permeability barrier, making Mycobacteria resistant to a wide 

variety of antimicrobial agents.23 M. tuberculosis bacteria may 

reside and duplicate within macrophages of the lung.34 A full 

description of M. tuberculosis pathogenesis is beyond the scope 

of this discussion and is reviewed elsewhere.35,36 However, 

an important factor is the bacteria’s ability to avoid the cell-

mediated immune response through granuloma formation,10 

such that treatment of TB remains a challenge.

At present, the treatment of choice for an active TB 

infection is long-term antibiotic therapy, with an initial 

“intensive phase” consisting of the four first-line anti-TB 

drugs (isoniazid, rifampicin, ethambutol, and pyrazinamide) 

followed by a typical 4 month course of rifampicin and iso-

niazid alone.37 This has been the most effective treatment to 

date, although, due to the length of antibiotic therapy, side 

effects frequently develop38 and the cost is high.39 These 

factors may lead to low patient compliance and contribute 

to the development of drug-resistant bacteria.40

HIV
Infection with HIV is a significant ongoing problem worldwide. 

As HIV infection progresses, infected individuals develop AIDS. 

According to the latest statistics from the World Health Organi-

zation, there are 33.3 million people living with HIV/AIDS.41 

Many of those infected live in sub-Saharan Africa, where 

access to treatment is extremely costly or unavailable. There 

have been major developments in the treatment of HIV/AIDS 

since the approval of zidovudine (Retrovir®; GlaxoSmithKline, 

Durham, NC) in 1987.8 Current therapeutic efforts consist of a 

combination of several drugs,42 typically from different classes 

of antiviral drugs.43,44 This regimen is referred to as highly active 

antiretroviral therapy (HAART) and has become the standard 

of care for those infected with HIV. There are five classes of 

drugs available for HIV/AIDS treatment, including nucleoside 

Table 1 Summary of disease-causing intracellular pathogens

Associated disease(s) References

Viral pathogens
Herpes simplex Type 1: oral herpes (cold sore, fever blister) or  

Type 2: genital herpes (warts, ulcers)
1,2

Hepatitis C Liver cirrhosis, hepatocellular carcinoma (HCC) 3,4
Respiratory syncytial virus Pediatric viral respiratory disease 5,6
Human immunodeficiency virus Acquired immunodeficiency syndrome (AIDS) 7,8
Bacterial pathogens
Mycobacterium tuberculosis Tuberculosis 9,10
Salmonella enterica serovars Typhi, Paratyphi Typhoid fever 11,12
Brucella species B. melitensis, B. abortus, B. suis Malta fever or undulant fever 13–15
Listeria monocytogenes Listeriosis, meningitis in newborn babies 16
Fungal pathogens
Candidia albicans Multiple cutaneous and mucosal forms; frequently

encountered oral form is thrush
17

Aspergillus fumigatus Pulmonary aspergillosis 18
Other pathogens
Leishmania (parasite) Cutaneous or tegumentary leishmaniasis 19,20
Plasmodium species (protist) P. vivax, P. ovale,
P. malariae, P. falciparum, P. knowlesi.

Malaria 21
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reverse transcriptase inhibitors, nucleotide reverse transcriptase 

inhibitors, non-nuceloside reverse transcriptase inhibitors, 

protease inhibitors, and viral fusion and integrase inhibitors. 

Typical regimens are combinations of three or four drugs, with 

subsequent modifications made based on the patient’s response 

to therapy.45 Changes made to a patient’s regimen are often based 

on drug resistance testing, and take into consideration toxic-

ity and tolerability of the new treatment strategy.45 Although 

HAART has increased the median survival time of HIV/AIDS 

patients from less than a year to about 10 years,29 patients often 

develop multidrug-resistant strains of the virus41 over the course 

of therapy, leading to poor treatment outcomes.46

Hepatitis C virus
It is estimated that at least 3 percent of the world’s population 

