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Purpose: Modeling excess and relative mortality represents two ways of considering general 

population mortality rates (ie, background mortality) in cohort studies. Excess mortality is 

obtained by subtracting the expected mortality from the observed mortality (additive hazard 

model). Relative mortality is obtained by dividing the observed mortality by the expected 

mortality (multiplicative hazard model). Our first objective was to compare the results of these 

two models in a population-based cohort including 5115 dialyzed patients older than 70 years 

(mean age 79 years, range 70–97 years). Our second objective was to explore an alternative 

model combining both excess and relative mortality.

Patients and methods: Effects of covariates on excess mortality and relative mortality were 

assessed using a generalized linear model and a Cox model, respectively. The model, combining 

both excess and relative mortality, is derived from the Aalen model.

Results: The effect of age and sex was different according to the additive or multiplicative 

model used, whereas the effect of the first modality of dialysis or the primary nephropathy was 

similar. Because there was no evidence of lack of fit, the choice of one of these two models was 

not obvious. The combined model showed that the two components, additive and multiplicative, 

had to be kept. In this case, the combined model led to results similar to the pure additive and 

multiplicative univariate models, except for the method of dialysis, which did not exert an effect 

on both excess and relative mortality.

Conclusion: We underlined the complementary interest of modeling excess and relative 

mortality in looking for factors associated with mortality related to end-stage renal disease. 

The combined model appeared attractive in offering the possibility of reducing the model to 

the most appropriate one. When both components have to be retained, it better describes the 

effect of covariates on excess and relative mortality.

Keywords: additive hazard model, multiplicative hazard model, expected mortality, generalized 

linear model, Cox model

Introduction
The increasing collection of registry-based data requires appropriate methodological 

approaches. One method of determining factors affecting chronic disease mortality 

is by analyzing cause of death. Deaths that can be directly attributed to the disease of 

interest are considered as events. Deaths from all other causes can either be censored 

to estimate the cause-specific mortality or be considered as competing events.1,2 

Unfortunately, in population-based cohorts, the cause of death is often unavailable or 

unreliable. Indeed, in patients with chronic diseases, such as end-stage renal disease 

(ESRD), the cause of death can be mistakenly imputed to their disease, whereas other 

factors, such as advanced age and associated comorbidities, play an important role 
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leading to the death. This difficulty is illustrated by a poor 

concordance between the causes of death reported on death 

certificates and in registry reports.3,4

When the cause of death cannot be used, another method 

consists of considering mortality rates from the general 

population as the natural mortality of the cohort, and thus the 

mortality due to all causes other than the cause of interest. 

Indeed, it is commonly assumed that most people from the 

general population do not present the disease of interest.5 The 

mortality rates from the general population, also called back-

ground mortality or expected mortality, are estimated from life 

tables reported in the national mortality statistics.6–8 For each 

country, these life tables give the annual probability of death 

according to sex, calendar year, and age. To take into account 

the background mortality, two measures of mortality have 

been described: the excess mortality, related to the concept of 

relative survival,5,9,10 and the relative mortality, related to the 

calculation of the standardized mortality ratio (SMR).11,12

The excess mortality is obtained by subtracting the 

expected mortality from the observed mortality (additive 

hazard model).9,10,13,14 The excess mortality can be interpreted 

as the mortality directly or indirectly related to the disease 

of interest, if one excludes all other causes of death. It is 

the extra number of deaths observed, beyond that expected, 

per person-years. For instance, an excess mortality rate of 

40 deaths per 100 person-years means that there are 40 

additional deaths per 100 person-years in excess of those 

expected. These deaths are supposed to be related to the 

disease of interest.

The relative mortality is obtained by dividing the observed 

mortality by the expected mortality (multiplicative hazard 

model).11,13–15 The relative mortality compares the mortality 

of the cohort to the mortality of the general population. For 

instance, a relative mortality of 2 means that the observed 

mortality in the cohort is two-fold higher than expected in a 

similar subgroup of the general population.

It is worth noting that the terms “additive” and “multi-

plicative” refer to the manner in which the expected hazard 

is taken into account and not to how one considers the effect 

of covariates on excess or on relative mortality. In all this 

work, the effect of covariates on hazards is multiplicative, as 

is usually performed for common regression models (general 

linear model or Cox model).

Whereas excess and relative mortality represents differ-

ent ways of considering background mortality, the results 

of the additive model are sometimes wrongly expressed as 

relative mortality, or conversely as excess mortality for the 

multiplicative model. In addition, to our knowledge, there are 

no strong arguments in the literature for choosing an addi-

tive hazard model rather than a multiplicative hazard model. 

Excess mortality has been widely used in cancer research to 

estimate mortality in population-based studies.16–18 However, 

this method was not extensively applied to other chronic 

diseases,19,20 contrary to relative mortality.21,22

The aim of this study was to compare the information 

brought by the additive and multiplicative hazard models. 

We analyzed the independent impacts of sex, age at initiation 

of dialysis, first dialysis modality, and primary nephropathy 

on excess and relative mortality in a large population-based 

cohort of ESRD patients treated by dialysis. These models 

led to dissimilar conclusions, despite the absence of evi-

dence of lack of fit. Thus, the choice of one model instead 

of the other was not obvious. We then explored an alterna-

tive model combining both excess and relative mortality.14 

This model provides the possibility of testing the additive 

and multiplicative components and then to reduce the model 

to the most appropriate one, either additive or multiplicative. 

