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Background: There is increasing evidence that botulinum neurotoxin A may affect sensory 

nociceptor fibers, but the expression of its receptors in clinical pain states, and its effects in 

human sensory neurons, are largely unknown.

Methods: We studied synaptic vesicle protein subtype SV2A, a receptor for botulinum 

neurotoxin A, by immunostaining in a range of clinical tissues, including human dorsal root 

ganglion sensory neurons, peripheral nerves, the urinary bladder, and the colon. We also determined 

the effects of botulinum neurotoxins A and E on localization of the capsaicin receptor, TRPV1, 

and functional sensitivity to capsaicin stimuli in cultured human dorsal root ganglion neurons.

Results: Image analysis showed that SV2A immunoreactive nerve fibers were increased in 

injured nerves proximal to the injury (P = 0.002), and in painful neuromas (P = 0.0027); the ratio 

of percentage area SV2A to neurofilaments (a structural marker) was increased proximal to injury 

(P = 0.0022) and in neuromas (P = 0.0001), indicating increased SV2A levels in injured nerve 

fibers. In the urinary bladder, SV2A nerve fibers were found in detrusor muscle and associated 

with blood vessels, with a significant increase in idiopathic detrusor overactivity (P = 0.002) 

and painful bladder syndrome (P = 0.0087). Colon biopsies showed numerous SV2A-positive 

nerve fibers, which were increased in quiescent inflammatory bowel disease with abdominal 

pain (P = 0.023), but not in inflammatory bowel disease without abdominal pain (P = 0.77) 

or in irritable bowel syndrome (P = 0.13). In vitro studies of botulinum neurotoxin A-treated 

and botulinum neurotoxin E-treated cultured human sensory neurons showed accumulation of 

cytoplasmic vesicles, neurite loss, and reduced immunofluorescence for the heat and capsaicin 

receptor, TRPV1. Functional effects included dose-related inhibition of capsaicin responses on 

calcium imaging after acute treatment with botulinum neurotoxins A and E.

Conclusion: Differential levels of SV2A protein expression in clinical disorders may identify 

potential new targets for botulinum neurotoxin therapy. In vitro studies indicate that treatment 

with botulinum neurotoxins A and E may affect receptor expression and nociceptor function 

in sensory neurons.
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Introduction
SV2A, a synaptic vesicle protein isoform, has been shown to be the high-affinity 

botulinum neurotoxin A receptor that mediates binding and internalization of the 

neurotoxin into peripheral neurons.1 Synaptic vesicle protein (SV2) is approximately 

90 kDa glycoprotein component of all mammalian synaptic vesicles.2–4 In addition to 

the SV2A subtype protein, neuronal binding of botulinum neurotoxin also involves a 
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ganglioside coreceptor within the presynaptic membrane.5 

Cleavage of soluble NSF attachment protein receptor 

(SNARE) proteins within the presynaptic terminal by 

botulinum neurotoxin leads to prevention of the formation 

of a productive docking complex necessary for transmitter 

release, and consequent loss of function, eg, at the 

neuromuscular junction. Synaptosomal-associated protein 

(SNAP-25) is the SNARE protein that is specifically cleaved 

by type A toxin.1,6

Levels of SV2A, one of the SV2 isoforms to which 

botulinum neurotoxin A binds, are largely undetermined 

in clinical disorders, particularly in patients with pain and 

visceral dysfunction. Because botulinum neurotoxin A treat-

ment is being considered increasingly in such conditions, 

we have studied SV2A protein in tissues from patients with 

nerve injury and pelvic visceral disorders, and the effects of 

botulinum neurotoxin in cultured human sensory neurons.

