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Abstract: The conversion of ammonia into urea by the human liver requires the coordinated
function of the 6 enzymes and 2 transporters of the urea cycle. The initial and rate-limiting
enzyme of the urea cycle, carbamylphosphate synthetase 1 (CPS1), requires an allosteric
activator, N-acetylglutamate (NAG). The formation of this unique cofactor from glutamate
and acetyl Coenzyme-A is catalyzed by N-acetylglutamate synthase (NAGS). An absence of
NAG as a consequence of NAGS deficiency may compromise flux through CPS1 and result in
hyperammonemia. The NAGS gene encodes a 528-amino acid protein, consisting of a C-terminal
catalytic domain, a variable segment, and an N-terminal mitochondrial targeting signal. Only 22
mutations in the NAGS gene have been reported to date, mostly in the catalytic domain. NAGS
is primarily expressed in the liver and intestine. However, it is also surprisingly expressed in
testis, stomach and spleen, and during early embryonic development at levels not concordant
with the expression of other urea cycle enzymes, CPS1, or ornithine transcarbamylase. The
purpose of NAGS expression in these tissues, and its significance to NAGS deficiency is as yet
unknown. Inherited NAGS deficiency is the rarest of the urea cycle disorders, and we review
the currently reported 34 cases. Treatment of NAGS deficiency with N-carbamyglutamate, a
stable analog of NAG, can restore deficient urea cycle function and normalize blood ammonia
in affected patients.

Keywords: urea cycle, urea cycle disorder, N-acetyl-L-glutamate, N-acetylglutamate synthase,
hyperammonemia, N-carbamyl-L-glutamate

Introduction
In humans, detoxification of ammonia occurs in the liver via the urea cycle, a biochemi-
cal pathway consisting of 6 enzymes and 2 mitochondrial membrane transporters.'
The metabolic consequence of a defect in any step of the urea cycle has been well
documented in man.'* A common feature of all urea cycle disorders is elevated blood
ammonia which may lead to mental retardation, coma, and possibly death.

N-acetylglutamate (NAG) is the required allosteric activator of carbamylphosphate
synthetase (CPS1; EC 6.4.3.16), the first and rate limiting enzyme of urea cycle.**
NAG, in turn, is synthesized from glutamate and acetyl Co-enzyme A%’ by the hepatic
mitochondrial enzyme, N-acetylglutamate synthase (NAGS; EC 2.3.1.1). In the
absence of NAG, the activity of CPSI is virtually nil,*° thus a deficiency of NAGS
(MIM #237310) may result in hyperammonemia.

Herein, we describe the clinical and biochemical phenotype of NAGS deficiency,
review the current published mutations in the NAGS gene, discuss the epidemiology
of NAGS deficiency and review its treatment with N-carbamylglutamate.
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In humans, the only known sequelac of NAGS deficiency
result from decreased flux through the CPS1 reaction.!'
Indeed, the clinical and biochemical features of NAGS defi-
ciency are identical to those seen in CPS1 deficiency.

In published cases to date, NAGS deficiency has pre-
sented at ages ranging from the neonatal period'! to the fifth
decade of life."? Clinical features of NAGS deficiency are
those resulting from hyperammonemia, and include poor
feeding, vomiting, altered level of consciousness, seizures,
and coma. Patients with late-onset NAGS deficiency may
present with chronic headaches and nausea. In such patients,
acute decompensation has been precipitated by illness,'
pregnancy,'*" or surgery,'® and symptoms include confusion
and combativeness.

Biochemical features of NAGS deficiency include an
elevated plasma ammonia and glutamine, whereas the
concentrations of other urea cycle intermediates are low-to-
normal. As in other proximal urea cycle disorders, plasma
citrulline is frequently low or undetectable.'®?* However,
unlike in OTC deficiency,*® urinary orotic acid is not elevated,
as the interruption in the urea cycle occurs before the forma-
tion of carbamylphosphate.

Initial diagnoses of NAGS deficiency were based on
measurements of hepatic NAGS activity,!'?! but in some
cases, enzymatic assays were not reliable.’?=* Cloning of the
human NAGS gene in 20023¢ has allowed molecular testing
to become the primary method of diagnosis. Mutations in the
coding region of the NAGS gene have been identified in all but
1 reported case of NAGS deficiency since 2002 (Table 1).