The potential interest of this model is to simultaneously 

measure the effect of a covariate on both excess and rela-

tive mortality. We then present the results obtained with the 

combined model in dialyzed patients.

Materials and methods
Adult patients older than 70 years for whom dialysis was initi-

ated between 2002 and 2006 were selected from the French 

Renal Epidemiology and Information Network (REIN) 

registry, which includes all ESRD patients on dialysis living 

in eight French regions.23,24

Duration of survival was calculated from the date of initia-

tion of dialysis until the date of death, the date of transfer for 

renal transplantation, and the date of the most recent record, 

or as of December 31, 2008, whichever came first. All analy-

ses were performed for the first 5 years of follow-up.

Individual expected hazards were calculated using sex s, 

age a, and calendar year c matched mortality rates based on 

the data of the French general population drawn from the 

Human Mortality Database (http://www.mortality.org).

All statistical analyses used R software (http://www. 

R-project.org) with the Epi package, the timereg package,25 and 

the relsurv package.26 The syntax is available in Appendix 1.

Excess mortality analysis (additive hazard 
model)
Calculation of excess mortality is based on an additive hazard 

model.9,10,13,14 The observed hazard of a cohort of patients 

suffering from the disease of interest λ
obs

(t) is the sum of the 
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expected hazard of the general population λ*
s,a,c

 (t) and the 

excess hazard λ
excess

 (t) due to the disease:

	 λ
obs

 (t, z) = λ*
s,a,c

 (t) + λ
excess

 (t, z)� (1)

with z the vector of covariates. Thus, the excess mortality 

is obtained by subtracting the expected mortality from the 

observed mortality:

λ
excess

 (t, z) = λ
obs

 (t, z) - λ*
s,a,c

 (t)

The excess hazard is supposed to be a multiplicative 

function of the covariates z. The model (1) can be written 

as follows:

λ
obs

 (t, z) = λ*
s,a,c

 (t) + exp(b ′z) λ
0,excess

 (t)

The model is a piecewise constant exponential model 

that assumes that the hazards are constant within prespeci-

fied follow-up intervals, with fu being the follow-up interval 

indicators:

λ
obs

 (t, z, fu) = λ*
s,a,c

 (t) + exp(b ′z + b ′
fu  

fu)

We chose to use a generalized linear model from indi-

vidual data.9,10 This model was estimated by splitting each 

subject i into several observations j according to the change 

in follow-up time interval (partitioned into 6-month intervals 

for the first year and into annual intervals thereafter), age of 

follow-up, and calendar year of follow-up.

We assumed that the number of deaths d
j
 for the observa-

tion j follows a Poisson distribution with parameter µ
j
 = λ

j
 ⋅ y

j
 

where y
j
 is the person-time at risk for observation j. If d*

j
 is 

the expected number of deaths for observation j, this model 

can be written as:

µ
β β

µ β β

j

j

j

j
fu

j j fu j

y

d

y
z fu

d z fu y

= + +

or
1n = + +

*

*

exp( )

( ) ln( )

′ ′

− ′ ′or

µ
β β

µ β β

j

j

j

j
fu

j j fu j

y

d

y
z fu

d z fu y

= + +

or
1n = + +

*

*

exp( )

( ) ln( )

′ ′

− ′ ′

It defines a Poisson model with the observed number of 

deaths d
j
 as response, ln(m

j
 - d*

j
) as link function, and ln(y

j
) 

as offset.

Because the effect of covariates is multiplicative, dif-

ferences of excess mortality between patients with different 

covariate values (eg, Z = z
0
 and Z = z

1
) were expressed as excess 

mortality ratio (EMR) (EMR = exp(β′(z
1
 − z

0
))). For example, 

an EMR of 2 for males compared with females means that the 

excess mortality related to the disease of interest is two-fold 

higher in males than in females. An EMR of 1 means that the 

observed difference in mortality between males and females is 

similar to that observed in the general population.

A measure of the goodness of fit using the deviance 

statistic is not available with a generalized linear model 

from individual data.10,27 Goodness of fit was thus evalu-

ated from the model performed on collapsed data using the 

deviance statistics and graphical procedures as proposed by 

Stare et al.28

The relative survival (RS), from the additive hazard 

model (1), can be written as follows:5

RS t z
S t z

S t
obs

s a c

( , )
( , )

( ), ,
*

=

Relative survival is a measure of the net survival, ie, the 

survival corrected for the effect of the other death causes. It 

is the probability of survival until the end of the follow-up 

period, provided that the only cause of death is the disease 

of interest.

Relative mortality analysis (multiplicative 
hazard model)
Calculation of relative mortality is based on a multiplicative 

hazard model.11,14,15 The observed hazard λ
obs

(t) is the product 

of the expected hazard of the general population λ*
s,a,c

(t) and 

the relative mortality λ
rel

(t):

	 λ
obs

 (t, z) = λ*
s,a,c

(t) ⋅ λ
rel

 (t, z)� (2)

Thus, the relative mortality is obtained by dividing the 

observed mortality by the expected mortality:

λ
λ

λrel
obs

s a c

t z
t z

t
( , )

( , )

( ), ,
*

=

Relative mortality provides a direct comparison between 

the observed mortality in the cohort and the mortality of the 

general population. For example, if the relative mortality of a 

given group of patients is equal to 2, it means that the mortal-

ity of this group is two-fold higher than the expected.