Recent studies in rodents have indicated the potential of 

botulinum neurotoxin A to affect sensory mechanisms via 

inhibition of neurotransmitters from sensory afferent nerves.7 

A novel chimera (EA) botulinum neurotoxin A and E sero-

type inhibited calcitonin gene-related peptide release from 

trigeminal ganglionic neurons and eliminated the excitatory 

effects of this peptide in brain stem sensory neurons evoked 

by capsaicin, which activates the transient receptor potential 

vanilloid receptor type 1 (TRPV1).8

TRPV1 is the neuronal receptor for capsaicin (the hot 

ingredient of chilli peppers), low pH, heat, and inflamma-

tory mediators, such as bradykinin, arachidonic acid and its 

metabolites, and mediates the perception of pain via calcium 

influx and membrane depolarization.9 TRPV1 expression is 

increased in conditions of chronic pain,10,11 and the receptor 

demonstrates sensitization in the presence of neurotrophic 

factors in models of pain.12,13 Capsaicin has been extensively 

used as a tool for studies of TRPV1 function.

Botulinum neurotoxin is potentially a promising treat-

ment for chronic somatic and visceral pain,14 which by 

definition lasts for more than 3 months. These conditions 

include pelvic neurogenic hypersensitivity disorders, such as 

painful bladder syndrome14,15 and irritable bowel syndrome, 

in which pain is attributed at least in part to dysfunction 

or sensitization of the peripheral nervous system. The 

mechanisms of chronic visceral pain are complex, and have 

been reviewed.16 Neural plasticity may lead to chronic pain 

in these conditions, including upregulation of TRPV1  in 

peripheral nerve terminals.17–20 Botulinum neurotoxin may 

prevent membrane surface expression of TRPV1, thereby 

reducing hypersensitivity.21,22

We examined the distribution of SV2A in a range of 

control and clinical disease tissues, some involving pain, 

in order to identify patient groups that may be potential 

and preferential targets for botulinum neurotoxin therapy, 

and also determined the effects of botulinum neurotoxins 

A and E on sensory neuron morphology, TRPV1 expres-

sion, and responses to capsaicin in cultured human dorsal 

root ganglion neurons.

Materials and methods
Tissue collection
A range of tissues were used in this study, for which fully 

informed consent was obtained with approval of the relevant 

research ethics committees. Specimens were snapfrozen in 

liquid nitrogen and stored at −70°C until use or immersed 

in Zamboni’s fixative (2% w/v formalin, 0.1 M phosphate, 

and 15% v/v saturated picric acid) for 2 hours and stored in 

phosphate-buffered saline.

Specimens of nerve proximal to the site of injury (n = 6, 

mean age [± standard error of the mean] 29.0 ± 4.8 years, 

two females, range of injury delay 1.5 days to 12 months), 

neuroma (n = 21, mean age 23.3 ± 2.8 years, four females, 

range of injury delay 1.5–13 months), and dorsal root gan-

glia (n = 8, mean age 31.5 ± 6.0 years, one female, range of 

injury delay 3 days to 5 months) were obtained from patients 

undergoing surgery for painful neuroma relocation, brachial 

plexus repair, or peripheral nerve repair. Uninjured nerves 

(n = 7, mean age 41.6 ± 10.6 years, two females) used as 

nerve repair grafts during surgery served as controls.

Urinary bladder tissue specimens were obtained from 

control subjects under investigation for asymptomatic micro-

scopic hematuria (control group, n = 8, mean age 51.1 [range 

31–79] years, five females), idiopathic detrusor overactivity 

(n = 6, mean age 52.1 [range 32–73] years, four females) 

and painful bladder syndrome (n = 8, mean age 49.6 [range 

29–71] years, six females) who met the National Institute of 

Diabetes and Digestive and Kidney Diseases research criteria 

for interstitial cystitis, as described by our group previously.23 

The patients with idiopathic detrusor overactivity presented 

with overactive bladder symptoms, ie, urgency, with or 

without urge incontinence, frequency, and nocturia, and 

showed involuntary detrusor contractions during the filling 

phase of urodynamics.

