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Abstract: Multifunctionalized nanoparticles (NPs) are emerging as ideal tools for gene/drug 

delivery, bioimaging, labeling, or intracellular tracking in biomedical applications, and have 

attracted considerable attention owing to their unique advantages. In this study, fluorescent 

silica NPs were synthesized by a modified Stöber method using conjugates of 3-mercapto-

propyltrimethoxysilane (MPS) and maleimide-fluorescein isothiocyanate (maleimide-FITC). 

Mean diameters of the NPs were controlled between 212–2111 nm by regulating MPS con-

centration in the reaction mixture. Maleimide-FITC molecules were doped into NPs or con-

jugated to the surface of NPs through the chemical reaction of maleimide and thiol groups. 

The data showed that the former NPs are better than the latter by comparing their fluorescence 

intensity. Furthermore, folate molecules were linked to the FITC-doped silica NPs by using 

polyethylene glycol (PEG) (NH2-PEG-maleimide) as a spacer, thus forming folate receptor 

targeting fluorescent NPs, referred to as NPs(FITC)-PEG-Folate. The quantitative analysis of 

cellular internalization into different cancer cells showed that the delivery efficiency of KB 

cells (folate receptor-positive cells) is more than six-fold higher than that of A549 cells (folate 

receptor-negative cells). The delivery efficiency of KB cells decreased significantly after free 

folate addition to the cell culture medium because the folate receptors were occupied by the 

free folate. The NPs endocytosis mechanism was also investigated. It was shown that clathrin, 

an inhibitor of cell phagocytosis, markedly decreased the NPs uptake into KB cells, suggesting 

that it plays an important role in NPs cellular internalization. These results demonstrated that 

the novel particles of NPs(FITC)-PEG-Folate are promising for fluorescent imaging or targeting 

delivery to folate receptor-positive tumors.

Keywords: fluorescent nanoparticles, silica, folate, targeted delivery, cellular internalization

Introduction
The application of nanotechnology to biomedical research is expected to have a major 

impact leading to the development of new types of diagnostic and therapeutic tools.1–3 

Recently, one focus in nanobiotechnology has been the development and use of mul-

tifunctional nanoparticles (NPs), which can be used to map cellular components and 

monitor and track them in real time, and as drug delivery vehicles or therapeutic agents.4 

Silica NPs are favored since silicone dioxide is a nontoxic compound present in many 

systems, which can be tailored with a variety of surface modifiers, allowing properties 

such as zeta potential and surface reactivity to be adjusted. Thereby, silica NPs are being 

formulated for potential drug delivery, imaging, and diagnostic applications.5,6
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As mentioned above, silica has been utilized extensively 

as a nanomaterial for biological applications because it pro-

vides both a surface for bioconjugation and a host matrix for 

fluorescent molecules that can improve dye photostability 

and biocompatibility. However, it is challenging to fabricate 

fluorescent NPs or nanoprobes with high photostability, high 

payloads of dyes, and a desirable outer surface for further 

modification with functional or target moieties. To this end, 

at least two principles or strategies should be considered. 

One is that as many fluorescent molecules as possible should 

be doped into the silica NPs to minimize leakage from the 

NPs during applications. The other is the development of 

suitable surface residues for further modification. Recently, 

Nakamura and coworkers have synthesized several types 

of silica nanoparticles using various silica sources, and a 

fluorescent dye was imposed on the silica network via a suc-

cinimidyl ester reaction. These multifluorescent silica NPs 

were effectively applied in flow cytometry and fluorescent 

microscopy analyses.7–9

Avoiding nonspecific delivery is another important 

concern in the design of NPs. In many papers it has been 

reported that insufficient uptake at tumor sites will decrease 

the therapeutic benefit of the administered drug dose and the 

affectivity of imaging, and that nonspecific association with 

healthy tissues can lead to toxic side effects.10–13 One strategy 

to enhance the cellular uptake (or internalization) of NPs is 

the utilization of unique molecular markers that are specifi-

cally overexpressed within cancerous tissues, particularly 

for receptor-mediated endocytosis using specific ligands to 

recognize their specific receptors on the cell membrane. It is 

well known that many malignant tissues consistently express 

high levels of folate receptors, which have been presented 

as an attractive target for tumor-selective drug delivery and 

imaging through the specific combination with relevant 

ligands of folate molecules.12,14–17

Here, we report a new class of biomultifunctional NPs, 

NPs(fluorescein isothiocyanate [FITC])-polyethylene 

glycol (PEG)-Folate, for targeting delivery and fluores-

cent imaging with a mean diameter of 212  nm that use 

3-mercaptopropyltrimethoxysilane (MPS) as the unique 

silica source. FITC molecules were doped into NPs, and thiol 

group residues were presented on the nanoparticle surfaces. 