Of note, λ
rel

 is a hazard ratio (HR) expressed without a 

unit (whereas λ
excess

 is a hazard, ie, a number of deaths per 

person-year).

Relative mortality can be estimated from individual data 

using a Cox model.15 The model (2) can be written as follows:

λ
obs

 (t, z) = λ*
s,a,c

 (t) ⋅ λ
0,rel

 (t) ⋅ exp(b ′z)

or

λ
obs

 (t, z) = λ
0,rel

 (t) ⋅ exp(b ′z + log(λ*
s,a,c

 (t)))
where λ

0,rel
 (t) is an unknown underlying relative mortal-

ity, ie, the relative mortality at time t for an individual 

i with z = 0.
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This model is a Cox model, including the log expected 

hazards as a time-dependent covariate with a known coef-

ficient fixed to 1 (offset). Because the effect of covariates 

is multiplicative, differences of relative mortality between 

patients with different covariate values (eg, Z  =  z
0
 and 

Z  =  z
1
) were expressed as relative mortality ratio (RMR) 

(RMR =  exp(β ′(z
1
 − z

0
))). For example, an RMR of 2 for 

gender means that the ratio of the observed mortality of males 

and females is two-fold higher than the ratio of mortality of 

males and females in the general population.

Goodness of f it was evaluated using graphical 

procedures.29

Combining excess and relative mortality
Because it is not obvious deciding which model to choose, 

we considered a model combining both the additive and the 

multiplicative hazard components.14 This combined model 

was written as:

λ
obs

 (t) = λ
excess

 (t) + λ
rel

 (t) ⋅ λ*
s,a,c

 (t)

This model is a special case of the Aalen’s additive 

linear regression model,30 where λ*
s,a,c

 (t) is introduced as a 

time-dependent covariate and where λ
excess

 (t) and λ
rel

 (t) are 

the parameters to be estimated. It is possible to test whether 

λ
excess

 (t) and λ
rel

 (t) depend on time using the Kolmogorov–

Smirnov test.25 As proposed by Andersen and Vaeth,14 because 

λ
excess

 (t) and λ
rel

 (t) do not depend on time in our cohort of 

ESRD patients (P = 0.46 and P = 0.78, respectively), the 

model can be simplified as follows:

	 λ
obs

 (t) = λ
excess

 + λ
rel

 ⋅ λ*
s,a,c

 (t)� (3)

The reduction to the additive hazard model is pos-

sible by testing λ
rel

 to 1. In the same way, the reduction 

to the multiplicative hazard model is possible by testing 

λ
excess

 to 0.

Of note, in model (3), the component λ
excess

 is different 

from λ
excess

 (t) in model (1). Indeed, λ
excess

 estimated in the 

combined model does not depend on time and is estimated in 

combination with λ
rel

. Similarly, the component λ
rel

 in model 

(3) is different from λ
rel

 (t) in model (2).

Estimation of λexcess and λrel on the whole 
cohort
The additive λ

excess
 and multiplicative λ

rel
 components were 

estimated on the whole cohort by maximizing the log-

likelihood function (see Appendix 2). The variances of the 

parameters were estimated from the second derivative of the 

log-likelihood function (see Appendix 2).

The Wald test was used to test λ
excess

 and λ
rel

 to 0 and 1, 

respectively.

Covariate effect on λexcess and λrel
If the λ

excess
 is different from 0, and λ

rel
 is different from 1, model 

(3) is used to estimate the effect of the covariates on λ
excess

 and 

λ
rel

. The effect of the covariates on λ
excess

 and λ
rel

 is considered 

as multiplicative, as for the additive (1) and multiplicative (2) 

hazard models presented previously. The first step is to test the 

global effect of each covariate. We compared the models with 

and without covariate using the likelihood ratio test. Because 

it is not possible to introduce a covariate both in the additive 

and in the multiplicative component of model (3), we calcu-

lated the log-likelihoods in subgroups as follows.14 For each 

covariate we performed K submodels, one for each modality k 

of the covariate, and we tested simultaneously whether λ
excess,k

 

were identical and λ
rel,k

 were identical. The log-likelihood of 

the model with the covariate is the sum of the log-likelihoods 

of the K submodels. We thus compared a model with two 

parameters to a model with 2K parameters.

The second step was to test the effect of each covariate on 

the two components of the model separately. On one hand, we 

tested whether all λ
excess,k

 were identical. On the other hand, 

we tested whether all λ
rel,k

 were identical. For example, if a 

covariate has K = 2 modalities, we tested whether λ
excess,1

 was 

equal to λ
excess,2

 by comparing the model with four parameters 

(λ
excess,1

, λ
excess,2

, λ
rel,1

, and λ
rel,2

) with a simplified model with 

three parameters (common λ
excess

, λ
rel,1

, and λ
rel,2

) by likelihood 

ratio test. We thus compared a model with K + 1 parameters 

to a model with 2K parameters.