Colonoscopic rectosigmoid biopsies were collected from 

patients with either quiescent or asymptomatic quiescent 

inflammatory bowel disease (n = 25, 14 ulcerative colitis, 

11 Crohn’s disease, eight females, mean age 54.3 ± 3.0 [range 

30–80] years), as previously described.19 Irritable bowel 
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syndrome (n  =  14, mean age 46.8  ±  8.0 [range 25–77] 

years) was diagnosed according to Rome II criteria, and the 

subjects were further classified according to Rome II crite-

ria, as described eleswhere.10,19 Controls (n = 13, mean age 

60.8 ± 4.1 [range 39–85] years, 10 females) were selected 

from patients who were undergoing colonoscopy for other 

indications (such as polyp and cancer surveillance) and had 

a normal colon. For inflammatory bowel disease, abdominal 

pain scores were recorded using a validated questionnaire 

and samples were subdivided into those with (n = 10, mean 

age 56 [range 40–66] years) or without (n = 15, mean age 

57 [range 47–63] years) pain.

Immunohistochemistry
Frozen tissue sections (15 µm thickness) were postfixed in 

4% w/v paraformaldehyde in 0.15 M phosphate-buffered 

saline for 30 minutes. Endogenous peroxidase was blocked 

by incubation in industrial methylated spirits containing 

0.3% w/v hydrogen peroxide for 30 minutes. After rehy-

dration with phosphate-buffered saline, the sections were 

incubated overnight with a primary antibody using a range 

of dilutions. Rabbit SV2A polyclonal antibody was obtained 

from Sigma-Aldrich (Dorset, UK) and used at the optimal 

dilution 1:750. The SV2A antibody used in this study has 

not been reported before, although immunohistochemistry 

expression profiles provided by the manufacturer indicate 

strong staining of neuropils in the central nervous system. 

Localization of SV2A immunoreactivity was similar in both 

prefixed and postfixed tissues. SV2A antibodies were evalu-

ated by titration on tissue sections of dorsal root ganglia and 

injured nerve tissue. Immunoreaction with sensory neurons 

and nerve fibers diminished with increasing antibody dilu-

tion, with very weak residual immunoreactivity at 1:1000. 

A cocktail of monoclonal antibodies to the phosphorylated 

and nonphosphorylated neurofilaments of size 200  kDa 

(Clone N52, Sigma-Aldrich, Poole, UK) and the 57 kDa 

type III filament, peripherin (Novocastra Laboratories, 

Newcastle, UK) were used at final titers of 1:20,000 and 

1:500 respectively, and acted as structural neuronal markers. 

Sites of primary antibody attachment were revealed using 

nickel-enhanced avidin-biotin peroxidase (ABC, Vector 

Laboratories, Peterborough, UK).

Image analysis
SV2A immunoreactivity was assessed quantitatively by 

computerized image analysis whereby images were captured 

using an Olympus DP70 camera mounted onto an Olympus 

BX50 microscope and analyzed using Olympus AnalySIS® 

(version 5.0) software. Positive immunostaining was high-

lighted by setting the gray-level detection limits to threshold, 

and the area of highlighted immunoreactivity was obtained 

as percent area of the field scanned. Five random fields per 

tissue section were scanned at the same magnification (40×). 

Results were expressed as percent area. The Mann–Whitney 

test was used for statistical analysis (P values , 0.05 were 

considered statistically significant).

Neuronal culture
Avulsed human cervical ganglia (n = 5) were obtained by 

ganglionectomy at the Royal National Orthopaedic Hospital, 

Stanmore, as a necessary part of the surgical repair procedure, 

with informed patient consent and approval of the research 

ethics committee. The ganglia were minced, enzyme-

digested in 0.5% dispase (8 U/mg) and 0.2% collagenase 

(168 U/mg), and penicillin + streptomycin (100 µg/mL each) 

in Ham’s F12 nutrient medium for 3 hours, and mechani-

cally dissociated to obtain a cell suspension. Cells were 

plated onto Mattek dishes coated with collagen 20 µg/mL 

and laminin 20 µg/mL for 20 minutes. Ham’s F12 nutrient 

medium containing 10% heat-inactivated fetal calf serum 

and recombinant human neurotrophic factors, ie, rhNGF 

100  ng/mL and rhGDNF 50  ng/mL, were added, and the 

cells were incubated in a humid environment with 8% CO
2
. 

The medium was changed every 3–4 days. Neuronal enrich-

ment by removal of non-neuronal cells was not carried out, 

so as to maximize the neuronal yield. Studies were conducted 

48 hours after plating.