The NAGS gene and transcript

The existence of mammalian NAGS was inferred over 50
years ago after NAG was identified as an obligate cofac-
tor required in the biosynthesis of urea.* Nevertheless, the
mammalian NAGS gene was the last urea cycle gene to be
cloned,* probably due to the poor conservation of the NAGS
protein sequence compared with that of the other urea cycle
enzymes.”” The human NAGS gene is located on chromosome
17921.31 and consists of 7 exons and 6 introns covering
slightly less than 5 kb.*® The human NAGS open reading
frame encodes a 528-amino acid protein.*®* A comparison
of amino acid sequences of NAGS from 7 mammalian spe-
cies revealed 3 regions with different degrees of sequence
conservation. At the N-terminus is a 50-amino acid-long
mitochondrial targeting signal (MTS). This is followed by a
40- to 46-amino acid-long variable segment and a C-terminus
conserved segment.®** The MTS has approximately 60%

sequence conservation in mammalian NAGS and removal
of the MTS results in what is dubbed mature NAGS.*® The
variable segment is poorly conserved in mammalian NAGS
and is not required for NAGS enzymatic activity.* The rest
of the protein, the conserved segment, has 90% sequence
identity across mammalian species, and contains the
catalytic site and the binding site for the allosteric activator
L-arginine.?”4

Mutations in the NAGS gene

NAGS deficiency is an autosomal recessive disorder, thus
affected individuals carry a mutation in each of their NAGS
alleles, whereas heterozygous carriers are unaffected.
Twenty-two disease-causing mutations in the NAGS coding
sequence and in intron/exon boundaries have been reported
to date (Table 1). Although at present 2 mutations occurred
in more than 1 family (T4311 and W324X), there do not
appear to be any mutational hot spots in the NAGS gene.
This is particularly surprising given that the NAGS coding
sequence is GC-rich (67% GC content) and contains 135
CpG dinucleotides.'* Interestingly, most single base pair
replacements in the NAGS coding sequence do not occur in
these dinucleotides.'* Identified deleterious mutations in the
NAGS gene include 15 missense, 1 nonsense, 4 frame-shift,
and 2 splice-site mutations.'*

A limited genotype-phenotype correlation may be inferred
from affected patients who were homozygous for mutations
in the NAGS gene. Homozygosity for nonsense or frameshift
mutations, predicted to cause truncation of the NAGS protein
and thus complete absence of functional NAGS enzyme,
resulted in a neonatal presentation in 4 patients.?!-3641:42
Homozygosity for missense NAGS mutations, depending on
the effect of the single amino-acid substitution, may result in
either absent NAGS function or diminished but significant
residual NAGS activity. The presence of residual enzyme
activity, as demonstrated in purified recombinant enzyme,
is the likely explanation for a later non-neonatal presenta-
tion in some affected patients.'*1%*? In contrast, a neonatal
presentation was observed in patients who were homozygous
for missense mutations of conserved residues (eg, S410P)
or where a hydrophobic residue was substituted with a polar
or charged amino acid (eg, W484R and A518T).%4282%42 Four
affected patients were homozygous for missense alterations
involving replacement of an amino acid with proline, which
is likely to disrupt the NAGS secondary structure resulting
in enzyme with little or no activity.?** To date, no single
amino-acid substitutions have been reported within either
the mitochondrial targeting signal or the variable segment
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of NAGS, suggesting that these regions are perhaps tolerant
to missense changes.

Mutations in splice sites were observed in 2 families.
Two splice-site mutations involved changes in the consensus
acceptor splice sites of introns 3 and 4, which are expected
to abolish mRNA splicing. !¢+

One alteration, G236C, was incidentally discovered in a
patient whose DNA was used as wild-type control sample for
the NAGS sequencing assay in our clinical laboratory. Whether
or not this alteration is disease-causing is unknown, but it was
neither identified in a study of common polymorphisms of urea
cycle genes,* nor found in dbSNP build 133.

Expression of the NAGS mRNA

and protein
In NAGS deficiency, disruption of the NAGS gene results in
reduced or absent NAGS enzyme in tissues in which it is nor-
mally expressed. NAGS mRNA is primarily expressed in the
liver, but is also expressed in other tissues such as small intes-
tine, spleen, and testis.?*3¢ Because the only known function of
mammalian NAGS, CPS1, and OTC is to synthesize citrulline,
NAGS would be expected to be expressed in the same tissues
as CPS1 and OTC. To test this hypothesis, we used RT-PCR to
quantify the relative expression levels of mouse NAGS, CPS1
and OTC mRNA in 14 tissues as well as at 4 stages (E7, E11,
E15, and E17) of embryonic development.

As expected, liver had the highest expression of NAGS,
CPS1, and OTC mRNA, followed by intestine (Figure 1).