Results
We identified 5206 patients who had begun dialysis between 

2002 and 2006. We excluded 91 patients for the following 

reasons: pre-emptive graft (never dialyzed, n  =  5) and 

absence of follow-up (n = 86). Finally, 5115 patients were 

included (Table  1). Mean age was 79 years (standard 

deviation  =  5.3 years, range 70–97 years). The median 

follow-up was 3 years (1 day to 5 years), and 2871 deaths 

were observed for a total of 9396 person-years.

Excess mortality analysis (additive hazard 
model)
The expected number of deaths was 518 for 2871 observed 

deaths; the excess mortality was 25 per 100 person-years. The 

1-, 2-, and 5-year relative survival rates were 77% (76%–79%), 

62% (61%–64%), and 24% (21%–28%), respectively 

(Figure  1). Univariate analysis of factors determining  

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Epidemiology 2011:3 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

161

Relative and excess mortality in end-stage renal disease

ddl, P = 0.23) or by graphical procedure. In particular, there 

was no interaction between age and follow-up time.

Relative mortality analysis (multiplicative 
hazard model)
The SMR on the whole cohort was 5.54 (5.34–5.75). In uni-

variate analysis, relative mortality was higher for females 

and in diabetic and tumoral/myeloma/amyloid nephropathies 

(Table  2). Older patients have a lower relative mortality. 

Multivariate analysis showed that an advanced age was 

independently associated with a lower relative mortality 

(Table 3), whereas female gender and diabetic and tumoral/

myeloma/amyloid nephropathies were independently associ-

ated with a higher relative mortality. There was no evidence 

of lack of fit by graphical procedure. In particular, there was 

no interaction between age and follow-up time.

Combining excess and relative mortality
Estimations of λ

excess
 and λ

rel
 on the whole cohort and in sub-

groups are presented in Table 4. For the whole cohort, the 

maximum likelihood estimate of λ
excess

 was 0.19 (±0.01) and 

was different from 0 (P , 0.001). The maximum likelihood 

estimate of λ
rel

 was 2.17 (±0.17) and was different from 1 

(P ,  0.001). One might dread coping with a problem of 

identifiability in this instance. Indeed, the correlation between 

λ
excess

 and λ
rel

 is equal to −0.82. Unfortunately, this problem 

cannot be eliminated without simulations, ie, by simulating 

data based on the combined model and assessing the ability 

of the model to estimate parameters without bias. Neverthe-

less, the previous estimations appeared coherent.

Because the two components additive and multiplicative 

should be kept, this model did not enable selection of one of 

the pure additive or multiplicative models. We thus used this 

model to estimate the effect of the covariates on both excess 

and relative mortality (Table 4).

Sex, age, and primary nephropathy exerted an effect on 

mortality; conversely, the first modality of dialysis did not. 

Moreover, we showed that λ
excess

 was different between age 

groups and primary nephropathies, whereas λ
rel

 was higher 

in females. Both λ
excess

 and λ
rel

 were no different between 

hemodialysis and peritoneal dialysis.

Discussion
The use of expected mortality provides a useful perspective in 

mortality analysis of population-based cohorts of patients suf-

fering from chronic disease such as cancer but also from other 

diseases. This is the reason why we were interested in comparing 

the two methods based on expected mortality rates in order to 

look for prognostic factors on ESRD-related mortality.

Table 1 Patient characteristics at the beginning of dialysis

Characteristics (whole cohort), n = 5115 Number (%)

Sex
  Male 3119 (61)
  Female 1996 (39)
Age (years)
  ,80 3125 (61)

  $80 1990 (39)
First modality of dialysis
 H emodialysis 4467 (87)
  Peritoneal dialysis 648 (13)
Primary nephropathy
 H ypertensive and large vessel disease 1760 (34)
  Diabetes 1204 (23)
  Primary and secondary glomerulonephritis 360 (7)
  Interstitial nephritis/pyelonephritis 368 (7)
 � Renal neoplasms/myeloma/light chain 

nephropathy/amyloidosis
241 (5)

  Miscellaneous conditions/unknown/missinga 1182 (23)

Notes: aUnknown, missing (n = 824); miscellaneous primary nephropathies 
(n = 328), including genetic diseases, mainly represented by polycystic kidney 
diseases (n = 143); and few cases of developmental anomalies (renal dysplasia, 
hypoplasia), cystic diseases (infantile polycystic kidneys, nephronophthisis), tubular 
necrosis (no recovery), Alport syndrome, tuberous sclerosis, cystinosis, primary 
oxalosis, and Fabry’s disease.
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Figure 1 Observed, expected, and relative survival of the whole cohort of patients 
with end-stage renal disease treated by dialysis.

excess mortality is presented in Table 2 and Figure 2. An older 

age, peritoneal dialysis, and diabetic and tumoral/myeloma/

amyloid nephropathies (compared with hypertensive/vascular 

origin) were associated with a higher excess mortality (ie, a 

poorer relative survival). Multivariate analysis showed inde-

pendent effects of age, first modality of dialysis, and diabetic 

and tumoral/myeloma/amyloid nephropathies on excess mor-

tality (Table 3). The effect of sex was not significant in the 

multivariate analysis. There was no evidence of lack of fit by 

studying deviance on collapsed data (deviance = 259 on 279 
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Figure 2 Relative survival curves according to A) sex, B) age group, C) first dialysis modality, and D) primary nephropathy in patients with end-stage renal disease on dialysis.