is infected with the hepatitis C virus (HCV).3,47 The virus 

affects only humans and is considered a “silent” disease, 

as infected individuals are usually symptom free until later 

stages of infection when liver inflammation48 occurs. HCV 

can cause liver scarring and cirrhosis, which ultimately 

leads to hepatocarcinoma (liver cancer) and death.3,48 

Unfortunately, there is no effective vaccine49 against HCV, 

and the “gold standard” of HCV treatment is combination 

antiviral therapy with ribavirin and interferon-α;4 however, 

both of these compounds are highly toxic and may cause 

severe side effects. Several months of treatment are usually 

required to eradicate a chronic infection, and the cost of 

therapy is high.49 These factors contribute to low patient 

compliance, making therapy less effective and potentially 

contributing to the development of viral resistance.29

Typhoid fever
Typhoid fever is an acute illness caused by the bacterium 

Salmonella enterica serovar Typhi (S. Typhi) or Paratyphi, 

which causes about 20 million cases of illness per year.50 These 

bacteria are usually ingested by consuming contaminated 

food or water.51 Once ingested, the bacteria translocate across 

intestinal epithelial cells and establish an intracellular growth 

environment within macrophages.52 The bacteria survive within 

Salmonella-containing vacuoles in infected macrophages 

and later spread to organs such as the liver and spleen.11,12,53 

Infected individuals often experience sustained high fevers (up 

to 103°F), stomach pains, headache, weakness, and appetite 

loss.51 Several vaccines against S. Typhi have been developed,54 

although they provide only short-term protection against the 

disease due to failure of the immune system to build a lasting 

response.50,54 Typhoid fever is endemic in many developing 

countries,55 where access to vaccines and antibiotic drugs is 

limited and expensive even if available. Standard treatment for 

S. Typhi infection is the antibiotic chloramphenicol, although 

resistance has been reported.50 Newer antibiotics like the fluoro-

quinolones have also proven effective in treating typhoid fever, 

but the widespread use of these drugs for a range of febrile 

illnesses in developing countries is contributing to the develop-

ment of more drug-resistant strains of the bacterium.55

Major challenges in treating 
intracellular pathogens
Tables 2A and B summarize the common intracellular viruses 

and bacteria and their related current therapeutic approaches. 

One can see that intracellular treatment approaches gener-

ally involve long-term therapy with a combination of drugs. 

Side effects can develop due to the drug’s inherent toxicity 

or the length of drug exposure. One of the critical challenges 

in treating these types of infections is to get enough drugs to 

reach the pathogens within their intracellular compartments. 

After reviewing the literature, we found evidence that intra-

cellular pathogens reside in phagosomes,15,34,56 vacuoles,52,53 

cytosol,16,57,58 and nucleus,1,59,60 and may interact with the 

Golgi apparatus61 and endoplasmic reticulum62–66 of host cells 

(Figure 1). The host cell membranes make it a challenge for 

many drugs to reach the invading pathogens. Moreover, some 

antiviral and antibiotic medications have short half-lives, 

requiring frequent and large doses to obtain a therapeutic 

effect, which may lead to high cost, low patient compliance, 

and severe side effects. In addition, drug resistance may be 

developed when patients do not fully comply with their treat-

ment regimens28 or when pathogens are exposed to drugs at 

suboptimal concentrations67 for an extended time period. An 

alerting new phenomenon is that some pathogens that have 

traditionally been considered extracellular are emerging as 

intracellular pathogens and may lead to new types of intracellu-

lar diseases. As an example, Staphylococcus aureus (S. aureus) 

has long been considered an extracellular pathogen, although 

recent evidence in the literature demonstrates that this bacte-

rium is capable of being internalized and of surviving within 

host cells (eg, osteoblasts68–72), and may contribute to recurrent 

infections.73 In order to reduce side effects, improve patient 

compliance, and reduce the development of drug resistance, 

more effective therapeutic approaches need to be developed.

An ideal drug treatment method to eradicate intracellular 

pathogens is one that has the following characteristics: the 

ability to penetrate host cells and reach the pathogens, high 

efficacy and low toxicity, and sustained and site-specific 

drug release.22 Recent evidence from the literature shows that 

nanomedicine is emerging as a promising potential treatment 
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for intracellular pathogens, as nanomedicine has the capacity 

to address these specific challenges.

