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Abstract: p28 is a 28-amino acid peptide fragment of the cupredoxin azurin derived from 

Pseudomonas aeruginosa that preferentially penetrates cancerous cells and arrests their 

 proliferation in vitro and in vivo. Its antitumor activity reportedly arises from post-translational 

stabilization of the tumor suppressor p53 normally downregulated by the binding of several 

ubiquitin ligases. This would require p28 to specifically bind to p53 to inhibit specific ligases 

from initiating proteosome-mediated degradation. In this study, atomic force spectroscopy, 

a nanotechnological approach, was used to investigate the interaction of p28 with full-length 

p53 and its isolated domains at the single molecule level. Analysis of the unbinding forces and 

the dissociation rate constant suggest that p28 forms a stable complex with the DNA-binding 

domain of p53, inhibiting the binding of ubiquitin ligases other than Mdm2 to reduce  proteasomal 

degradation of p53.
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Introduction
The p53 protein is a transcription factor that acts as a tumor suppressor by playing an 

essential role in preventing inappropriate cell proliferation and in maintaining genome 

integrity. It is stabilized by post-translational modifications in response to different 

stress signals, increasing its intracellular levels and activating the transcription of 

downstream target genes that regulate cell-cycle arrest, DNA repair, and apoptosis.1,2 

p53 is a 393-residue protein with three functional domains: an N-terminal domain 

(NTD, aa 1–93), a core DNA-binding domain (DBD, aa 102–292), and a C-terminal 

domain (CTD, aa 293–393) that are responsible for its transcriptional activation, DNA-

binding, and tetramerization functions, respectively.3,4 The activity of p53 is tightly 

regulated through post-translational modification, localization, and degradation.5 Its 

major negative regulator is the Mdm2 oncoprotein that inhibits its transcriptional 

activity,6 favors its nuclear export,7 and acts as an E3 ubiquitin ligase, targeting p53 

for proteasomal degradation.8 The regulatory function of Mdm2 is exerted through 

formation of a complex with p53.6,9

The central role of p53 in safeguarding the genome integrity provides an attractive 

target for anticancer drugs that can stabilize it, interfere with its downregulatory 

pathway,10,11 and enhance its tumor-suppressor function in cancer cells. One such agent, 

azurin, a copper-containing, electron-transfer protein secreted by the opportunistic 

pathogen Pseudomonas aeruginosa, has significant anticancer activity in vitro12–15 

and in vivo.12,14 The antiproliferative activity of azurin is based on the stabilization 

and subsequent increase in intracellular concentration of p53.12–15 A single-molecule 
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atomic force spectroscopy (AFS) experiment has shown 

that a stable complex is formed between full-length p53 

and azurin.16 However, biological as well as computational 

studies have reported that azurin binds to either the NTD 

of p5314,17,18 or its DBD.14,19,20 Site-direct mutagenesis12,13,15 

and computational investigations20 have revealed that the 

two methionines, located at positions 44 and 64 within a 

hydrophobic patch of azurin are crucial for the interaction 

with p53.

Although azurin preferentially enters cancer relative to 

normal cells,21 a 128-amino acid protein could display some 

immunogenicity, a potentially significant side effect, that 

compromises its pharmaceutical efficacy.12 Since peptide 

fragments of azurin could provide therapeutic molecules 

with the same cytotoxicity, delivery, and target specificity 

of the whole protein, but with potentially fewer side effects, 

truncated versions of azurin have been investigated for 

 anticancer activity. Amino acids 50–77 of azurin form a 

2.9 kDa peptide fragment that encompasses the azurin α-helix 

and retains the preferential penetration of the whole protein, 

but also its antitumor activity in vitro and in vivo.21–24 The 

antiproliferative activity appears to result from aa residues 

11–18 of p28 (61–69 of azurin) binding to p53 in a region 

that does not inhibit the binding of Mdm2 or subsequent 

ubiquitination.23 Since the molecular details and the kinetics 

of its interaction with p53 and, more importantly, with what 

domain(s) have not yet been clarified, a detailed study of the 

p28–p53 interaction could provide significant information on 

p28 action at the molecular level.

In the present work, the kinetic properties of the 

interaction of p28 with the full-length p53 and its DBD and 

NTD at a single-molecule level were investigated by AFS, 

while the interaction with the CTD has been excluded on 

the basis of competition assays results.23 AFS is an innovative 

 nanotechnology, suitable for measuring intermolecular 

forces down to the piconewton range, at single-molecule 

resolution, in near-physiological conditions without any 

labeling and using an extremely low amount of substances. 