However, substantial expression of all 3 genes was also
seen in the testis (between 3% and 25% of the expression
in liver) and much less in the stomach and spleen (between
0.1% and 1.2% of the expression in the liver). Low levels
of NAGS mRNA were also detectable in the brain, kidney,
and ovary. In all other tissues, expression of NAGS, CPSI1,
and OTC mRNA were less than 0.1% of the expression seen
in the liver. Surprisingly, NAGS mRNA was also expressed
at embryonic stage E7, at levels approximately 3.7% of that
seen in adult murine liver, in the absence of detectable levels
of CPS1 and OTC mRNA.

In contrast, western blot of a panel of 9 mouse tissues
revealed the presence of NAGS, CPS1, and OTC proteins in
the liver but only CPS1 and OTC in the intestine (data not
shown). Although NAGS activity has previously been mea-
sured in the intestine,*”* NAGS protein was not detectable
in the small intestine most likely due to its low abundance
in this tissue.

The presence of NAGS mRNA in mouse embryos at
E7, as well as testis, ovary, spleen, stomach, kidney, and
brain, could be due to illegitimate transcription, or more
interestingly, to an as yet undiscovered novel function of
NAGS. Additional studies will reveal if this expression
pattern is also observed in humans, whether the expres-
sion of NAGS mRNA has physiological roles in tissues
that do not express CPS1 and OTC, and whether absence of
NAGS in these tissues contributes to the pathophysiology
of NAGS deficiency.
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Figure | Relative expression levels of mouse NAGS, CPS|, and OTC mRNA in mouse tissues and stages of embryonic development. Insert shows relative expression of
NAGS, CPS| and OTC mRNA in the stomach, spleen, ovary, kidney and brain. Expression of NAGS, CPS|, and OTC mRNA was measured using quantitative real-time PCR
and normalized to their mMRNA abundance in liver. | ug of total mouse RNA from ovary, testis, brain, eye, heart, kidney, liver, lymph node, submaxillary gland, spinal cord,
spleen, stomach, uterus, intestine, 7-day embryo, | -day embryo, 15-day embryo, 17-day embryo was reverse transcribed to cDNA using random primers. Real time PCR
was carried out using primers designed to anneal to different exons to avoid amplifying genomic DNA.
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Epidemiology and incidence
of NAGS deficiency

Inherited NAGS deficiency is the rarest of urea cycle
disorders,? and the true incidence of NAGS deficiency is
not known. To date, there are 34 reported patients from 28
families with NAGS deficiency. In the 2 decades before
identification and cloning of the human NAGS gene,* sus-
pected diagnoses of NAGS deficiency were reported in only
11 families.!!17:18.22.24-28.3449-51 T dentification and cloning of
human NAGS gene now allows accurate molecular diagno-
sis of the condition, and NAGS deficiency has since been
reported in an additional 16 families.>!314.16.19-21.23.29.32.41.42.52.53
Nearly half of patients with NAGS deficiency are homozy-
gotes, rather than compound heterozygotes, for mutations
in the NAGS gene and these families indicated the exis-
tence of consanguinity?>?32326294252 or g known common
ancestor.?

Several explanations could account for the low inci-
dence of NAGS deficiency, compared with other urea cycle
disorders.? First, even mutations resulting in significant
impairment of NAGS enzymatic function may allow for the
production of sufficient CPS1 cofactor to maintain adequate
flux through CPS1 and thus preclude hyperammonemia.
Additionally, in a comparison of the sequences of urea cycle
enzymes across phyla,>>¢ NAGS is the least conserved.”’
Thus, the NAGS structure may be more tolerant of amino
acid substitutions. As a result, only individuals with rare
amino acid substitutions that virtually abolish enzymatic
function, either due to abolished substrate binding and
catalysis or disruption of NAGS structure, will present with
symptoms of NAGS deficiency. Alternatively, it is possible
though unlikely that another enzyme is able to synthesize
limited amounts of NAG, and that mutations in both NAGS
and this second “moonlighting” enzyme are required to
reduce CPS1 activity sufficiently to cause hyperammone-
mia. Finally, NAGS could potentially have other functions
besides ammonia detoxification and a complete deficiency
of NAGS may result in reduced embryonic survival. As
described above, NAGS mRNA is curiously expressed in
mouse spleen and testis (Figure 1 and Caldovic et al*®) and
also at mouse embryonic day 7, in the absence of significant
CPS1 or OTC expression, thus positing another possible
function of NAGS or NAG.

Treatment of NAGS deficiency

with N-carbamylglutamate
Before the discovery of the CPS1 enzyme, Grisolia and
Cohen determined that a derivative of L-glutamic acid,

N-carbamylglutamate (NCG), was necessary for the
biosynthesis of citrulline.® While it was only later determined
that N-acetylglutamate was the natural co-factor to the CPS1
enzyme,” this earlier discovery was fortuitous as it would
subsequently provide an important avenue of treatment for
patients with NAGS deficiency.!!