TRPV1 immunostaining
Established neuron cultures were treated with or without 

botulinum neurotoxin A 0.1  nM and 1 nM and botulinum 

neurotoxin E 0.1 nM for one hour, fixed in 4% paraformalde-

hyde for 15 minutes, and double-immunostained for TRPV1 

(rabbit polyclonal anti-TRPV1 1:1000), and Gap43 (growth-

associated protein mouse monoclonal 1:200), visualized with 

goat antirabbit Alexa 546 and goat antimouse Alexa 488 

(secondary antibodies, 1:200 Molecular Probes®), and mounted 

in glycerol containing DABCO antifade agent, as previously 

described.24 TIFF images were acquired using Smartcapture 

3.0 software (Digital Scientific, Cambridge, UK), on an upright 

Olympus microscope, at a fixed exposure of 0.5 seconds for 

measuring fluorescence intensity using Metafluor software. 

Values for fluorescence intensity were compared between the 

groups treated and not treated with botulinum neurotoxin. The 

Student’s t-test was used for statistical analysis, and P , 0.05 

was considered statistically significant.
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Calcium imaging
Established cultures of human dorsal root ganglion neu-

rons were washed in phenol red free 4-(2-hydroxyethyl) 

piperazine-1-ethanesulfonic acid, N-(2-hydroxyethyl) 

piperazine-N′-(2-ethanesulfonic acid) (HEPES)-buffered 

Hanks-balanced salt solution, containing 0.1% bovine serum 

albumin, and loaded with 2 µM Fura2 AM (acetoxymethyl 

ester) at 37°C for 40 minutes in the dark, with further incubation 

in HEPES-buffered Hanks-balanced salt solution containing 

0.5% bovine serum albumin for 20 minutes in the dark to allow 

for de-esterification of the cytosolic Fura2 AM. Experiments 

were conducted at 37°C in a humidified environment, as pre-

viously described.24 Live recordings of intracellular changes 

in bound and unbound Ca2+ ratios (340/380) were obtained 

before, during, and after addition of 200 nM capsaicin for 

baseline intracellular Ca2+, as well as changes in response to 

added capsaicin, in 2 mL of HEPES-buffered Hanks-balanced 

salt solution. A test stimulus of 200 nM capsaicin was applied 

for 15–30 seconds to test for capsaicin sensitivity, followed by 

washout and a change of medium for 30 minutes, after which 

a second stimulus of capsaicin 1 µM was applied. The differ-

ence in ratio between baseline to peak response was measured 

to give the magnitude of the response. Expressing the second 

response as a percentage of the first response gave the control 

response in the absence of botulinum neurotoxin. The effects 

of botulinum neurotoxins A or E were determined by applying 

the required concentration before the second capsaicin stimulus. 

Mean (± standard error of the mean) values for percent inhibi-

tion in the presence of botulinum neurotoxin were compared 

with those of controls without botulinum neurotoxin.

Results and discussion
In this study, we describe localization of the botulinum 

neurotoxin receptor protein, SV2A, in a range of human tis-

sues, including human dorsal root ganglion sensory neurons, 

peripheral nerves, urinary bladder, the colon, and the skin.

Dorsal root ganglia
SV2A immunoreactivity was present in neurons of all sizes, 

although those with a smaller diameter were more intense 

(Figure 1A and B), suggesting that botulinum neurotoxin 

treatment may preferentially target nociceptor f ibers. 

Normal uninjured peripheral nerves showed positive SV2A-

immunoreactive fibers within the nerve fascicles (Figure 1C). 

In nerves proximal to injury and painful neuromas, SV2A 

immunoreactivity appeared to be increased (Figure 1E and G), 

and nerve immunostaining was similar to that seen with the 

structural nerve marker (neurofilaments, Figure 1D, F, and H). 