Nanomedicine as an emerging 
therapeutic approach
Conventional therapies for the treatment of intracellular 

diseases have existed for many years. These treatments 

may be further improved as we enter a new era of therapies 

based on nanomedicine. Nanomedicine can be most suc-

cinctly defined as “the application of nanotechnology to 

medicine.”74 There are many potential advantages of using 

nanomedicine over the conventional therapies previously 

described. Combining new knowledge of nanomaterials with 

our current understanding of cellular and molecular func-

tions may allow for the development of novel and advanced 

nanomedicines. As discussed here, nanomedicine has the 

capacity to incorporate, encapsulate, or conjugate a variety of 

drugs in order to target specific cell populations and to offer 

tunable and site-specific drug release. Nanomedicine could 

be advantageous in treating intracellular diseases.

Biocompatibility and nanotoxicity
Biocompatibility is an important feature of any drug delivery 

system, and the goal is to minimize nonspecific cytotoxic 

effects to healthy tissues while maximizing drug effects at the 

target tissue or against invasive pathogens.75 Nanoparticles 

have been fabricated using a variety of materials, including 

poly(lactide-co-glycolide) (PLGA);76–81 poly-lactic acid 

(PLA);77,82,83 polymethacrylic acid (PMA);84,85 polyethylene 

glycol (PEG);77,86,87 “natural” polymers such as chitosan,88,89 

gelatin,90,91 or alginate;92,93 and other materials such as 

lipids,94–96 gold,75,97 and silica.98–101

PLGA has been approved by the Food and Drug Adminis-

tration for several biomedical applications, including surgical 

sutures, implants, and prosthetic devices.78 PLGA micro- or 

nanoparticles have also been used for a variety of drug deliv-

ery applications.79 PLGA displays good biocompatibility, bio-

degradability, suitable degradation kinetics, and mechanical 

properties and is easy to process. For this reason, PLGA is 

an attractive candidate for nanoparticle-based drug delivery 

systems, and there is a large body of ongoing research in this 

area. Other polymers such as PLA, PMA, PEG, chitosan, gela-

tin, and alginate also show promise as drug delivery vehicles 

due to their biocompatible properties. PEG may be used as a 

“coating” to prevent the rapid removal of nanoparticles from 

the bloodstream by the mononuclear phagocytic system, 

which may increase nanoparticle circulation time and theoreti-
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cally improve the therapeutic capacity of the nanoparticle.83,86 

Chitosan and alginate are polymers derived from natural 

sources and may offer more “friendly” conditions for the 

encapsulation or incorporation of DNA or peptides, because 

the use of organic solvents can be avoided.93

Lipids are also being explored as potential nanodelivery 

systems, either as liposomes or lipid nanocapsules (LNCs). 

Liposomes are composed of lipid bilayers surrounding 

a hydrophilic “core” and can be designed to incorporate 

hydrophobic drugs within the lipid bilayer or hydrophilic 

drugs within the aqueous core.94 Liposome-encapsulated 

aminoglycosides (such as gentamicin) have shown higher 

therapeutic efficacy than conventional aminoglycoside prepa-

rations in the liver and spleen using a murine S. typhi infection 

model.94 Amphotericin B (an antifungal) has also been encap-

sulated in lipids and administered to mice with an Aspergillus 

fumigatus infection.95 Liposome-treated mice have survived 

longer than mice treated with other amphotericin B prepara-

tions, with reduced renal toxicity and a prolonged drug circu-

lation time.95 These liposome formulations could be a better 

treatment for diseases affecting the liver or spleen (eg, typhoid 

fever, hepatitis). LNCs are another type of lipid-mediated 

delivery system under exploration. LNCs are considered a 

“hybrid” between a polymer nanoparticle and a liposome, 

with an oily core surrounded by a membrane composed 

of PEGylated surfactants.96 LNCs have shown promise 

in in vitro and some animal models encapsulating anticancer 

drugs such as paclitaxel, doxorubicin, and etoposide.96 

The results of these studies have indicated higher intracellular 

drug delivery and reduced tumor size in vivo when LNC 

formulations were administered.