In contrast to NAG, which is hydrolyzed in vivo by acyl-
amino acid acylase,” NCG is acylase-resistant.®! Because
both NAG and NCG can function as activating co-factors
of CPS1, NAGS deficiency is the only inherited urea cycle
disorder that can be specifically and effectively treated by
a drug. In patients with NAGS deficiency, a 3-day trial of
oral NCG at a dose of 2.2 g/m?/day was shown to restore
ureagenesis and normalize blood ammonia, as demonstrated
by [*C] and [°N] isotopic studies.>"

Oral NCG has successfully rescued neonates with
NAGS deficiency during hyperammonemic crisis.?**? Pub-
lished data on appropriate NCG dosing are limited. The
initial NCG dose for treatment of acute hyperammonemia
ranged in neonates from 25 mg/kg (100 mg/kg/day in
4 divided doses) to 200 mg/kg,”* compared with 15 mg/kg
(60 mg/kg/day in 4 divided doses)* to 180 mg/kg? in those
with late-onset NAGS deficiency who presented after the
first month of life.

In patients receiving NCG as part of long-term chronic
therapy, the lowest reported daily dose required to prevent
hyperammonemia was 15 mg/kg/day in both neonatal®
and late-onset NAGS deficiency.’* NCG therapy appears
to correct the metabolic defect in such patients, who no
longer require ammonia-scavenging agents,!323254149.52 Ty
fact, dietary protein was liberalized to 2—-3 g/kg/day in some
patients,>*>? but 1 patient became mildly ataxic after ingestion
of more than 3.5 g/kg/day.” It is possible that a higher daily
NCG dose would allow for greater protein tolerance in these
patients, since in other NCG-treated patients, protein intake
has been entirely liberalized, with no adverse effects.!?

Extremes of NCG dosing have been associated with
adverse effects. One patient, in whom NCG dosing was
reduced to 10 mg/kg/day, experienced a rise in plasma ammo-
nia from 27 to 58 umol/L, which normalized once NCG was
increased to 15 mg/kg/day.* Another patient who received
a dose of 650 mg/kg experienced tachycardia, sweating,
bronchial hypersecretion, elevated body temperature, and
restlessness.”!

Some NAGS-deficiency patients on NCG have expe-
rienced breakthrough hyperammonemia during episodes
of acute illness.?** Hyperammonemia while on NCG may
reflect inadequate dosing. However, protein restriction
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during illness may be prudent if poor oral tolerance prevents
the administration of NCG. Withdrawal of protein from
the diet may have helped to prevent hyperammonemia in
1 patient.?

The advantage of treating NAGS deficiency with NCG
is that NCG increases ammonia elimination by activating
in vivo enzymes, whereas ammonia scavenging agents act
stoichiometrically and response to scavengers is frequently
suboptimal. All 3 affected neonates who presented with acute
hyperammonemia and were administered NCG in a timely
fashion along with standard therapy, had normal psychomo-
tor development at 12 and 13 months of age.?*? In contrast,
some affected neonates who initially received conventional
therapy alone, including ammonia scavenging agents and
dialysis, have exhibited psychomotor retardation.?!-3-!

It has been suggested that all hyperammonemic newborns
with a suspected diagnosis of a urea cycle disorder should
receive a therapeutic trial of NCG, which may provide
a life-saving therapeutic option for patients with NAGS
deficiency, and provide additional benefit in some cases of
CPS1 deficiency.”® A rapid response to NCG may help to
diagnose some cases of NAGS deficiency,” though not all
cases respond quickly.>

Other conditions

with N-acetylglutamate deficiency

Secondary deficiencies of NAG may be observed in
conditions associated with a depletion of intramito-
chondrial Coenzyme-A, acetyl-CoA, or glutamate, or
inhibition of the NAGS reaction. A reduction of hepatic
NAG has been hypothesized as the mechanism of hyper-
ammonemia in the organic acidemias (eg, propionic

92 jsovaleric aci-

academia,’% methylmalonic academia,
demia®), hyperinsulinism-hyperammonemia syndrome,®
and in valproic acid treatment.®®¢’ Exogenous benzoate may
also decrease the intra-mitochondrial NAG concentration.®
Treatment with NCG may effectively treat hyperammonemia
in these disorders.!>6%%75 Indeed, 3-day administration of
NCG has been shown to increase ureagenesis and decrease

plasma ammonia in propionic academia.”
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