Table 2 Results of the univariate analysis of factors affecting excess mortality and relative mortality in dialyzed patients

Excess mortality Relative mortality

5-year RS EMR 95% CI P value LR testa SMR RMR 95% CI P value LR testa

Sex
  Male 24% 1 3.2 4.74 1 73.6
  Female 25% 1.09 0.99–1.19 0.069 (0.1) 7.61 1.61 1.49–1.74 ,0.001 (,0.001)
Age (years)
  ,80 29% 1 65.1 7.29 1 96.1

  $80 17% 1.47 1.34–1.61 ,0.001 (,0.001) 4.34 0.59 0.55–0.64 ,0.001 (,0.001)
First modality of dialysis
 H emodialysis 26% 1 5.6 5.53 1 0.05
  Peritoneal dialysis 15% 1.17 1.03–1.34 0.014 (0.017) 5.64 1.02 0.92–1.13 0.75 (0.75)
Primary nephropathy  
 H ypertensive/vascular 26% 1 98.5 4.62 1 106.4
  Diabetes 22% 1.19 1.06–1.34 0.004 (,0.001) 7.32 1.59 1.43–1.75 ,0.001 (,0.001)
 G lomerulonephritis 36% 0.83 0.68–1.02 0.07 5.17 1.11 0.95–1.31 0.20
 � Interstitial nephritis/ 

pyelonephritis
24% 0.91 0.75–1.11 0.36 5.32 1.15 0.98–1.34 0.09

  Tumoral/myeloma/amyloid 7% 2.46 2.06–2.93 ,0.001 14.28 3.04 2.60–3.56 ,0.001
  Miscellaneous/unknown/missing 25% 1.08 0.95–1.22 0.23 5.00 1.08 0.98–1.19 0.13

Note: aChi-squared test (P value) provided.
Abbreviations: CI, confidence interval; EMR, excess mortality ratio; LR, log-likelihood ratio; RMR, relative mortality ratio; RS relative survival, SMR, standardized 
mortality ratio.
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The additive hazard model is almost exclusively the first-

choice model in population-based cancer studies. In other 

chronic diseases, it appears that a multiplicative hazard model is 

used more often. Noticeably, confusion between relative mortal-

ity and excess mortality is sometimes observed, ie, expressing 

the result of a multiplicative model in terms of excess mortality. 

As do Andersen and Vaeth,14 we advise using the term “excess 

mortality” when one assumes that the total hazard is the sum of 

expected and excess hazards (additive hazard model (1)). The 

term “relative mortality” should be used when one assumes 

that the total hazard is the product of expected and relative 

hazards (multiplicative hazard model (2)). We recall, in these 

two models, that the effect of covariates on excess or relative 

mortality is considered as multiplicative.

Table 3 Results of the multivariate analysis of factors affecting excess mortality and relative mortality in dialyzed patients

Excess mortality Relative mortality

EMR 95% CI P value LR testa RMR 95% CI P value LR testa

Sex

  Male 1 1.1 1 158.2

  Female 1.05 0.96–1.15 0.29 (0.29) 1.65 1.52–1.78 ,0.001 (,0.001)
Age (years)
  ,80 1 78.5 1 162.9

  $80 1.54 1.41–1.69 ,0.001 (,0.001) 0.61 0.56–0.66 ,0.001 (,0.001)
First modality of dialysis
 H emodialysis 1 4.2 1 2.9
  Peritoneal dialysis 1.15 1.01–1.30 0.036 (0.04) 1.10 0.99–1.22 0.08 (0.1)
Primary nephropathy
 H ypertensive/vascular 1 114.9 1 138.6
  Diabetes 1.29 1.14–1.45 ,0.001 (,0.001) 1.36 1.23–1.50 ,0.001 (,0.001)
 G lomerulonephritis 0.92 0.75–1.13 0.42 0.99 0.84–1.16 0.88
 � Interstitial nephritis/ 

pyelonephritis
0.97 0.80–1.19 0.78 1.05 0.90–1.23 0.54

  Tumoral/myeloma/amyloid 2.75 2.30–3.28 ,0.001 2.60 2.21–3.05 ,0.001
  Miscellaneous/unknown/missing 1.09 0.96–1.24 0.16 1.06 0.96–1.17 0.24

Note: aChi-squared test (P value) provided.
Abbreviations: CI, confidence interval; EMR, excess mortality ratio; LR, log-likelihood ratio; RMR, relative mortality ratio.

Table 4 Results of the combined model for modeling both excess and relative mortality in dialyzed patients