In contrast to these “soft” polymer-based nanoparticle sys-

tems, metals such as gold have also been explored as potential 

drug delivery vectors. Gold is an attractive drug delivery vector 

due to the ease with which biomolecules such as protein or 

DNA can be attached to the gold surface using thiol chemistry.75 

This process can also allow attachment of multiple targeting 

or functional groups to the nanoparticle surface to produce a 

multifunctional nanoparticle. Although gold nanoparticles can 

be easily functionalized, these nanoparticles may accumulate 

in tissues over time because they are not biodegradable. The 

effects of long-term nanoparticle accumulation are unknown, 

so in many cases it may be better to use a material that is fully 

biodegradable. Silica-based compounds are another option, 

as the biodegradation of silica avoids tissue accumulation 

concerns,98 and it has been demonstrated that a variety of 

agents have been successfully incorporated into silica-based 

nanoparticles99–101 for drug delivery applications.

Although each of these materials offers its own set of 

characteristics and biocompatible properties, some materi-

als may be more suited to certain applications than others. 

It is important to determine the desired properties of the 

nanomedicine for defined applications.

Cellular penetration and intracellular 
delivery
One critical challenge in treating intracellular pathogens is to 

get enough drugs to reach the pathogen within an intracellular 

Nuclear membrane
Mitochondrion

Nucleolus

Ribosomes

(1) Cytoplasm

Centrioles

Cell membrane

(3) Nucleus

(4) Golgi apparatus

(5) Endoplasmic reticulum

(2) Phagosome/lysosome
or vacuole

Figure 1 Potential locations of intracellular pathogens. In a typical eukaryotic cell, pathogens may be internalized via endocytic mechanisms before establishing their 
intracellular life cycle. Pathogens may reside in various locations, including the cytosol, phagosome, lysosome, or vacuole compartments and the nucleus, and some may 
associate with the Golgi apparatus or endoplasmic reticulum. (1) Cytosol (Francisella tularensis,57 Listeria monocytogenes,58 Shigella64). (2) Phagosome/lysosome or vacuole 
(Mycobacterium tuberculosis,43,45 Brucella species,15 Salmonella,52,53 Legionella56). (3) Nucleus (herpes simplex virus,1,60 HIV59). (4) Golgi apparatus (Chlamydia61). (5) Endoplasmic 
reticulum (hepatitis C virus,65 Brucella,63 Toxoplasma gondii,66 Legionella pneumophilia62,64). 
Note: Reproduced with permission from the Scripps Institution of Oceanography, UCSD.
Abbreviations: HIV, human immunodeficiency virus; UCSD, University of California, San Diego.
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compartment. Nanoparticles can be internalized by endocytic 

mechanisms, which include receptor-mediated or clathrin-

coated pit endocytosis.102 Nanoparticles may reside within 

acidic endolysosome compartments following endocytosis,79 

and premature drug release within this acidic compartment 

may cause drug degradation and render treatment ineffective. 

It is therefore important for the nanoparticle to escape this 

compartment and gain access to the cytosol where either the 

drug cargo may be directly released or the nanoparticle goes 

on to further target a specific organelle. For instance, PLGA 

nanoparticles carrying doxorubicin are reportedly capable 

of escaping the endolysosomal compartment by a reversal 

of their surface charge. This allows the particles to interact 

with the membrane and escape into the cytosol where the 

doxorubicin is released.79

There are a number of sources that report time- and 

concentration-dependent uptake of nanoparticles by a vari-

ety of cell types such as smooth muscle cells,79 endothelial 

cells,103,104 macrophages,40,105–107 and tumor cells.108–113 The 

uptake of PLGA nanoparticles containing bovine serum albu-

min as a model drug was found to be concentration dependent 

in human vascular endothelial cells, approaching first-order 

kinetics.103 An in vitro uptake and cellular trafficking study 

using mesoporous hybrid silica nanoparticles demonstrated 

that the particles were internalized by receptor-mediated 

endocytosis, were localized in the endocytic compartment, 

and then released their cargo within the cytosol.100 Another 

in vitro study examined the uptake of drug-loaded thiolated 

PMA hydrogel capsules.113 The tracking experiments revealed 

that nanocapsules were taken up by endocytic mechanisms 

in a time-dependent manner and the drug was released 

throughout the cell. Collectively, these studies demonstrate 

that nanoparticles are capable of cellular penetration and 

intracellular drug release. This is an important characteristic 

of a nanomedicine that targets intracellular pathogens and 

promotes direct killing, as the drug must be able to effec-

tively reach the invading pathogens within the intracellular 

compartment.