Image analysis (percent area of immunostaining) of these sam-

ples showed that SV2A was significantly increased in injured 

nerves compared with control uninjured nerves (P = 0.002, 

proximal injured nerves; P =  0.0027, neuromas), and sig-

nificantly greater in proximal injured nerves compared with 

neuromas (P = 0.0038, Figure 2). There was no change in the 

percent area of neurofilaments in these specimens; when results 

were expressed as the ratio of SV2A to neurofilaments, there 

was also a significant increase proximal to injury (P = 0.0022) 

and in neuromas (P = 0.0001), indicating an overall increase 

in SV2A expression in injured nerve fibers. Analysis of the 

delay between injury and surgery (percent area) suggested a 

peak of immunoreactivity at 2–16 weeks after injury.

Urinary bladder
SV2A-immunoreactive nerve fibers were detected throughout 

the bladder, including in detrusor muscle, and were associated 

with blood vessels, particularly in the urothelium/suburothelial 

Figure 1 SV2A in neuronal tissues. SV2A immunoreactivity in avulsion injured dorsal 
root ganglion (A and B). SV2A immunoreactivity in normal uninjured nerve (C), 
nerve proximal to injury (E), and in a neuroma (G); corresponding serial sections 
(D, F, and H) immunostained with the nerve structural marker, neurofilaments, 
arrows indicate neuronal fibers, magnification 40×.
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junction region (Figure 3A–C). Image analysis of detrusor 

muscle showed a significant increase in the idiopathic detru-

sor overactivity group (P =  0.002) and also in the painful 

bladder syndrome group (P = 0.0087, Figure 3D) compared 

with controls. Image analysis of neurofilaments also showed 

a statistically significant difference in the idiopathic detrusor 

overactivity group (P = 0.008) compared with the controls. 

Expressing the results as a ratio of SV2A to neurofilaments 

showed no significant difference between any of the groups, 

suggesting that the observed increase in SV2A may be due 

to increased nerve fibers which express SV2A.