As such, it provided detailed information on the interaction 

strength and kinetics of these biomolecular partners, 

complementing  traditional biochemical and molecular 

approaches.25 The kinetic parameters determined from force 

spectroscopy experiments suggest a bio-recognition process 

occurs between p28 and the DBD of p53, while almost no 

interaction is registered with the NTD. This strongly suggests 

that p28 undergoes a specific interaction only with the DBD 

of p53 and provides a first look at the kinetics of the reaction 

that underlies the anticancer activity of p28.

Methods
Protein expression and purification
The human p53 gene encoding aa 1–93 was amplified by 

polymerase chain reaction (PCR) with pUC18p53, kindly 

provided by Professor Nobuo Tsuchida, Department of 

Molecular Cellular Oncology and Microbiology, Tokyo, 

Medical and Dental University. Primer set used was 5′-AAA 

GGG GGA TCC ATG GAG GAG CCG CAT CAG ATC 

CT-3′ and 5′-AAA AGG GAA TTC TCA CAG GGG CCA 

GGA GGA GGG-3′ (Genenco, Firenze, Italy). 10 pmol 

of each primer was added to 20 ng of template DNA and 

12.5 mL of 23 PCR HotStartTaq™ mix (Qiagen, Hilden, 

Germany) in a final volume of 25 mL. The amplified  fragment 

was digested by Bam HI and Eco RI (Invitrogen, Carlsbad, 

CA) and ligated into pGEX-2T vector in frame with the 

glutathione S-transferase (GST) gene sequence. The fusion 

protein, expressed in Escherichia coli BL21 cells transformed 

with the pGEX-2T (1–93) plasmid, was purified as previ-

ously described.26

Also, purification of full-length p53 (aa 1–393) and 

its DBD (aa 94–288) followed a standard GST method. 

Briefly, E. coli BL21 DE3 having pGEX-4T-wtp53 or 

pGEX- 4T-DBD-p53 plasmid DNA were grown at 37°C 

to optical density measured at a wavelength of 600 nm 

of 0.4.  Bacteria were incubated for an additional 3 hours 

with 0.5 mM isopropyl-1-thio-β-galactopyranoside under 

vigorous shaking. Cells were lysed in phosphate-buffered 

saline (PBS) containing 0.1% Triton® X-100, 1 mM dithio-

threitol (DTT), and protease inhibitors. After centrifugation, 

supernatant fractions were incubated with glutathione-

Sepharose™ beads (G4510; Sigma, St Louis, MO). GST-

fusion proteins were eluted with 50 mM Tris-HCl pH 8.0 

containing 10 mM glutathione (G4251; Sigma) and 1 mM 

DTT, and incubated with either thrombin or Factor Xa 

protease (Amersham Biosciences, Piscataway, NJ). After 

incubation at room temperature for 16 hours, thrombin or 

Factor Xa protease was removed by P-aminobenzamidine-

agarose or anti-factor Xa-agarose beads (Sigma). GST-free 

p53 and its derivatives were dialyzed against storage buffer 

(50 mM Tris-HCl pH 7.5, 1 mM MgCl
2
, 0.5 mM DTT). The 

quality, correct folding, and purity of recombinant proteins 

were subsequently verified.27

Tip functionalization
The 28-amino acid (Leu50-Asp77, 2.9 kDa) fragment of 

azurin was anchored to the AFS silicon nitride cantilever 

(Veeco Instruments, Santa Barbara, CA) by means of a 

cysteine residue conjugated to the NH
2
-terminus to create 
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Figure 1 Immobilization strategies of peptide and proteins to the tip or substrate. (A) p28 is bound to the amino-silanized tip via a Peg crosslinker. (B) p53, or alternatively 
its DBD or NTD, is immobilized on glass slides via a chemical platform involving sequentially linked amino-silane and glutaraldehyde, thus targeting aminic groups of lysine 
residues exposed on the protein surfaces (see Materials and methods section for details).
Abbreviations: APTes, 3-aminopropyl-triethoxysilane; DBD, DNA-binding domain; MAL, maleimide; NTD, N-terminal domain; Peg, polyethylene glycol.
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p29 (Cys-p28, 3.0 kDa). The tips were cleaned in acetone 

for 10 minutes, dried with a stream of nitrogen, and 

ultraviolet (UV)  irradiated for 30 minutes to expose hydroxyl 

groups. Tips were then immersed in a solution of 2% (v/v) 