Targeting to specific cell types
The goal of targeting nanomedicines to specific cell popula-

tions is to increase the therapeutic efficacy of the drug while 

minimizing damage to healthy cells and tissues, thereby reduc-

ing the incidence and severity of side effects. Currently, the 

majority of experiments demonstrating the targeting of nano-

particles are related to cancer/tumor targeting, although these 

same concepts can be applied to pathogen-infected cells and 

the intracellular compartments98 where the pathogens reside. 

Nanoparticles can be targeted toward specific cell populations 

by conjugating targeting ligands to the surface of the nano-

particles. These targeting ligands can be attached directly to 

nanoparticle surfaces or via a spacer (eg, PEG), which acts to 

enhance the flexibility of the targeting ligand and increase 

the likelihood that it will bind the appropriate receptor on 

the target cell.110,114 There are a variety of methods available 

to attach ligands to nanoparticle surfaces.115,116 Targeting 

ligands can include antibodies (whole or fragment), recep-

tors or receptor ligands, peptides, aptamers, or other small 

molecules.114 A few examples are presented here.

When incorporating antibodies on nanoparticle surfaces, 

it is important to consider whether attachment will affect 

the binding site or structure of the antibody. Hybrid lipid 

nanoparticles composed of PLGA, phospholipids, and an 

outer PEG layer have shown targeting capacity to pancreatic 

cancer cells when coupled with an anticarcinoembryonic 

antigen (CEA) half-antibody.112 Nanoparticles incubated with 

CEA-presenting pancreatic cancer cells showed selective 

uptake of targeted nanoparticles over nontargeted control 

nanoparticles.

Receptor ligands can also act as targeting moieties. 

It has recently been reported that nanosized poly(ethylene 

glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) micelles 

bearing a surface epidermal growth factor (EGF) have been 

targeted to breast cancer cells overexpressing the epidermal 

growth factor receptor (EGFR) in vitro and in vivo.108 The 

uptake of the nanomicelles was two-fold higher using EGFR-

overexpressing cells compared with cells that express low 

levels of EGFR. These results were confirmed using a xeno-

graft mouse model, with mice bearing EGFR-overexpressing 

tumors demonstrating increased tumor uptake of the particles 

compared with mice bearing low EGFR-expressing tumors.

Polyester nanoparticles carrying paclitaxel can be targeted 

to irradiated tumor cells with a short peptide, Gly-Ile-Arg-

Leu-Arg-Gly (GIRLRG), which binds specifically to GRP78 

receptors expressed by glioma and breast tumor cells in 

response to radiation therapy.109 In vitro and in vivo studies 

were used to compare tumor volumes following treatment 

with control and targeted nanoparticles. Mice treated with 

nanoparticles bearing the targeting component had a signifi-

cant decrease in tumor volume compared with control.

Conjugation of an A10 aptamer to PLGA/PEG nanoparti-

cles has also been shown to be an effective targeting strategy.116 

The A10 aptamer binds to the prostate-specific membrane 

antigen (PSMA) on the surface of prostate cancer cells, and the 

A10 aptamer-conjugated nanoparticles showed higher uptake 

by PSMA-positive cells than by PSMA-negative cells.
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Site-specific and tunable drug release
In order to effectively eradicate intracellular pathogens, 