To our knowledge, this is the first report of SV2A levels 

in these patient groups. Our results for the distribution of 

SV2A in the human bladder are in agreement with others 

where SV2A was shown to be present in parasympathetic, 

sympathetic, and sensory fibers.25 Further studies, including 

double-staining with selective sensory and autonomic markers, 

are required to elucidate the nerve fiber subpopulations which 

show changed levels of SV2A in idiopathic detrusor over-

activity and painful bladder syndrome. We have previously 

demonstrated a decrease of both TRPV1 and the purinergic 

receptor, P
2
X

3
 in the suburothelium of the urinary bladder 

after highly effective botulinum neurotoxin A intradetrusor 

injections in patients with detrusor overactivity, while struc-

tural markers showed no loss of nerve fibers.20 Intracellular 

proteolytic cleavage of the synaptosomal-associated protein, 

SNAP-25, that regulates acetylcholine exocytosis, leads to pro-

longed blockade of synaptic transmission while sparing nerve 

endings.26 The progressive decrease of TRPV1 and P
2
X

3
, over 

the weeks following the injection treatment implies complex 

or multiple mechanisms of action for botulinum neurotoxin A 

in the bladder, with a progressive contribution to decreased 

levels of these sensory receptors by amelioration of bladder 

hypertrophy, or by decreased expression, uptake, or axonal 

transport of neurotrophic factors that regulate these recep-

tors, eg, nerve growth factor and glial-derived neurotrophic 

factor. Protein kinase C activation increased TRPV1 receptor 

surface expression in primary rat dorsal root ganglion neurons, 

and botulinum neurotoxin A fully blocked 12-O-tetrade-

canoylphorbol-13-acetate (TPA)-induced TRPV1  surface 

expression,21 which could explain the acute effect on urinary 

urgency in patients. In primary dorsal root ganglion neurons, 

TRPV1 codistributes in vesicles with synaptotagmin and the 

vesicular protein synaptobrevin; activity-dependent delivery of 

channels to the neuronal surface may contribute to the buildup 

and maintenance of thermal inflammatory hyperalgesia in 

peripheral nociceptor terminals, which may be blocked by 

botulinum neurotoxin A.21 In accord, botulinum neurotoxin A 

has been shown to have an antinociceptive effect on bladder 

afferent pathways in patients with painful bladder syndrome or 

interstitial cystitis, producing both symptomatic and functional 

(ie, urodynamic) improvements.15

Colon
Colon biopsies from controls and from patients with irritable 

bowel syndrome and inflammatory bowel disease with or 

without painful symptoms showed SV2A-immunoreactive 

nerve fibers within the mucosa and muscularis mucosae 

(Figure  4A–D). Image analysis of SV2A mucosal fibers 

showed an increase only in quiescent inflammatory bowel 

disease with pain group (P = 0.023, Figure 4E), compared 

with controls, but not in those with inflammatory bowel 
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Figure 3 SV2A in the urinary bladder. SV2A-immunoreactive nerves (arrowed) 
in urothelium/suburothelial junction (arrowheads) (A), within the detrusor (B) 
and associated with blood vessel (arrowheads) within the suburothelium (C), 
magnification 40×, and image analysis of SV2A-immunoreactive fibers in the detrusor. 
Mean ± standard error of the mean of the percent area is shown (D).
Notes: *P = 0.008; **P = 0.0022.
Abbreviations: IDO, idiopathic detrusor overactivity; PBS, painful bladdersyndrome.

0
Control

S
V

2A
 %

 im
m

u
n

o
re

ac
ti

vi
ty

Injured (neuroma) Injured (proximal)

*

**

2

4

6

8

10

Figure 2 Image analysis (percent area) of SV2A immunoreactivity in injured nerve. 
Mean ± standard error of the mean of the percent area is shown.
Notes: *P = 0.0027; **P = 0.002.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

351

SV2A and botulinum toxin in sensory neurons

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Pain Research 2011:4

disease without pain (P = 0.77) or in irritable bowel syn-

drome (P  =  0.13). There was no difference between the 

mucosal neurofilament fibers or when results were expressed 

as a ratio of SV2A to neurofilaments in any of the groups 

studied. To our knowledge, this is the first description of 

SV2A in the colon mucosa of patients with irritable bowel 

syndrome and inflammatory bowel disease. Our finding 

of increased mucosal SV2A in patients with inflammatory 

bowel disease and abdominal pain are of interest, given that 

we have reported increased TRPV1 in this patient group.19 

Considering the previously observed effects of botulinum 

neurotoxin A on TRPV1 expression in patients with detru-

sor overactivity, this raises interesting clinical therapeutic 

possibilities in inflammatory bowel disease. The regulation 

of SV2A expression, effect of inflammation, and efficacy of 

botulinum neurotoxin A in inflammatory bowel disease all 

deserve further investigation.

Skin
In human skin, SV2A-immunoreactive fibers were prominent 

around sweat glands, arrector pili, and vascular structures. 

Only a few intraepithelial fibers were seen in prefixed 

specimens (Figure 5A–D). In normal rat paw skin, SV2A 

strongly stained nerve fibers in the subepithelium, within 

the epithelium, and around sweat glands (Figure  5E–F), 

indicating the usefulness of this antibody for preclinical 

studies in rodent models. Furthermore, this provides a basis 

for the reduction of neurogenic inflammation in rats follow-

ing transdermal botulinum neurotoxin A treatment.27 The 

dense innervation of SV2A-positive nerve fibers around 

sweat glands may explain why botulinum neurotoxin A is 

successful in the treatment of hyperhidrosis.28,29

Morphological effects of botulinum 
neurotoxin in dorsal root ganglia
Under differential interference contrast optics, normal 

untreated human dorsal root ganglion neurons showed 

few cytoplasmic vesicles and densely branched neurites 

(Figure 6A). Neurons treated with botulinum neurotoxin E 

1 nM for one hour showed dense accumulation of cytoplasmic 

vesicles, and loss of neurites after 24 hours. Human dorsal 

root ganglion neurons treated with botulinum neurotoxin E 

0.1 nM for 48 hours also showed accumulation of cytoplasmic 
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Figure 4 SV2A in the human bowel. SV2A-immunoreactive fibers (arrowed) in 
control human colonic biopsies (A), irritable bowel syndrome (B), inflammatory 
bowel disease without pain (C) and inflammatory bowel disease with 
pain (D), arrowheads indicate villi, magnification 40× and image analysis of SV2A-
immunoreactive fibers in control IBS and quiescent IBD with (+P) and without pain 
(-P). Mean ± standard error of the mean of the percent area is shown (E). 
Note: *P = 0.023.