3-aminopropyl-triethoxysilane (APTES) (Acros Organics, 

Geel, Belgium) in chloroform, incubated for 2 hours at 

room temperature, rinsed in three changes of chloroform, 

and dried with nitrogen. Silanized tips were immersed 

in 1 mM N-hydroxysuccinimide-polyethylene glycol-

maleimide (NHS-PEG-MAL), molecular weight 1395 Da, 

9.5 nm in length (Thermo Scientific Inc, Waltham, MA) 

and dissolved in dimethylsulfoxide (DMSO) for 3 hours at 

room temperature. The PEG spacer contains an NHS-ester 

group at one end, which reacts with amino-silane molecule 

to form an amide bond and a maleimide group at the other 

end, which reacts with the sulfhydryl group of cysteine 

residue linked to the NH
2
-terminus of p28. Tips were then 

washed in three changes of DMSO to remove the unbound 

linker, rinsed with Milli-Q® (Millipore, Bellerica, MA) water, 

dried with nitrogen, then incubated with 50 µL of a 10 µM 

solution of p28 in 50 mM PBS pH 7.5 overnight at 4°C. 

The tips were then gently rinsed and stored in buffer at 4°C. 

A schematic representation of tip functionalization is shown 

in Figure 1A.

Preparation of the protein substrates
The full-length p53, its DBD, and its NTD, were  individually 

immobilized on glass slides previously cleaned for 5  minutes 

in acetone, dried under a stream of nitrogen and then 

UV  irradiated for 30 minutes. After immersion in 0.3 M 

APTES in chloroform and incubation for 3 minutes at room 

 temperature, they were rinsed in three changes of chloroform 

and dried with nitrogen. The glass slides were subsequently 

incubated with a solution of 1% glutaraldehyde (Sigma-

Aldrich, St Louis, MI) in Milli-Q water for 10 minutes at 

room temperature, rinsed carefully with Milli-Q water, and 

dried with nitrogen. Fifty µL of a 0.8 µM p53, p53 DBD 

or p53 NTD in 50 mM PBS pH 7.5 were poured onto this 

amine-reactive surface, incubated overnight at 4°C, gently 

washed with PBS, and stored in buffer at 4°C. A schematic 

representation of the substrate functionalization is shown 

in Figure 1B.

Atomic force microscopy (AFM) imaging 
and force spectroscopy
A Nanoscope IIIa/Multimode atomic force microscope 

(Digital Instruments, Santa Barbara, CA) was used to  perform 

force spectroscopy. Imaging of full-length p53, p53 DBD, 

and p53 NTD substrates were imaged by tapping mode 

AFM, with an amplitude set point corresponding to the 95% 

of the free amplitude value. The cantilever nominal spring 

 constant, k
nom

, was 0.5 N/m. The substrate was scratched 

to get a qualitative indication about the protein monolayer 

height as described by Funari et al.27

Force measurements were carried out in PBS  buffer 

(50 mM K
3
PO

4
, 150 mM NaCl, pH 7.5) using force 

 calibration mode AFM. The cantilevers used to perform 

force spectroscopy studies had a nominal spring constant, 

k
nom

, of 0.01 N/m. The effective spring constant, k
eff

, 

was  determined by the procedure reported by Hutter and 

 Bechhoefer.28 A relative trigger of 50 nm was applied to limit 

the maximum contact force applied by the tip on the protein 
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Figure 2 schematic representation of a force–distance cycle carried out in the 
atomic force spectroscopy experiment. A ligand-functionalized tip is approached to 
a surface covered by immobilized receptor (point 1); the cantilever begins to deflect 
upward due to the ligand–receptor intermolecular repulsive forces (point 2); the 
two partners can interact, and when the cantilever applies the maximum contact 
force upon the substrate, the approaching phase is stopped (point 3); the cantilever 
begins to retract, reaches the baseline deflection and begins to bend downward 
due to the attractive interaction force displayed by the ligand–receptor complex 
(point 4); when the force exerted by the cantilever overcomes the stability of the 
complex bonds, the cantilever jumps off, returning to its initial position (point 5). 
see Funari et al27 for a detailed description.
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monolayer to 0.5 nN. A ramp size of 150 nm was set, and an 

encounter time of 100 ms established. The approach velocity 

was set at a value of 50 nm/s, with the retraction velocity 

increased from 50 to 4190 nm/s. Loading rate, defined as 

r = dF/dt, was determined according to the relationship 

r = dF/dt = kv, where k is the cantilever spring constant. 