drugs that are intended to kill the pathogens directly 

should reach the intracellular locations of infected host 

cells. As we have summarized in Figure 1, locations may 

include phagosomes,15,34,56 vacuoles,52,53 cytosol,16,57,58 and 

nucleus1,59,60 and may interact with the Golgi apparatus61 or 

endoplasmic reticulum.62–66 With proper engineering and 

design, nanoparticles can be tailored to carry their drug pay-

loads into the infected cells and then release the drug within 

specific intracellular compartments. One way to accomplish 

site-specific drug release is to use pH-responsive polymers. In 

one study, short peptides were conjugated to pH-responsive 

polymers designed specifically to disrupt the endosomal 

membrane at pH 5.5 and subsequently release the peptide 

into the cytosol.117 The polymers had no membrane-disruptive 

activity at pH 7.4 due to a “masking” PEG group, which is 

later cleaved to expose the membrane-disruption domain at 

pH 5.5. Peptide-polymer conjugates demonstrated a diffuse 

cytosolic distribution after 1 hour, the time normally required 

for macrophage endosomes to mature into lysosomes. Uncon-

jugated peptide was located primarily in the lysosome after 

the same time period, indicating that the peptide itself was 

unable to escape into the cytosol. This polymer technology 

may allow for local drug delivery to the cytosol, although it 

is more critical to reach the specific intracellular location of 

the pathogen, such as a vacuole or the nucleus.

It has been demonstrated that nanoparticles can be 

specifically targeted to mitochondria118 or nucleus119 and 

may be capable of entering vacuoles120 where pathogens 

such as Salmonella may reside during an infection process. 

Although intracellular pathogens do not typically live within 

mitochondria, pathogens such as Listeria monocytogenes 

can secrete toxins that interfere with normal mitochondrial 

function.121 So the ability to target mitochondria may provide 

a means to treat these types of infection and attenuate the 

effects of secreted toxins. One study successfully localized 

fluorescent nanodiamonds conjugated with mitochondrial 

protein antibodies to mitochondria in live cells.118 The inher-

ent fluorescence of these nanodiamonds allowed for tracking 

the localization of the nanoparticles, and the microscopy 

experiments revealed that these nanodiamonds were capable 

of specifically binding the mitochondria compared with 

control nanodiamonds without conjugated antibody.

Nuclear targeting has been demonstrated in a similar 

manner by conjugating nuclear localization signal (NLS) 

peptides on the surface of PLGA nanoparticles for the nuclear 

delivery of doxorubicin to cancer cells.119 The NLS-targeted 

nanoparticles demonstrated a six-fold increase in uptake 

compared with free doxorubicin in solution, and also a 

2.5-fold increase in uptake over nontargeted nanoparticles. 

Cells treated with NLS-targeted nanoparticles also showed 

a higher toxicity than control nanoparticles, which was 

expected due to the increased delivery of drug to its nuclear 

target site. Nuclear targeting would be especially useful in 

viral infections such as HIV and HSV, as these viruses must 

enter the nucleus to begin their replicative life cycles.

There is also evidence that demonstrates that nanoparticles 

loaded with ampicillin are capable of entering cells and 

delivering the drug within Salmonella-containing vacuoles 

(SCVs).120 Ampicillin was tritium-labeled and found to 

localize within both the cytosol and SCVs using ultrastruc-

tural autoradiography. The colocalization of the drug with 

the bacteria led to enhanced bacterial killing and elimination 

compared with control cells treated with ampicillin in 

solution. The colocalization of the drug within the SCVs 

is an important step in effectively targeting intracellular 

pathogen compartments.

Another issue plaguing intracellular pathogen treatments 

is the lower concentration of drug at the target site and the 

short duration of efficacy of the drug administered. Large 

and frequent doses of the drugs are often required to obtain 

a therapeutic effect. Nanoparticles have the potential to 

overcome this issue by offering sustained release of drugs, 

which would lower the required dose and decrease the fre-

quency of administration.122 As an example, polymer-based 

nanoparticles composed of PLGA are able to sustain release 

of a variety of drugs, such as rolipram for 7 days,123 gen-

tamicin for 25 days,124,125 and dexamethasone for 15 days.126 

Hyperbranched poly(amine-ester)-PLGA nanoparticles have 

also demonstrated sustained release of isoniazid, an important 

anti-TB drug, up to 14 days.81 Another study targeted gelatin 

nanoparticles loaded with rifampicin, another anti-TB drug, 

to macrophages.91 Test results indicated that the rifampicin-

loaded gelatin nanoparticles were capable of localizing in the 

lungs and reducing bacterial loads in a mouse model of TB. 