λexcess (se) Effect of the 
covariate on λexcess 

P valuea

λrel (se) Effect of the 
covariate on λrel  
P valuea

Max log 
likelihood

Effect of the covariate 
on both components  
P valuesb

Whole cohort 0.19 (0.01) 2.17 (0.17) -6169
Sex
  Male 0.17 (0.01) 2.11 (0.21) 0.0095 -3788 ,0.001
  Female 0.18 (0.01) 0.70 3.15 (0.35) -2369
Age (years)
  ,80 0.18 (0.02) 0.001 2.04 (0.44) 0.22 -2500 ,0.001
  $80 0.28 (0.03) 1.43 (0.25) -2507
First modality of dialysis
 H emodialysis 0.19 (0.01) 0.90 2.07 (0.18) 0.26 -5347 0.096
  Peritoneal dialysis 0.19 (0.03) 2.61 (0.45) -820
Primary nephropathy
 H ypertensive/vascular 0.17 (0.02) 0.002 1.86 (0.26) 0.077 -2097 ,0.001
  Diabetes 0.19 (0.02) 2.99 (0.48) -1498
 G lomerulonephritis 0.11 (0.03) 2.77 (0.67) -409
  Interstitial nephritis/pyelonephritis 0.10 (0.03) 3.32 (0.66) -407
  Tumoral/myeloma/amyloid 0.41 (0.08) 4.60 (1.71) -275
  Miscellaneous/unknown/missing 0.17 (0.02) 2.33 (0.31) -1420

Notes: aLog-likelihood ratio test comparing the k λexcess or the k λrel; 
bLog-likelihood ratio test comparing the model with and without each covariate (eg, sex: 

Chi-squared = -(3788 + 2369) + 6169).
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Estimations of the additive hazard model are based either 

on generalized linear models10,31 or on likelihood estimation.32 

All these models produce similar estimates.10 Another type of 

additive hazard model was described by Cortese and Scheike,33 

but this model assumes an additive effect of the covariates. The 

advantage of the additive hazard model is that it is interpretable 

in the context of competing risk settings. But under some cir-

cumstances, the additive hazard model may be inappropriate 

because it requires that the risk in the diseased group be higher 

than in the general population for all covariate levels. But in 

the case of chronic diseases, there are few instances for which 

the observed mortality is lower than the expected one.

Two formulations of the multiplicative hazard model 

have been described, based on generalized linear models12 or 

the Cox proportional model,13–15 leading to close estimates. 

In this instance, the choice of a multiplicative hazard model 

has been suggested,13–15 though this was considered to be 

“biologically less appropriate” by some authors,10,13 without 

additional explanation. However, to our knowledge, there are 

no strong arguments in the literature allowing the choice of 

an additive hazard model over a multiplicative hazard model. 

A usual way of deciding which of the two models is the 

most appropriate is to examine the likelihood ratio. This is a 

nontrivial problem, as these two classes of models (Poisson 

model and Cox model) are not nested here.

This study of a large cohort of patients with ESRD treated 

by dialysis prompted us to provide a comprehensive analysis 

of the mortality and compare the two types of models. We 

chose to limit the comparison of models containing the same 

four covariates without interactions. Indeed, the complexity 

of a model including both covariate by covariate interactions 

and time by covariate interactions, especially when covariates 

have several modalities, such as in our example (primary 

nephropathies), makes the model interpretation very difficult. 

In addition, selection of the more parsimonious model should 

lead to keeping only some covariates and their interactions in 

the final additive and multiplicative models. This approach 

might possibly lead to selecting different covariates and dif-

ferent interactions for the two final models considered.

Andersen and Vaeth14 suggest considering routinely 

both age and follow-up time as underlying time variables 

when the additive and multiplicative models are evaluated. 

Indeed, it may be interesting to consider age as the under-

lying time variable in two situations: i) if healthy subjects 

are followed up prospectively for the occurrence of a given 

disease (epidemiologic cohort studies), and ii) if the data are 

left truncated. The patients were included in our cohort on 

the day they initiated dialysis. Because we were interested 

in factors affecting mortality in dialysis, we only used the 

follow-up time as a time variable.

Interestingly, most of the covariates tested in the univari-

ate models for excess or relative mortality led to different con-

clusions, particularly for age. Indeed, we observed that excess 

mortality increased with age, whereas the relative mortality 

decreased. That means that the absolute excess number of 

deaths is higher for older people (EMR = 1.54 [1.41–1.69]). 

However, relative to background mortality, which is higher in 

subjects older than 80 years, the excess of deaths was lower 

(RMR = 0.61 [0.56–0.66]). The difference between the two 

models for sex remained after adjusting for age, whereas the 

effects of first modality of dialysis and primary nephropa-

thies were similar in multivariate models. Interpreting the 

differences between the results of additive and multiplicative 

models is not straightforward. Indeed, these results must be 

examined according to i) the size of the observed mortality 

in each subgroup and the observed HR, ii) the size of the 

expected mortality in each subgroup and the expected HR, 

and iii) the size of the expected mortality relative to the 

observed mortality. There are several cases where differ-

ences between the two models occur. An interesting example 

is the effect of gender in our cohort. Indeed, we found that 

the observed mortality in males was not different from the 

observed mortality in females (observed HR = 0.99 [0.92–

1.07], P = 0.77). If gender does not exert an effect on mortal-

ity in ESRD, one should identify an observed HR for gender 

similar to the expected HR, ie, a worse prognostic in males 

(as in the general population). When performing the addi-

tive model, the EMR was not different from 1 (EMR = 1.09 

[0.99–1.19]). We explained this absence of gender effect on 

excess mortality by the fact that the expected mortality is 

very low compared with the observed mortality in our cohort. 

The ratio (λ
obs

 females - λ* females)/(λ
obs

 males - λ* males) is 

thus close to the λ
obs

 females/λ
obs 

males ratio. On the contrary, 

when performing the multiplicative model, we underlined 

that the observed HR was different from the expected HR 

(RMR = 1.61 [1.49–1.74]) and thus that gender effectively 

exerted an effect on mortality in ESRD. The results of the 

two models are thus not contradictory but complementary. 