Folate molecules were further conjugated to the NPs surface 

by using modified PEG (NH2-PEG-maleimide) as a spacer. 

These novel silica NPs (NPs[FITC]-PEG-Folate) have two 

functions for targeted cancer cells, ie, ligand biorecognition 

targeting (folate) and fluorescent tracking (FITC). These 

double-modality silica NPs are expected to provide an excel-

lent platform for drug delivery, bioimaging, and tracking for 

folate receptor positive cancer cells in the future.

Materials and methods
Materials
3-MPS, dicyclohexylcarbodiimide (DCC), N-hydroxysuc-

cinimide (NHS), sodium azide, and nystatin were obtained 

from Sigma-Aldrich Co (St Louis, MO). Maleimide-FITC 

(maleimide-FITC) was purchased from Vector Laborato-

ries (Burlingame, CA). NH
2
-PEG-maleimide was supplied 

by Avanti Polar Lipids, Inc (Alabaster, AL). Folate was 

purchased from Alexis Biochemicals (San Diego, CA). 

Dimethyl sulfoxide (DMSO) was obtained from Amresco, 

Inc (Solon, OH). Chlorpromazine and cytochalasin D were 

from Enzo Biochem (New York, NY). The cell culture 

medium and fetal bovine serum (FBS) were from Invitrogen 

Corporation (Carlsbad, CA). All chemicals and reagents were 

of analytical grade.

Preparation of silica NPs  
and fluorescent silica NPs
Silica NPs were prepared as described in a previous study 

with a minor modification.7 Briefly, MPS and ammonia 

(28%) were dissolved in deionized water (ddH
2
O) and 

magnetically stirred (500 rpm) for 3 days at room tempera-

ture under different conditions as shown in Table  1. The 

synthesized silica NPs were washed five times by centrifuga-

tion for 5 minutes at 1000 × g. The washed silica NPs were 

resuspended in ddH
2
O.

The silica NPs suspension (500  µL) and 8  µL of 

maleimide-FITC were mixed and magnetically stirred 

(200 rpm) in darkness for 2 hours. The FITC molecules were 

Table 1 Formation of silica nanoparticles under conditions (1), (2), and (3) which involved stirring for 3 days at room temperature 
(25°C)

MPS (μL) Ammonia (μL) ddH2O (μL) Total volume (μL) MPS concentration (mM) Diameter (nm)

Condition (1) 768 360 3872 5000 400 2111 ± 159
Condition (2) 192 360 4448 5000 100 508 ± 50
Condition (3) 24 360 4616 5000 12.5 212 ± 34

Abbreviations: MPS, 3-mercaptopropyltrimethoxysilane; ddH2O, deionized water.
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conjugated onto the surface of the NPs through the chemical 

reaction of the maleimide and thiol groups. After incubation, 

the reaction mixture was subjected to centrifugation at 

1000 × g for 5 minutes twice with DMSO and three times with 

ddH
2
O. The obtained FITC-surface-conjugating silica NPs 

(referred to as NPs-FITC) were resuspended in ddH
2
O.

Silica NPs with internally doped FITC (referred to as 

NPs[FITC]) were synthesized as shown in Figure 1. First, 

a mixture of 24  µL of MPS, 32  µL of maleimide-FITC 

(20 mg/mL), and 100 µL of DMSO was gently stirred at 

100 rpm for 24 hours. MPS reacted with maleimide-FITC to 

form MPS-FITC conjugates through the chemical reaction 

of maleimide and thiol groups (Figure 1A). Then 360 µL of 

ammonia (28%) and 4585 µL of ddH
2
O were added, and the 

mixture was incubated with gentle mixing for 3 days (500 rpm) 

in darkness at room temperature. After incubation, the puri-

fication procedure used for preparation of NPs-FITC was 

performed. The NPs[FITC] were also resuspended in ddH
2
O.