In addition, nanoparticle treatment was as effective as tra-

ditional daily oral rifampicin at a reduced dosing frequency 

(every 3 days), due to the sustained release of rifampicin 

from the gelatin matrix.91

Perspectives for the future
We have reviewed the current therapeutic strategies against 

commonly encountered intracellular pathogens like viruses 

and bacteria, and have evaluated the potential of nanomedi-

cine to improve upon the current treatments. When treating 
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intracellular diseases, it is important to avoid or prevent 

further development of pathogen resistance, which is becom-

ing a major problem for the management of TB.23 Generally 

speaking, the success of an antibiotic drug relies on its ability 

to penetrate the bacterial cell wall and membranes and to 

bind to its target site (eg, protein, enzyme).127 Bacteria may 

develop resistance by mutating various drug target sites,27 

and viruses may also develop drug resistance through genetic 

mutation and recombination events29 that can render our cur-

rent treatments ineffective. For this reason, there is a need for 

new drugs with novel mechanisms of action that may slow 

or stop the development of pathogen resistance.

As an example, recent literature has emerged touting the 

potential of cationic antimicrobial peptides (CAMPs) to serve 

as an alternative to conventional antibiotic therapy.128–132 

Antimicrobial peptides are short, positively charged peptides 

that are produced endogenously by human epithelial tissues 

where they function to prevent invasion of pathogens, dem-

onstrating broad-spectrum killing activity against bacteria, 

yeast, and fungi.129,133 The complete mechanism of CAMP 

action is yet to be fully understood, but one proposed mecha-

nism suggests that the CAMPs interact electrostatically with 

the negatively charged molecules on the outer surface of 

bacteria, where they can insert themselves into the membrane 

and form a pore.129 Such a disruption in the bacterial cell 

wall and membranes will affect the osmolytic balance of the 

bacterium and ultimately cause cell death. Because CAMPs 

do not have a specific molecular target per se, pathogens 

may have more difficulty in developing resistance to these 

peptides. There is also some evidence indicating that CAMPs 

can help modulate exogenous antibiotic action against sev-

eral strains of S. aureus.134 Bacterial cultures treated with 

both CAMPs and antibiotics had lower antibiotic minimum 

inhibitory concentration values than for cultures treated with 

antibiotics alone, indicating complementary action between 

the CAMPs and antibiotics.

As a result, these CAMPs are attractive targets for the 

development of novel nanomedicines to treat intracellular 

diseases. It may be possible to design nanoparticles capable 

of carrying CAMPs into the cell, or to develop self-assembled 

CAMP nanoparticles. The development of such nanoparticles 

may greatly improve intracellular drug therapy by offering high 

efficacy against a variety of pathogens, and also offer very 

high biocompatibility, as endogenous CAMPs can be used. 

We anticipate that CAMP nanoparticles will be a potential 

advanced nanomedicine for intracellular disease treatments.

Another potential strategy to improve intracellular 

disease treatments is to take advantage of the preferential 

accumulation of nanoparticles by the reticuloendothelial 

system (RES). The RES can also be referred to as the “mono-

nuclear phagocytic system” and is composed of macrophages 

residing in the liver, spleen, and lungs. Normally, this phe-

nomenon is avoided in nanomedicine, as the RES removes the 

nanoparticles from circulation and may prevent drugs from 

reaching target tissues. However, this treatment modality may 

be particularly useful in treating intracellular diseases such as 

TB (affecting the lungs) or typhoid fever (affecting the liver 

and spleen), as these pathogens primarily live and duplicate 

within macrophages of the affected organs. Using nanopar-

ticles to deliver drugs of interest to fight these diseases may 

be aided by the natural tendency of these cells to internalize 

nanoparticles, which would help reduce unnecessary tissue 

exposure and likely decrease the amount of drug required, 

because it is being delivered to the appropriate cell.