Both models are informative, and we recommend exploring 

the results of modeling excess and relative mortality sepa-

rately in order to look for factors associated with mortality 

in chronic disease.

To our knowledge, few studies analyzed both excess and 

relative mortality using appropriate models.34–36 Kvidal et al34 

performed such analyses in men who underwent aortic 

valve replacement, Favier et  al35 in Hodgkin’s lymphoma, 
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and Reulen et al36 in survivors of childhood cancer. In these 

studies, the opposite effect of age on relative and excess mor-

tality in univariate analysis was described. In Reulen et al,36 

the opposite effect of age disappeared in multivariate 

analysis. This opposite effect of age was not assessable 

in Kvidal et al’s34 and Favier et al’s35 studies, as they only 

performed a multivariate model for excess mortality. For 

gender, in univariate analysis, both Reulen et al36 and Favier 

et al35 described a higher relative mortality in females than 

in males, whereas the excess mortality was higher in males. 

In Reulen et al,36 the opposite effect of gender remained in 

multivariate analysis. Nevertheless, the authors did not inter-

pret this discrepancy. In the particular context of ESRD, 

excess mortality has only been used to compare differences 

in mortality on dialysis across European countries by using 

specific expected mortality rates by countries.37 In another 

study, only the relative mortality was estimated, and SMR 

was estimated and compared between various multiple 

subgroups.38 However, our results were not comparable with 

this study, as the authors estimated SMR by subgroups and 

did not provide a multivariate analysis.

Because we observed apparent discrepancies in results 

obtained with the two models, we used the combined model 

already described by Andersen and Vaeth.14 We did not find 

in the literature a study that used such a model. This model 

has the advantage of giving the possibility of testing the 

additive and multiplicative components and then to reduce 

the model to the most appropriate one. In our data, the two 

components had to be kept in the combined model, underly-

ing the potential interest of this model in simultaneously and 

separately measuring the effect of covariates on the excess 

mortality and relative mortality. It led to results similar 

to the pure additive and multiplicative univariate models. 

Particularly for age, the additive component became higher 

when age increased, whereas the inverse phenomenon was 

observed for the multiplicative component (even if it was 

nonsignificant). On the contrary, the modality of first dialysis 

did not exert a significant effect on both components. We 

can explain this result by the fact that the value of the addi-

tive component was very small relative to the multiplicative 

component. The omission of the multiplicative component 

(ie, if a pure additive model was used) led to an estimation 

of the additive component that might be biased, overestimat-

ing the effect of the covariate on excess mortality. The use 

of a pure additive or multiplicative model may thus lead to 

inappropriate conclusions. In our opinion, the combined 

model appeared useful to adequately estimate the effect 

of prognostic factors on mortality in chronic diseases. 

Nevertheless, a multivariate combined model is needed to 

confirm our results. To our knowledge, such a multivariate 

combined model has not been developed yet. Moreover, 

the interpretation of the parameters of the combined model 

is not straightforward. Presently, the parameters λ
excess

 and 

λ
rel

 can be estimated only in subgroups. We estimated these 

parameters only for testing an effect of one covariate on 

excess and relative mortality. Because these parameters are 

not directly interpretable, further developments are neces-

sary to build a model that would estimate directly the HR for 

the two components. In this case, one might estimate both 

mortality related to a chronic disease and its relation to the 

expected mortality.

Conclusion
Excess hazard and relative hazard models allow the estima-

tion of mortality related to a chronic disease, taking into 

account the background mortality. The choice between these 

two models depends on the purpose of the analysis and the 

fit to the data. More generally, it may be interesting to look 

for factors associated with mortality in a cohort of patients 

presenting a chronic disease. Even if the interpretation of 

the excess hazard model is different from the relative hazard 

model, and if these models may lead to apparent dissimilar 

conclusions, we underlined their complementary interest in 

looking for factors associated with mortality related to ESRD. 

Alternatively, a model combining both excess and relative 

mortality gives the possibility of testing the additive and 

multiplicative components and then of reducing the model 

to the most appropriate one. When both components must be 

retained, the interest of this model is to measure simultane-

ously and separately the effect of covariates on both excess 

and relative mortality.
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Appendix 1: Syntaxes for fitting the models with R software
Fitting the additive hazard model (excess mortality analysis)
The additive hazard model is written as a generalized linear model as follows:

ln(m
j
 - d*

j  
) = b ′z + b 

fu   
fu + ln( y

j
)

The original dataset (data, one line per subject) can be easily split with the Lexis() function in the Epi package. 

For example, for one subject, data have the form:

num sex incl        age   futime D cov
70  2   04Jun2002 75.35  1.788  1  1

We need to split the follow-up of each subject into several observations j, according to change in age, calendar year, and fol-

low-up time interval (using 1-year intervals). We can thus obtain for each observation of each subject (dataset named data1):

•	 Y: the length of the observation (y
j
)

•	 rate: the expected hazard (λ*
s,a,c

 (t)). The website mortality.org provides a life table for each sex s (sex) containing 

the expected annual probability of death q
s,a,c

 for each age a (age) and each calendar year c (year). The expected annual 

hazard is calculated as λ*
s,a,c

 = -log(1 - q*
s,a,c

).