Surface modification of fluorescent  
silica NPs
Folate (0.8 mg) dissolved in ddH

2
O was activated by add-

ing DCC (0.4 mg) and NHS (0.4 mg), then gently stirred 

(100 rpm) at room temperature for 30 minutes. The NH
2
-

PEG-maleimide derivative (0.5 mg) was dissolved in DMSO 

and added to the folate solution. The reaction was carried 

out in the presence of 10 µL pyridine at room temperature 

for 3 hours. The resulting conjugates were dialyzed against 

ddH
2
O and filtered through a 0.45 µm filter unit (Millipore 

Research and Development, Bedford, MA) to remove 

remaining reagents. The maleimide-PEG-folate was mixed 

to NPs(FITC) in DMSO under an octafluoropropane atmo-

sphere at room temperature for 6 hours, and conjugated to 

the surface of NPs(FITC) to form a novel type of NPs(FITC)-

PEG-Folate. The resulting product was dialyzed against 

ddH
2
O and lyophilized.

Characterization of NPs
The morphology and size of the NPs were evaluated by scan-

ning electron microscopy (SEM). The NPs suspension was 

directly trickled onto a nitrocellulose membrane attachment 

400-mesh copper grid and images were observed by SEM 

(JEM 100CX; JEOL Ltd, Tokyo, Japan) with an accelerating 

voltage of 30–80 kV. The average particle size of the NPs, 

based on the results for at least 20 particles, was obtained 

from SEM images by ImageJ software analysis (http://

rsbweb.nih.gov/ij/). The surface charge was measured by 

determining the zeta potential using a Zetasizer Nano ZS 

(Malvern Instruments Ltd, Malvern, UK). The suspensions 

of fluorescent silica NPs (NPs-FITC and NPs[FITC]) were 

further observed under an inverted fluorescence microscope 

(Eclipse TE2000U; Nikon Corporation, Tokyo, Japan) to 

verify the fluorescent dye conjugation and compare their 

fluorescent intensities.
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Figure 1 Schematic diagram of the preparation of nanoparticles-(fluorescein isothiocyanate)-polyethylene glycol-Folate (NPs[FITC]-PEG-Folate) particles. (A) The maleimide 
end of maleimide-FITC (Mal-FITC) reacts with thiol groups of 3-mercaptopropyltrimethoxysilane (MPS) to form stable thioester linkages. (B) Folate was activated with 
ethyl(dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide and reacted with NH2-PEG-maleimide to form a reactive intermediate (maleimide-PEG-Folate), then the 
NPs(FITC) particles react with maleimide-PEG-Folate to produce NPs(FITC)-PEG-Folate particles.
Abbreviations: C3F8, octafluoropropane; DMSO, dimethyl sulfoxide.
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The fluorescence spectroscopy of NPs(FITC) and 

NPs(FITC)-PEG-Folate suspensions was performed with 

an F-7000 Fluorescence Spectrophotometer (Hitachi High-

Technologies Corporation, Tokyo, Japan). The excitation and 

emission wavelengths were 280 nm and 440 nm, respectively. 

The conjugation was further characterized by Fourier trans-

form infrared (FT-IR) spectroscopy (Nicolet NEXUS 670 

FTIR; Thermo Fisher Scientific, Waltham, MA) through 

a comparison of the absorbance spectra of NPs(FITC) and 

NPs(FITC)-PEG-Folate particles.

Incubation of living cells with silica NPs
Human epidermal carcinoma cells (KB cells, a folate 

receptor-positive cell line) and human lung carcinoma cells 

(A549 cells, a folate receptor-negative cell line) were grown 

in Dulbecco’s Modified Eagle’s Medium (DMEM) supple-

mented with 10% FBS and 1% penicillin-streptomycin, and 

cells were maintained in a humidified incubator at 37°C in 

5% carbon dioxide and 95% air. KB or A549  cells were 

seeded onto glass coverslips in six-well plates at a density 

of 1 × 105 cells/well. Unless otherwise specified, the mean 

diameter of the NPs used in the following cellular experiments 

is 212 nm (Table 1, condition 3). Cell and NPs suspensions 

were incubated as follows: cells were cultured overnight 

(approximately 24 hours) to allow cell attachment and then 

washed with FBS-free DMEM. An NPs(FITC) or NPs(FITC)-

PEG-Folate suspensions was then added to each well and the 

resulting mixture was left to incubate at 37°C for 6 hours. 