Correspondingly, the nominal loading rate, obtained by using 

the nominal spring constant, k
nom

, was found in the range 

0.5–42 nN/s. The effective  loading rate was determined by 

replacing the nominal cantilever constant with the effective 

one, k
sys

, to take into account that molecules (ie, proteins 

and/or  linkers) tied to an AFM tip make the cantilever spring 

constant change. The k
syst

 values were obtained from the slope 

of each retraction curve immediately prior to the unbinding 

event.29–31 All blocking experiments were conducted at the 

nominal loading rate of 7 nN/s.

Results
Interaction of p28 with full-length p53
All experiments were performed using AFS, a single-

 molecule technique that complements traditional proteomic 

and molecular biology approaches for the functional analysis 

of biorecognition events.25,32 In a typical AFS experiment, 

a ligand is anchored to the AFS tip while the receptor is 

immobilized onto a substrate. Force–distance curves are 

thus performed cyclically on the tethered system, as sketched 

in Figure 2 and described in the legend. Briefly, the tip is 

approached to the substrate until the ligand and the receptor 

are brought into close proximity and can interact to form a 

complex. The cantilever then retracts from the surface, and 

when the force that it exerts overcomes the stability of the 

complex bonds, a sudden jump in the deflection occurs as a 

consequence of the complex dissociation.

Hence, one key requisite to investigate ligand–receptor 

interaction by AFS is a robust attachment of ligand and 

receptor on their respective AFM supports, preferably 

through covalent bonds, which are generally stronger than 

those characterizing protein–protein interaction.25,33 Strong 

immobilization of the two partners ensures the stability of 

the tethered system over time allowing repeated approach/

retraction cycles. In this respect, the NH
2
-terminal of 

p28 is conjugated to a cysteine residue whose SH group 

reacts with the MAL group of a flexible 9.5 nm-long PEG 

polymer covalently linking the p28 peptide to the AFS tip 

(Figure 1A). The linker increases the flexibility and the 

re-orientation freedom of the peptide when the AFM tip 

approaches the protein monolayer. This favors the bio-

recognition process.34 Moreover, during the tip-retraction, 

the linker undergoes a stretching process whose unique 

features assist in discriminating specific and nonspecific 

unbinding events.25,33

Full-length p53 molecules are immobilized on a glass 

slide by targeting the amine groups of the lysine residues 

exposed on the protein surface (Figure 1B). The presence of 

several lysine residues available for the reaction is susceptible 

to generate statistically random orientations of the proteins 

on the substrate. This immobilization strategy could generate 

some configurations that might result unfavorably for the 

bio-recognition event (see below).

Before proceeding with AFS measurements, the 

 morphology of p53 proteins immobilized on the glass 

slides were analyzed by imaging AFM using a bare tip. The 

 presence of a homogenous layer of p53 with discernible 

single  proteins was observed. To verify the presence of a 

monolayer and define its height, a bare tip was thus used to 

scratch the substrate, working in contact mode as described 

in Funari et al27 (results not shown).

With a functionalized tip thousands of force curves were 

thus recorded on such a substrate with an intermediate degree 

of coverage (condition also suggested by Gilbert et al),35 at 

several distinct points in which a corresponding percentage 

of specific events were observed. The approach speed was 

kept constant while the retraction one, v, was varied from 

50 to 4190 nm/s.
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Figure 3 (A) histograms of the unbinding forces for the p28/p53 complex before 
and after blocking. The most probable unbinding force value was determined from 
the maximum of the main peak of the histogram before blocking. All measurements 
were performed at a loading rate of 7 nN/s. (B) histogram of the unbinding lengths 
for the p28/p53 complex, evaluated for the same collection of force curves as in (A). 
The continuous line is the fit by a Gaussian centered at 12 nm and with a standard 
deviation of 5.6 nm.
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As collected force curves can significantly differ in AFS 

unbinding experiments in the single molecule regime,25,32 

force curves were accepted whose retraction portion, before 

the jump-off, exhibited a nonlinear trend starting and  ending 

at the zero-deflection line where the nonlinear trend is 

 attributed to the viscoelastic properties of the PEG linker 

under stretching.36,37 When multiple jumps were observed, 

which could be due to subsequent rupture of the complex 

bonds, the curves were accepted if the last jump started 

and ended at zero deflection, with the last jump taken as 

 representative of the unbinding process.