Figure 5 SV2A in human skin. SV2A-immunoreactive fibers (arrowed) in sweat 
glands (arrowheads) (A), around blood vessels (arrowheads) (B), arrector pili (C), 
and rare intraepithelial fiber, epithelial basal layer indicated by arrowhead (D) 
in human skin from a patient with small fiber neuropathy. Rat paw skin showing 
intraepithelial SV2A-immunoreactive fibers, epithelial basal layer indicated 
by arrowhead (E) and dense immunoreactive fibers around sweat glands 
(arrowheads) (F), magnification 40×.
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vesicles and loss of neurites up to 3 days later (Figure 6B). 

These effects were observed with comparable doses of both 

botulinum neurotoxins A and E. These changes are expected to 

be greater and more rapid in cultured neurons where the whole 

cell is exposed to the toxin, compared with the in vivo situa-

tion where only the nerve terminals may be initially exposed. 

The morphological effects of botulinum neurotoxin A and E 

treatment, ie, neurite loss and vesicle accumulation in the 

sensory neurons of the dorsal root ganglia observed in this 

study, are likely to result from disruption of the process of 

fusion of intracellular vesicles containing the proteins neces-

sary for the structural and functional integrity of the axon, in 

a manner similar to that observed in motor neurons, whereby 

cleavage of SNARE proteins within the presynaptic terminal 

by botulinum neurotoxin leads to prevention of the formation 

of the productive docking complex necessary for transmitter 

release, and consequent loss of function.24 A similar action of 

a recombinant chimera of botulinum neurotoxins A and E has 

been described in sensory neurons of the trigeminal ganglion 

affecting calcitonin gene-related peptide release.13

TRPV1 immunofluorescence in dorsal 
root ganglia
The effect of treatment with botulinum neurotoxins 

A and E on TRPV1 localization in cultured human dor-

sal root ganglion neurons was determined by treating the 

neurons with botulinum neurotoxin A 0.1 nM and 1 nM and 

botulinum neurotoxin E at 1 nM, for one hour, before fixing 

with paraformaldehyde. Neurons not treated with botulinum 

neurotoxin showed cytoplasmic Gap43 immunostaining 

(green, Figure  6C), surrounded by membrane-bound red 

TRPV1 immunofluorescence. This pattern and intensity of 

staining were greatly diminished in botulinum neurotoxin-

treated neurons (Figure  6D). Quantification of TRPV1 

immunostained images showed approximately 60% reduction 

in signal intensity compared with untreated controls, at the 

concentrations used here, indicating the potency of the toxin 

in exerting its effects at low concentrations applied acutely for 

one hour. The average fluorescence intensity value (arbitrary 

units) for untreated controls was 39.3 ± 2.7 (n = 23 neurons), 

reduced to 14.17 ± 2.27 (n = 8 neurons, P , 0.0001) after 

botulinum neurotoxin A 0.1  nM treatment, 17.15  ±  3.8 

(n = 5 neurons, P , 0.0001) after botulinum neurotoxin A 

1 nM, and 16.8 ± 1.76 (n = 27 neurons, P , 0.0001) after 

botulinum neurotoxin E 1 nM treatment for one hour.

Calcium imaging
With single-cell studies using calcium imaging, we observed 

diminished calcium influx in response to the TRPV1 

ligand, capsaicin, following application of botulinum 
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Figure 6 In vitro effects of botulinum neurotoxin A and E treatment in human dorsal root ganglion neurons. Differential interference contrast image of a normal untreated 
neuron showing few intracellular organelles and densely branched neurites (A). Similar image of a neuron treated with botulinum neurotoxin E for 48 hours, showing 
dense accumulation of cytoplasmic vesicles and loss of neurites (B). Immunofluorescent image of an untreated neuron with membrane-bound intense TRPV1 localization 
(red) surrounding cytoplasmic Gap43 (green) appearing yellow in merged areas (C). Similar image showing diminished fluorescence intensity after one hour of botulinum 
neurotoxin A treatment (D). Sample trace of baseline ratio of bound and unbound Ca2+ and increase in ratio after capsaicin application (arrow, E). Trace showing diminished 
response to capsaicin (arrow) following pretreatment with 0.65 nM botulinum neurotoxin A (F). Graph showing dose-related percent inhibition of capsaicin responses 
following acute botulinum neurotoxin A treatment (G). Bar = 45 µm in B, applies to A, C, and D.
Note: ***P = 0.0036 for 0.65 nM botulinum neurotoxin A and P = 0.005 for 1 nM botulinum neurotoxin A. 
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neurotoxins A or E (Figure 6). Control neurons not treated 