The NPs concentration in the incubation culture was typically 

480 µg/mL. After incubation, the cells were washed several 

times with sterilized phosphate-buffered saline (PBS) before 

further examination under a fluorescence microscope.

Confocal fluorescence microscopy
The above-treated KB or A549 cells were fixed with 4% para-

formaldehyde for 20 minutes at room temperature. Then the 

cells were washed three times with sterilized PBS to remove 

the remaining paraformaldehyde. The cells were further stained 

with a nuclei-specific dye, DAPI (Biyuntian Ltd Co, Beijing, 

China), at room temperature for 15 minutes, followed by wash-

ing three times with sterilized PBS. Finally, the stained cells 

were mounted for confocal microscope examination (Leica 

TCS SP5 II; Leica Microsystems, Wetzlar, Germany).

Quantitative analysis of NPs  
uptake by flow cytometry
To quantitatively determine the uptake efficiencies of the 

NPs, KB or A549 cells were seeded in 12-well plates at 

a density of 1  ×  105 cells/well and allowed to grow for 

24 hours before the treatment. The cells were washed three 

times with sterilized PBS, then 1 mL DMEM was added, and 

the mixture was incubated with 480 µg/mL NPs(FITC) or 

NPs(FITC)-PEG-Folate particles for 6 hours in an FBS-free 

medium. After incubation, the cells were washed repeatedly 

with sterilized PBS. The cells were then trypsinized and sus-

pended in PBS for flow cytometry analysis (FACSCanto II; 

Becton Dickinson and Company, Franklin Lakes, NJ). For an 

experiment on free folate inhibition, free folate (1 mM) was 

preincubated with KB cells for 1 hour before the incubation 

of NPs(FITC)-PEG-Folate.

Endocytosis-inhibition experiments
To investigate the mechanism of how NPs enter cells, a series 

of endocytosis-inhibition experiments was carried out. Cells 

were first pretreated with one of the endocytosis inhibitors 

(0.1% sodium azide for the depletion of adenosine triphos-

phate (ATP); 10 µg/mL chlorpromazine for the inhibition 

of clathrin-mediated endocytosis; 15 µg/mL nystatin for the 

inhibition of caveolae-mediated endocytosis; or 1  µg/mL 

cytochalasin D for the inhibition of macropinocytosis) in 

FBS-free DMEM for 1 hour. Then the supernatant was dis-

carded and the cells were washed three times with sterilized 

PBS. The cells in each well were resuspended in 1 mL DMEM 

and incubated with 480 µg NPs(FITC) or NPs(FITC)-PEG-

Folate at 37°C for 6 hours. After incubation, the cells were 

rinsed three times with sterilized PBS, and flow cytometry 

analysis (FACSCanto II) was performed to examine the cel-

lular internalization of the NPs.

Presentation of data and statistical analysis
Data obtained were represented as mean ± standard deviation. 

Comparisons between groups were made by two-tailed 

Student’s t-test using Windows Excel 2003 (Microsoft 

Corporation, Redmond, WA), and P , 0.05 was used as the 

cutoff for defining statistically significant differences.

Results and discussion
Size and morphological  
characterization by SEM
By using MPS as the sole silica source, silica NPs were syn-

thesized successfully in accordance with the method reported 

by Nakamura and coworkers with a minor modification.7 NP 

diameters were controlled between 212  nm and 2111  nm 

by controlling MPS concentration in the reaction mixtures. 