To create the “perfect” intracellular drug delivery system 

for fighting infections, certain characteristics of nanoparticles 

or nanomedicine must be successfully incorporated such 

that the medicine exhibits acceptable biocompatibility, pos-

sesses targeting capacity, and offers efficient and sustained 

drug release at the target site. Figure 2 illustrates an “ideal” 

nanoparticle drug delivery system with such characteristics 

suited to treat intracellular diseases. The nanomaterial used 

will vary with each application, but there are a variety of 

biocompatible materials available, as summarized in Table 3. 

The drug may be used to form the nanoparticle, encapsulated 

within a polymer matrix, or attached to the surface of a solid 

“carrier” nanoparticle. The incorporation of surface target-

ing components to help localize to the affected tissue may 

improve therapeutic efficacy, along with the presence of mol-

ecules to enhance cellular penetration such as cell-penetrating 

Cell-penetrating
peptide

PEG linker

Polymer matrix, drug,
imaging agent, etc

Targeting moiety
(antibody, aptamer,
receptor ligand, etc)

Figure 2 Components of an “ideal” nanoparticle for intracellular drug delivery. 
The important components of a nanoparticle used for intracellular drug delivery 
include choice of nanomaterials (eg, polymer, gold), targeting molecules, cell-
penetrating peptides (to promote internalization), and the incorporated drug 
molecules of interest. 
Abbreviation: PEG, polyethylene glycol.
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peptides (CPPs). CPPs are short, cationic peptides, typically 

derived from the HIV TAT proteins,135 which have been 

shown to readily translocate through cell membranes. The 

addition of CPPs, such as TAT, to the surface of a nanopar-

ticle can increase the efficiency with which the nanoparticles 

are delivered intracellularly,136,137 although the mechanism by 

which these CPPs are able to enter cells is currently under 

debate. It is suggested that either the CPPs promote direct 

translocation through the membrane via electrostatic interac-

tions or the CPPs bind to specific receptors on the membrane 

and induce rapid receptor-mediated endocytosis.137 In either 

case, promoting efficient cellular penetration is critical for 

the treatment of intracellular diseases.

Nanomedicine meets the requirements for an “ideal” drug 

delivery system to improve intracellular disease therapy; 

however, we are still exploring this relatively new field. 

It is early to assess how quickly nanomedicine will be adopted 

and integrated into mainstream health care. Research on 

nanomedicine is relatively well funded,138 so it is likely that 

many new treatment methods will be approved and avail-

able in the future. However, this investment cost for drug 

development is still high from an economic standpoint,139 

and the price will probably be passed down to patients via 

high prescription copays and may not be available for years 

in developing areas where these improved therapies are 

needed most. Initially, this may be a deterrent to promoting 

nanomedicine, but over the long term with new cost-effective 

technologies, higher drug efficacy, and better treatment out-

comes, the price will become acceptable.

Conclusion
The burden of treating intracellular diseases is continually 

increasing due to the sheer number of people living with dis-

eases such as HIV/AIDS, hepatitis, and TB worldwide, along 

with the increasing incidence of drug resistance. We have 

summarized the locations where these pathogens reside, such 

as phagosomes,15,33,55 vacuoles,51,52 cytosol,16,56,57 nucleus,1,58,59 

Golgi apparatus,60 and endoplasmic reticulum.61–65 The major 

challenges in treating these invasive pathogens include get-

ting enough drugs to penetrate the host cell and reach the 

pathogen, having high drug efficacy and low toxicity, and 

maintaining sustained, site-specific drug release throughout 

the duration of treatment. In the future, it may be possible 

to improve disease treatment by utilizing the uptake of 

nanoparticles by the RES, especially in the case of TB and 

hepatitis, which affect macrophages. Additionally, looking 

to endogenous sources such as CAMPs or other immuno-

modulatory compounds such as interleukins (not covered) 

may further improve upon current therapies.

The literature presented here shows the potential for 

nanomedicine to address these challenges and improve 

upon the current therapeutic strategies. The incorporation 

of nanomedicine into mainstream health care is a lofty, but 

achievable, goal. Researchers from multiple disciplines must 

work together, push the boundaries of science at the nano-

scale, and incorporate concepts from biology, engineering, 

and drug design in order to make this goal a reality.
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