The unbinding frequency, defined as the ratio between 

the number of accepted unbinding events and total number 

of the collected force curves, was found to be about 20% at 

a loading rate of 7 nN/s. This frequency could potentially be 

affected by the presence of unfavorable binding  geometries 

and by steric hindrance.16,27,38 However, studying the 

 frequency of unbinding as a function of the surface  coverage, 

no signif icant change was found. The relatively low 

unbinding frequency, detected even when specific interaction 

occurs, was thus to be ascribed to the random orientation 

resulting from the  immobilization strategy. Interestingly, the 

unbinding frequency, observed to be consistent with values 

previously reported for other biological interactions,27,39,40 

was dependent on the loading rate, initially increasing, 

reaching a maximum, and decreasing as previously 

described.27

As the unbinding force for each curve is the product of 

cantilever deflection (d, Figure 2) and its effective spring 

constant (k
eff

), force histograms correspond to the different 

loading rates at which force spectroscopy measurements were 

conducted. Working on the chosen intermediate substrate 

coverages, the histograms of the unbinding forces, ie, at 

a loading rate of 7 nN/s (Figure 3A), exhibit essentially a 

single mode distribution, slightly skewed toward high force 

values. The asymmetric shape, similar to that observed in 

other systems, could be due to some factors such as the het-

erogeneity in chemical bonds or spacer length, or a residual 

occurrence of a few multiple binding events.39,41,42 On this 

basis, in this present study, the most probable unbinding force 

was determined from the maximum of the main peak of each 

histogram. At a loading rate of 7 nN/s, an unbinding force 

value of 82 pN was found (Figure 3A), which falls within 

the range reported for other specific biological interactions 

at similar loading rates.43 Also found was that the unbinding 

force values and the widths of their corresponding distribu-

tions increased with an increase in loading rate, as reported 

previously.16,27,44

Blocking experiments on the p28/p53 complex 

 demonstrated that the observed unbinding events arise from 

a specific recognition process. Indeed, after incubation of 

the p53-functionalized substrate with 30 µM free p28, the 

unbinding frequency was reduced about 55%,  indicating 

 formation of a p28/p53 complex was specif ic. Upon 

increasing the concentration of the blocking agent, a higher 

attenuation was not registered. The persistence of residual 

unbinding activity after blocking has also been reported for 

other force spectroscopy experiments and could be related 

to the forced interaction between the two partners, induced 

by the experimental design.45 Importantly, the similarity in 

force histograms before and after blocking (see Figure 3A) 

indicates the corresponding interactions may be similar. 

The specificity of the p28/p53 interaction was further 

verified by distribution analysis of the linker extension 

from zero distance to the position of the complex rupture 
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Figure 4 Plot of the unbinding forces versus the logarithm of the loading rates for 
the p28/p53 interaction. statistical errors are given by standard deviation. The line is 
obtained by fitting the experimental data by the Bell-Evans model (Equation 2).
Abbreviations: koff, dissociation rate constant; F*, the most probable unbinding 
force; xβ, width of the potential barrier along the direction of the applied force.
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in a force-distance curve. The unbinding length distribution 

exhibited a single-mode distribution centered at 12.0 nm 

with a standard deviation of 5.6 nm (Figure 3B), which is 

in good agreement with the extension expected from the 

stretching of the 9.5 nm long PEG during the unbinding 

process.45 The unbinding process which the p28/p53 complex 

undergoes under the influence of an external loading force 

can be treated within the theoretical context of the Bell-

Evans model.46,47 According to this model, the application 

of an external force (F) modifies the energy profile of the 

unbinding process, lowering the activation energy barrier, 

resulting in an exponential increase of the dissociation rate 

constant k
off

(F) with the applied force

 k
off

(F) = k
off

 ⋅ exp[F xβ/kB
T] (1)

where k
off

(F) and k
off

 are the dissociation rate constant in 

the presence of and without any applied force, respectively, 

xβ is the width of the potential barrier along the direction of 

the applied force, k
B
 is Boltzmann’s constant, and T is the 

absolute temperature.