The morphology of the silica NPs was observed by SEM 

(Figure 2). It is clear that the silica NPs are uniform and 
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spherical with a smooth surface and are well dispersed in 

water. In this synthesis process, ammonia hydrolyzes the silica 

precursor of MPS, and the carbon–oxygen bonds are broken 

to form oxygen = oxygen bonds between the MPS molecules, 

and finally linked with each other to form a spherical grid-like 

structure. This structure consists of tetrahedral crystals. Each 

tetrahedral crystal has three silicon–oxygen residues and one 

mercaptopropyl group. These thiol groups are equally distrib-

uted in the inner and outer surfaces of silica NPs. This unique 

property will be very helpful for further modification and for 

doping a fluorescent dye through the chemical reaction of thiol 

and maleimide groups. Note that the ammonia concentration 

strongly affects the rate of reaction and the stability of the 

reaction system. It was found that a high ammonia concentra-

tion decreased the stability of the reaction systems, and led to 

NPs with an irregular shape (data not shown).

Preparation, medication, and 
characterization of fluorescent NPs
The fluorescent dye was also conjugated to the silica NPs 

surfaces (NPs-FITC), or directly doped into the silica NPs 

(NPs[FITC]) during the NPs preparation through the covalent 

reaction of thiol and maleimide groups. Using fluorescence 

microscopy, we compared the fluorescence intensities of 

NPs-FITC and NPs(FITC) particles in ddH
2
O solution at the 

same particle density. Although the two types of NPs exhib-

ited well-dispersed and distinct fluorescence, the fluorescence 

intensity of NPs(FITC) was significantly higher than that 

of NPs-FITC as shown in Figure 3. This finding indicated 

that FITC internally doped is better than FITC surface-

conjugated, which suggested that more FITC molecules were 

doped into the NPs(FITC). Furthermore, FITC molecules 

were stably doped into the alkoxysilane backbone of the silica 

NPs and could not leak from the NPs(FITC) owing to the 

formation of MPS-FITC conjugate during preparation. The 

high fluorescence intensity of NPs(FITC) gives them high 

potential for use as a fluorescent nanoprobe in bioimaging, 

bioassay, and nanomedicine.

Fluorescence spectroscopy and FT-IR spectroscopy were 

used to determine whether folate molecules were modified 

to conjugate to the NPs(FITC) surfaces. The fluorescence 

emission spectra exhibited a fluorescence excitation peak 

at a wavelength of approximately 440 nm (Figure 4), which 

is the characteristic fluorescence emission peak of folate 

molecules.18,19 This suggests that folate may be successfully 

conjugated to the NPs(FITC) surfaces. To further verify this, 

FT-IR spectroscopy analysis was performed to confirm the 

presence of folate-grafted NPs(FITC). Figure 5 shows a com-

parison between the FT-IR absorbance spectra of NPs(FITC) 

and NPs(FITC)-PEG-Folate. After the NPs(FITC) were 

modified by PEG-Folate, two clear absorbance peaks were 

observed at wavenumbers of 1500 cm−1 and 1657 cm−1, which 

correspond to the absorbance of the benzene loop backbone 

Figure 2 Scanning electron microscope images of silica nanoparticles using 
3-mercaptopropyltrimethoxysilane as the sole silica source. Preparation conditions 
of the silica nanoparticles in (A), (B), and (C) correspond to conditions (1), (2) 
and (3) listed in Table 1. The mean diameters of the silica nanoparticles in (A), (B), 
and (C) are 2111 nm, 508 nm and 212 nm, respectively.

Figure 3 Fluorescence microscopy of nanoparticles-fluorescein isothiocyanate 
(NPs-FITC) and NPs(FITC) in solution. The sizes for the two types of particles are 
212 nm (magnification 600×).
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Figure 4 Fluorescence emission spectra of nanoparticles-(fluorescein isothiocyanate) (NPs[FITC]) particles (A) and NPs(FITC)-polyethylene glycol-Folate particles (B). The 
fluorescence excitation peak at a wavelength of approximately 440 nm indicates successful coupling of folate to particle surfaces.
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Figure 5 Fourier transform infrared spectra of nanoparticles-(fluorescein isothiocyanate)-polyethylene glycol-Folate (NPs[FITC]-PEG-Folate) particles (A) and NPs(FITC) 
particles (B).

of folate and the amide bond (-CO-NH-). The presence of 

the amide bond demonstrated that PEG-Folate conjugation 

was successful because NH
2
-PEG-maleimide reacted with 

folate to form the amide bonds. Taken together, the results of 

fluorescence spectroscopy and FT-IR spectroscopy confirmed 

the presence of PEG-Folate on the NPs(FITC) surfaces, 

and thus successfully engineered novel NPs(FITC)-PEG-

Folate particles. To investigate the zeta potential after PEG-

Folate modification, the zeta potentials of NPs(FITC) and 

NPs(FITC)-PEG-Folate were compared in ddH
2
O solution. 