with botulinum neurotoxin showed, on average, 16.6% ± 5% 

inhibition (n = 6 neurons) caused by the known desensitization 

due to repeat capsaicin stimulation. The first stimulus was used 

to identify capsaicin-sensitive neurons and the second stimu-

lus was used to test the effect of botulinum neurotoxin after 

washout and change of medium, as described by our group 

previously.24 Ten minutes of incubation with 0.00325 nM botu-

linum neurotoxin A resulted in 23.4% ± 6.7% inhibition (n = 11 

neurons, P = 0.27); 0.65 nM botulinum neurotoxin A resulted 

in 29.98% ± 2.3% inhibition (n = 6 neurons, P = 0.0036); 

and 1 nM botulinum neurotoxin A resulted in 45.1% ± 6% 

inhibition (n = 5 neurons, P = 0.005). Botulinum neurotoxin 

E-treated neurons showed 58.6%  ±  8.4% inhibition (n =  4 

neurons, P = 0.008) after one hour of treatment with 0.1 nM 

botulinum neurotoxin E, and 97.8% ± 1.5% inhibition (n = 6 

neurons, P , 0.01) after 48 hours of treatment with 0.1 nM 

botulinum neurotoxin E. Botulinum neurotoxin E 1 nM treat-

ment for 10 minutes resulted in 25.04% ± 5.1% inhibition of 

capsaicin responses (n = 6 neurons, P = 0.19).

The TRPV1 receptor is actively transported in vesicles 

associated with the proteins synaptotagmin IX and snapin, and 

inserted in the plasma membrane by protein kinase C-regulated 

exocytosis, via a botulinum neurotoxin A-sensitive mecha-

nism.26 In agreement with this phenomenon, our results show 

the accumulation of vesicles within the cytoplasm of botuli-

num neurotoxin A-treated and botulinum neurotoxin E-treated 

neurons, correlating with diminished TRPV1 signal intensity 

and capsaicin responses. Botulinum neurotoxin effects on 

sensory neurons may thus be mediated by decreasing levels 

of sensory receptors, and blockade of their translocation to 

the plasma membrane. Further work using larger cohorts of 

different patient groups, together with further characteriza-

tion of SV2A immunoreactivity, are required to confirm the 

current findings. In addition, localization and identification 

of SNARE proteins in cultured dorsal root ganglia neurons, 

with and without botulinum neurotoxin treatment, would sup-

port our findings, and will form the focus of future research. 

The functional effects observed in this study, along with the 

distribution and levels of the receptor SV2A in normal and 

diseased human tissues, offer the potential of targeting a range 

of clinical conditions.

Conclusion
Differential levels of SV2A protein and changes in clinical 

disorders may provide potential and preferential targets for 

botulinum neurotoxin therapy, including painful neuromas, 

urinary bladder disorders, and inflammatory bowel disease.30,31 

Novel designed agents based on neurotoxins and directed to 

molecular mechanisms underlying clinical disorders thus 

hold great promise for addressing unmet clinical needs. 

Selective targeted effects may advance treatment, eg, on 

sensory mechanisms in urinary bladder disorders, which 

may provide efficacy without motor dysfunction, and thereby 

avoid the need for bladder catheterization. Botulinum neuro-

toxin A and E treatment in cultured human sensory neurons 

produced morphological, molecular, and functional effects, 

supporting their use in clinical pain and hypersensitivity 

disorders, and the strategy of designing novel neurotoxins 

to target subsets of sensory nerve fibers.
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