Assuming that the applied force F increases linearly with 

a constant loading rate r, the most probable unbinding force, 

F*, at a fixed value of loading rate is given by:

 F* = k
B
T/xβ ⋅ ln[r xβ/(koff

 ⋅ k
B
T)] (2)

This expression predicts a linear relationship between the 

most probable unbinding force, F*, and the natural logarithm 

of the effective loading rate r. F* has been determined from 

the maximum of the main peak of each unbinding force his-

togram, and r is given by the product between the retraction 

velocity and the spring constant of the entire system, k
syst

, 

determined from the slope of the force versus distance for 

each retraction curve, as described in the Methods section.

Therefore, by plotting F* versus the natural logarithm of 

the effective loading rate r, the kinetic parameters k
off

 and 

xβ can be obtained from the slope and intercept of a linear 

fit. Figure 4 shows the dynamic force spectrum obtained 

by fitting the plot of F* versus log (r) with Equation 2. The 

spectrum shows, in the range of loading rates under consid-

eration, a single regime indicative of a single energy barrier 

and unique transition state of the reaction and provided 

values of 0.47 ± 0.02 nm for xβ and 0.13 ± 0.03 s−1 for k
off

. 

The association rate constant (k
on

) for the p53/p28 complex 

has been estimated from the expression k
on

 = N
A
V

eff
/t

0.5
, 

where N
A
 is the Avogadro’s number, V

eff
 is the effective 

volume of a half-sphere with radius r
eff

 around the tip, and 

t
0.5

 is the time for the half-maximal binding probability, 

given by t
0.5

 = 2 r
eff

/v, where v is the approach speed of the 

cantilever.16,45 To  estimate t
0.5

, the interaction time between 

the proteins was varied during the force distance cycles, 

and an exponential increase was observed in the unbinding 

frequency with contact time, until a plateau was reached. 

A t
0.5

 of 0.05 seconds was found, and then, by assuming 

a r
eff

 of 4 nm, a k
on

 = 1.8 × 104 M−1 s−1 was obtained. The 

 dissociation constant (K
D
 = k

off
/k

on
) for the complex between 

p53 and p28 was about 7 × 10−6 M. Interestingly, K
D
 is 

located in an “affinity region” between the transient azurin/

cytochrome c551 complex (K
D
 in the range of 10−4–10−6 M) 

and that reported for antigen/antibody pairs (K
D
 in the order 

of 10−7–10−11 M).38

Interaction of p28 with the p53 DBD  
and NTD
The single-molecule interaction of the p28 peptide fragment 

of azurin with the DBD and NTD of p53 was studied. The 

experiments (substrate coverage, immobilization strategies, 

and sampling procedures) were conceived in order that the 

AFS results could be comparable for the different proteins 

immobilized on the substrate on a statistical basis. As already 

mentioned, the interaction with the p53 CTD has not been 

investigated, since competition assays with p53 site-specific 

antibodies demonstrate that p28 has no contact with p53 

CTD aa residues.23

Concerning the p28/DBD interaction, at a loading 

rate of 7 nN/s, an unbinding frequency of about 25% was 

obtained. The most probable unbinding force, extracted 

from the maximum of the main peak of the unbinding 

forces histogram (Figure 5A), was 95 pN. The unbinding 
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Figure 5 (A) histograms of the unbinding forces for the p28/DBD complex before 
and after blocking. The most probable unbinding force value was determined from 
the maximum of the main peak of the histogram before blocking. All measurements 
were performed at a loading rate of 7 nN/s. (B) histogram of the unbinding lengths 
for the p28/DBD interaction, evaluated for same collection of force curves as in (A). 
The continuous line is the fit by a Gaussian centered at 12.1 nm and with a standard 
deviation of 3.7 nm.
Abbreviation: DBD, DNA-binding domain.
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frequency and unbinding force values are slightly higher than 

those corresponding to the p28/p53 interaction.  Blocking 

by incubation of the DBD-functionalized substrate with 

30 µM free p28 produced a 60% reduction in the unbinding 

frequency  (Figure 5A), indicative of the specificity of the 

p28/DBD complex. The force histograms, before and after 

blocking, also show a similar distribution. The specificity of 

the p28/DBD interaction is also observed in the unbinding 

lengths, which show a single-mode distribution centered at 

12.1 nm and with a standard deviation of 3.7 nm  (Figure 5B). 