It was found that the zeta potential was hardly changed 

after PEG-Folate coupling (Figure 6), which suggests that 

PEG-Folate coupling does not change the surface charge of 

NPs(FITC) particles.

Cellular internalization of targeted  
and nontargeted fluorescent NPs
To further investigate and evaluate the potential biomedical 

applications of NPs(FITC) and NPs(FITC)-PEG-Folate, 

their selective cellular uptake (or cellular internalization) 

in KB cells via an inverted fluorescence microscope and 

confocal microscope were compared. It was found that few 
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Figure 6 Zeta potential measurements. (A) The zeta potential of unmodified nanoparticles-(fluorescein isothiocyanate) (NPs[FITC]) particles was -23.0 mV. (B) The zeta 
potential of NPs(FITC)-polyethylene glycol-Folate particles was -23.1 mV.

NPs(FITC) were internalized into the KB cells because little 

fluorescence was observed, as shown in Figure  7A–C. In 

contrast, NPs(FITC)-PEG-Folate were easily taken up by 

KB cells (Figure 7D–F). Because of the overexpression of 

the folate receptor by KB cells, the enhanced cellular uptake 

of the folate-decorated NPs(FITC)-PEG-Folate may have 

been due to folate receptor-mediated internalization.20,21 To 

further determine whether these NPs were internalized into 

the KB cells, confocal laser scanning microscopy was used 

to visualize the NPs in cells. After incubating NPs(FITC) or 

A B C

D E F

NPs(FITC)

Bright field Fluorescent field Merged

NPs(FITC)-PEG-Folate

Figure 7 Evaluation of cellular uptake (internalization). Nontargeted nanoparticles-(fluorescein isothiocyanate) (NPs[FITC]) particles (upper panels) and targeted NPs(FITC)-
polyethylene glycol(PEG)-Folate particles (lower panels) were incubated with KB cells for 6 hours at 37°C, then washed three times with phosphate buffer solution and 
observed under an inverted fluorescence microscope (magnification 200×).
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NPs(FITC)-PEG-Folate with KB cells for 6 hours at 37°C and 

removing excess NPs, it was also observed a large number 

of NPs(FITC)-PEG-Folate in a punctuate pattern inside the 

targeted cells (Figure 8B), suggesting an efficient targeting 

and internalization mechanism for 212 nm NPs(FITC)-PEG-

Folate to folate receptor-positive cells. In contrast, untargeted 

NPs(FITC) particles were only slightly internalized by KB 

cells after the same duration of incubation (Figure 8A). These 

findings were in good agreement with the observation via 

inverted fluorescence microscopy. It was also found that 

the PEG spacer has little effect on the NPs cellular uptake 

(data not shown). Taking these results together, the folate 

receptor-mediated internalization of NPs(FITC)-PEG-Folate 

was corroborated.

The quantitative analysis and evaluation of NPs cellular 

internalization were performed by flow cytometry, the results 

of which are shown in Figure 9. Histograms showing the 

cellular internalization of A549 and KB cells incubated with 

NPs(FITC) or NPs(FITC)-PEG-Folate for 6 hours are used to 

display the flow cytometry data, which showed that cellular 

internalization was clearly different for A549 cells (folate 

receptor-negative cells) and KB cells (folate receptor-positive 

cells). Particle cellular internalization was very low (less 

than 4%) for both NPs(FITC) and NPs(FITC)-PEG-Folate 

in A549 cells. It is reasonable to assume that folate coupling 

to particle surfaces will not affect the cellular internalization 

because there are no folate receptors on A549 cells. However, 

for the folate receptor-positive KB cells, significant inter-

nalization of NPs(FITC)-PEG-Folate was observed (more 

than 25%), which was more than six-fold higher than that 

for A549 cells. It is of interest that the cellular internaliza-

tion markedly decreased in the presence of 1 mM free folate, 

ie, the free folate reduced the cell uptake of NPs(FITC)-PEG-

Folate particles. One possible explanation for this is that free 

folate molecules competitively bind to the folate receptors 

on the membrane of KB cells, thus reducing the possibil-

ity of binding for NPs(FITC)-PEG-Folate and KB cells. 