•	 E: the number of expected deaths d* 
j
 calculated as the product of λ*

s,a,c
 (t) and y

j

•	 D: the indicator of death

•	 fu: the follow-up interval indicator and

•	 cov: the value of the covariate to be model.

For example, for the same subject, data1 have the form:

num sex age year rate   start  stop   Y      E      D   fu      cov
70  2   75  2002 0.0195 0.0000 0.5000 0.5000 0.0098 0 (0,0.5]   1
70  2   75  2002 0.0195 0.5000 0.5784 0.0784 0.0015 0 (0.5,1]   1
70  2   75  2003 0.0199 0.5784 0.6489 0.0705 0.0014 0 (0.5,1]   1
70  2   76  2003 0.0230 0.6489 1.0000 0.3511 0.0081 0 (0.5,1]   1
70  2   76  2003 0.0230 1.0000 1.5784 0.5784 0.0133 0 (1,2]     1
70  2   76  2004 0.0208 1.5784 1.6489 0.0705 0.0015 0 (1,2]     1
70  2   77  2004 0.0224 1.6489 1.7878 0.1389 0.0031 1 (1,2]     1

We need to specify the particular link function as presented here:

poi <- Mypoisson()
poi$link <- “Poisson excess risk model”
poi$linkfun <- function(mu) log(mu-E)
poi$linkinv <- function(eta) exp(eta)+E
assign(“E”, data1$E, env = .GlobalEnv)
if (any(data1$D – data1$E < 0)) {
poi$initialize <- expression({
n <- rep.int(1, nobs)
mustart <- pmax(y,E) + 0.1
})
}

The model can be performed as follows with the glm() function in R software:

Add<-glm(D~-1+cov+fu,offset=log(Y),family=Mypoisson,data=data1)

The effect of the covariate is equal to the exponential of the coefficient:

EMR<-exp(coef(Add))
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Fitting the multiplicative hazard model (relative mortality analysis)
The multiplicative hazard model is written as a Cox model as follows:

λ
obs

 (t, z) = λ
0,rel

 (t) ⋅ exp(b ′z + log(λ*
s,a,c

 (t)))
The original dataset (data, one line per subject) can be easily split with the Lexis() function in the Epi package. 

We need to have λ*
s,a,c

 (t) for each event time and thus to split the follow-up of each subject into several observations j, 

according to change in age and calendar year.

We can thus obtain for each observation of each subject (dataset named data2):

•	 rate: calculated as above

•	 start and stop: the limits of the observation

•	 D: the indicator of death

•	 cov: the value of the covariate to be model.

For example, for the same subject, data2 have the form:

num sex  age  year   rate   start stop  D cov
70  2    75   2002   0.0195 0.000 0.578 0 1
70  2    75   2003   0.0199 0.578 0.649 0 1
70  2    76   2003   0.0230 0.649 1.578 0 1
70  2    76   2004   0.0208 1.578 1.649 0 1
70  2    77   2004   0.0224 1.649 1.788 1 1

The model can be performed as follows with the coxph() function in R software:

Mult<-coxph(Surv(start,stop,D)~cov+offset(log(rate)),data=data2)

The effect of the covariate is equal to the exponential of the coefficient:

RMR<-exp(coef(Mult))

Fitting the combined model
The combined model proposed by Andersen and Vaeth14 is written as follows:

λ
obs

 (t) = λ
excess

 (t) + λ
rel

 (t) ⋅ λ*
s,a,c

 (t)

We need to split the dataset as for the multiplicative hazard model (data2).

The model can be performed as follows with the aalen() function in the timereg package:

Comb<-aalen(Surv(start,stop,D)~rate,id=data2$num,data=data2)

This function allows to test whether the intercept (λ
excess

(t)) and the coefficient of the covariate (rate = λ*
s,a,c

(t)) depend 

on time using the Kolmogorov–Smirnov test.

Appendix 2: Log-likelihood function, score vector, and Fisher information 
for the combined model
The log-likelihood function of the combined model is written as:

( )* *
, , , ,

1 1 1

ln ( ) ( )
n n n

i excess rel s a c i excess i rel s a c i
i i i

LV D t t tλ λ λ λ λ
= = =

= + ⋅ − ⋅ − ⋅ Λ∑ ∑ ∑

where t
i
 is the observation time, D

i
 is the indicator of failure, λ*

s,a,c
(t

i
) is the expected hazard, and Λ*

s,a,c
(t

i
) is the 

cumulative expected hazard for the subject i (i = 1, …, n). λ
excess

 and λ
rel

 are the excess and the relative hazard to be  

estimated.
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The first-order derivative of the log-likelihood function (score vector) is written as:

∂
∂

=
+ ⋅ ( )

−
= =
∑ ∑LV D

t
t

excess

i

excess rel s a c ii

n

i
i

n

λ λ λ λ , ,
*

1 1

and

∂
∂

=
⋅ ( )

+ ⋅ ( )
−

=
∑LV D t

trel

i s a c i

excess rel s a c ii

n

s aλ

λ

λ λ λ
, ,

*

, ,
* , ,

1

Λ cc i
i

n

t* ( )
=
∑

1

The Fisher matrix is thus equal to:
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