 Measurement of highly probable unbinding forces over 

the range of five loading rates investigated (from 0.5 to 

42.0 nN/s) and application of Equation 2 led to the linear 

plot shown in Figure 6 from which an xβ of 0.46 ± 0.05 nm 

and a k
off

 of 0.012 ± 0.006 s−1 were extracted. While the xβ 

value is essentially comparable to that calculated for the 

p28/p53 complex, the k
off

 value is, remarkably, one order 

of magnitude lower and displays a much higher spread. 

On the other hand, the association rate constant, k
on

, for the 

p28/DBD complex, measured as previously described, is 

1.9 × 104 M−1 s−1, close to that of the p28/p53 interaction. 

The k
on

 and k
off

 values yielded for the p28/DBD complex a 

K
D
 of 6.3 × 10−7 M.

The same experimental approach used to study the p28/

p53 and p28/DBD interaction, was used to investigate the 

possible interaction of p28 with the NTD of p53. p28 was 

anchored to the AFS silicon nitride tip, while the NTD was 

immobilized on a glass slide (Figure 1). The  corresponding 

force curves were recorded maintaining a constant  forward 

velocity and varying the retraction speed from 50 to 

4190 nm/s. At a loading rate of 7 nN/s, there was minimal 

number of unbinding events which yielded a negligible 

unbinding frequency. Since the observed events were not 

statistically significant, it is reasonable to assert that there is 

no specific interaction between p28 and the NTD.

Discussion
The specific interaction of the azurin-derived peptide, p28, 

with full-length p53, its DBD, and its NTD was investigated 

for the first time at a single-molecule level by means of AFS. 

The technique enabled the strength and kinetics of complexes 

to be probed under the application of an external force, under 

nearly native conditions, and without any labeling. The AFS 

approach revealed that a specific interaction occurs between 

p28 and p53, leading to the formation of a stable complex. 

Interestingly, the unbinding force, dissociation constant, and 

kinetic parameters of the complex are comparable to those 
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measured by AFS for the p53 interaction with azurin, to 

which p28 belongs.16

The interaction of p28 with full-length p53 appears 

confined to the DBD core domain through formation 

of a stable complex. Interestingly, it was found that the 

 lifetime τ (τ = 1/k
off

) of the DBD/p28 complex is ten times 

longer than that of the p28–p53 association, probably as 

a  consequence of the DBD tendency to form aggregates48 

that could wrap p28 and exert a steric hindrance to its exit 

from the complex. The possible DBD aggregation, however, 

seems not to affect the association phase of the interaction 

as the similar k
on

 calculated for the DBD-p28 and p53-p28 

complexes suggest.

The finding of a specific and stable p28–DBD interaction 

points out more precisely which region of full-length p53 is 

involved in the interaction with p28, with respect to what has 

been previously reported in in-vitro studies.23 In addition, the 

results are in line with those of a computational docking study 

predicting that p28 and the DBD of p53 undergo a  molecular 

association characterized by low, negative  binding free 

energy,49 high shape complementarity, and several hydrogen 

bonds at the interface. Indeed, in that study the best predicted 

complex between DBD and p28 has been shown to involve 

the DBD aa residues 96–103, just close to its S1 strand and, 

at least in part, its L2 loop (aa 164–170).

The occurrence of a stable complex between the DBD 

and p28 suggests that the p28 anticancer activity may be 

related to its ability to inhibit the binding of E3 ligases, 

other than Mdm2, ie COP1, Pirh2, and perhaps TOPORS 

and ARF-BP150–52 to the DBD, and reduce the proteasomal 

degradation of p53. In this respect, competitive assays of 

the DBD–p28 interaction by using these ligases, would 

provide significant insight into the p28 mechanism of 

action.

The DBD is not only involved in the control of the p53 

downregulation, but it is above all, the domain necessary for 

the binding of the tumor suppressor to DNA. Since mutations 

within the DBD are often connected with p53 loss of function 

and subsequent tumor proliferation, it could be interesting 

to investigate the possibility that p28 could interact with 

mutated forms of DBD and enhance apoptosis. Here, p28 

could potentially produce a conformational reversion of 

mutant p53, reactivating its wild-type function.
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