Figure 8 Confocal laser scanning microscopy images of KB cells after a 
6  hour incubation period at 37°C with nontargeted nanoparticles-(fluorescein 
isothiocyanate) (NPs[FITC]) (A) and targeted NPs(FITC)-polyethylene glycol-Folate 
(B) (magnification 400×).

Therefore, it is suggested that NPs(FITC)-PEG-Folate 

was transported into KB cells via folate receptor-mediated 

endocytosis. Taken together, the folate-conjugated silica 

particles of NPs(FITC)-PEG-Folate showed a higher ability 

to actively target the tumor cells with overexpressed folate 

receptors on cell surface in comparison with folate-free silica 

particles of NPs(FITC).

Mechanisms of fluorescent NPs  
cellular internalization
It has been reported that cells can internalize materials by 

several endocytotic processes such as clathrin-mediated endo-

cytosis, caveolae-mediated endocytosis, macropinocytosis, 

and so forth.22,23 To more clearly delineate the role of specific 

endocytotic pathways involved in the cellular internaliza-

tion of NPs(FITC)-PEG-Folate, KB cells were treated with 

known biochemical inhibitors of energy-dependent processes, 

clathrin-mediated endocytosis, caveolae-mediated endocy-

tosis, and macropinocytosis (Figure 10). To investigate the 

energy dependence of these processes, KB cells were prein-

cubated in the presence of sodium azide and then treated with 

NPs(FITC)-PEG-Folate. Sodium azide, which blocks cellular 

ATP synthesis, resulted in a marked decrease in the cellular 
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of NPs(FITC)-PEG-Folate into KB cells is predominated by 

clathrin-mediated endocytosis and requires the consumption 

of ATP. These results demonstrated that the novel particles of 

NPs(FITC)-PEG-Folate are promising for fluorescent imaging 

or targeting delivery to folate receptor-positive tumors.
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Figure 10 Investigation of the mechanisms of cellular internalization by using 
inhibitors of endocytosis. KB cells were incubated with the indicated inhibitors 
(sodium azide [NaN3], chlorpromazine [Chl], nystatin [Nys], and cytochalasin D 
[Cyt D]). The internalization ratio was normalized to that of the control (particle 
internalization in the absence of inhibitors).
Note: *P , 0.05 vs control (no inhibitors added).

internalization (approximately 50% decrease compared with 

that of nontreated cells) indicating that internalization is an 

energy-dependent process. Complete inhibition was not 

observed probably because of the presence of exogenous ATP 

and glucose in the serum-free media. Similarly, the internal-

ization of NPs(FITC)-PEG-Folate was markedly decreased 

in the presence of 10 µg/mL chlorpromazine (approximately 

40% decrease compared with that of nontreated cells), an 

inhibitor of clathrin-mediated endocytosis. However, the 

internalization of KB cells pretreated with nystatin (an inhibi-

tor of caveolae-mediated endocytosis) and cytochalasin D 

(an inhibitor of macropinocytosis) remained approximately 

the same as that of the control. On the basis of the above 

experimental results, the authors propose that the admission 

of NPs(FITC)-PEG-Folate into KB cells is predominated by 

clathrin-mediated endocytosis and requires consumption of 

ATP. Note that none of the specific chemical inhibitors led to 

greater than 90% inhibition of internalization. This observa-

tion indicates that other pathways for internalization exist.

Conclusion
In summary, the authors have developed a strategy for the 

synthesis of functionalized particles of NPs(FITC)-PEG-Folate, 

which have two functions for targeted cancer cells, ligand 

biorecognition targeting (folate), and fluorescent tracking 

(FITC). The feasibility of delivering NPs(FITC)-PEG-Folate 

to cancer cells was investigated and it was demonstrated that 

NPs(FITC)-PEG-Folate can be internalized into folate receptor-

positive KB cells with relatively high efficiency. An investiga-

tion of the internalization mechanism showed that the admission 
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