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Abstract: Piroxicam (PXM), a nonsteroidal anti-inflammatory drug, is an enolic benzothiazine 

and a potent member of the oxicam series. The drug suppresses the synthesis of proinflamma-

tory enzymes, such as cyclooxygenases-1 and -2 (COX-1 and 2), downregulates the production 

of prostaglandins (PGs) and tromboxanes, and inhibits polyamines production by blocking 

ornithine decarboxylase induction involved in nonmelanoma skin carcinogenesis. In addition, 

PXM is able to induce tumor cell apoptosis and suppresses metalloproteinase 2 activities. 

Skin carcinogenesis is a multistep process in which the accumulation of genetic events leads 

to a gradually dysplastic cellular expression, deregulation of cell growth, and carcinomatous 

progression. COX-1 upregulation plays a significant role in PG and vascular epidermal growth 

factor production supporting tumor growth. Increased level of PGs in premalignant and/or 

malignant cutaneous tumors is also favored by upregulation of COX-2 and downregulation of 

the tumor suppressor gene 15-hydroxy-prostaglandin dehydrogenase. Chemoprevention can 

be a hopeful approach to inhibit carcinoma occurrence before an invasive tumor develops. The 

chemopreventive effect of nonsteroidal anti-inflammatory drugs on nonmelanoma skin cancers 

has been established. In this study, we highlighted the different modalities of action of PXM 

on the pathogenesis of nonmelanoma skin cancer, analyzing and evaluating binding modes 

and energies between COX-1 or COX-2 and PXM by protein–ligand molecular docking. Our 

clinical experience about the local use of PXM on actinic keratoses and field cancerization is 

also reported, confirming its efficacy as target therapy.

Keywords: COXs inhibitor, actinic keratosis, tumor progression, binding mode

Introduction
Piroxicam (PXM), an enolic benzothiazine and potent member of the oxicam series, 

suppresses the synthesis of proinflammatory enzymes, reducing lipid mediators such 

as prostaglandins (PGs) and thromboxane (TXs), and also inhibits ornithine decar-

boxylase (ODC) induction,1 both pathways participating in carcinogenesis. Further 

effects of PXM are the inhibition of metalloproteinase-2 activity and induction of 

apoptosis, determined to have an antiaging effect on skin texture.2 PXM belongs to a 

class of nonsteroidal anti-inflammatory drugs (NSAIDs) indicated for the symptomatic 

treatment of inflammatory and degenerative rheumatic diseases (rheumatoid arthritis, 

osteoarthritis, and ankylosing spondylitis). On the basis of the documented effect of 

PXM in skin tumorigenesis, through the block of cyclooxygenases-1 and -2 (COX-1 

and -2) activity,3 we reported preliminary studies of its usefulness in the treatment of 

actinic keratoses (AKs).4 COX inhibitors, diclofenac and celecoxib, have also been 

used for the treatment of AKs and squamous cell carcinomas (SCCs).5 The effec-

tiveness of NSAIDs is attributable to the inhibitory effect on the increased COX-1 

Correspondence: Elena Campione
Department of Dermatology, University 
of Rome, Tor Vergata, Viale Oxford 81, 
00133 Rome, Italy
Tel +39 06 2090 0252
Fax +39 06 2090 2742
Email campioneelena@hotmail.com 

Journal name: Drug Design, Development and Therapy
Article Designation: Review
Year: 2015
Volume: 9
Running head verso: Campione et al
Running head recto: Piroxicam use for prevention and treatment of NMSC
DOI: http://dx.doi.org/10.2147/DDDT.S84849

D
ru

g 
D

es
ig

n,
 D

ev
el

op
m

en
t a

nd
 T

he
ra

py
 d

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.dovepress.com/permissions.php
http://creativecommons.org/licenses/by-nc/3.0/
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/DDDT.S84849
mailto:campioneelena@hotmail.com


Drug Design, Development and Therapy 2015:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

5844

Campione et al

and -2 enzyme activity in skin tumors produced after chronic 

exposure to UVB (ultraviolet B) (accompanying skin inflam-

mation). Aberrant overexpression of COX-2 in both AK and 

SCC upon UVB irradiation and UVB-induced p53 tumor 

suppressor gene mutations are early events responsible for 

the progression of sun-exposed nonmelanoma skin cancers 

(NMSCs).5 Topical NSAID treatment works as a nonspecific 

COX inhibitor and is an effective and well-tolerated treatment 

for AK. COX inhibitors have been examined with respect to 

their role in cancer prevention and cancer treatment in both 

animal models and humans.6 In humans, topical application 

of NSAIDs is also potent in inhibiting the UV light-induced 

acute sunburn reactions such as erythema and peeling 

of superficial layers, if applied immediately after UVB 

exposure.7,8 An exhaustive meta-analysis on PXM made by 

Richy et al9 on controlled clinical trials pointed out a more 

favorable efficacy and safety profile of PXM compared to 

other topical NSAIDs (diclofenac, naproxen,  tenoxicam, 

indomethacin, etodolac, meloxicam, ibuprofen, salicylates, 

nabumetone, aceclofenac, droxicam, flurbiprofen, ketopro-

fen, nimesulide, and diflunisal).

Here, we described the different modalities of action of 

PXM on the pathogenesis of NMSC. The inhibitory effects 

of PXM on COX-1 and -2 activity have been investigated 

by analyzing its binding mode. We also reported our clinical 

experience about the effectiveness of local use of PXM as 

chemopreventive agent on AKs and field cancerization.

Steps in skin tumorigenesis and role 
of COX enzymes in cancer
Skin cancer is the most common cancer in humans. The 

skin of the head and neck accounts for less than 10% of the 

body’s surface area, but this region accounts for 70%–80% 

of skin cancer cases. Although mortality from NMSC is 

low, its high incidence leads to a significant public health 

burden, making them a suitable target for chemopreven-

tion and long-lasting research. NMSC includes SCC and 

basal cell carcinoma (BCC).10 Carcinogenesis occurs in two 

steps: initiation and promotion.11 The promotion phase, an 

important target for the design of potential chemoprevention 

studies, is temporally prolonged and potentially reversible.11 

A variety of model systems have demonstrated an increase 

in tissue polyamine levels, including putrescine, during 

tumor promotion.12 Mammalian polyamine biosynthesis is 

at least partially controlled via induction of ODC, which 

makes the inhibition of this enzyme a potential target 

for chemoprevention.13 α-Difluoromethylornithine is an 

enzyme-activated irreversible inhibitor of ODC that has 

been shown to prevent tumors in experimental animal 

systems.14 In addition, accumulation of genetic events 

within cells leads to a gradually dysplastic cellular mani-

festation, deregulated cell growth, and finally, carcinoma. 

An upregulation of COX-2 plays a significant role in PG 

and vascular epidermal growth factor (VEGF) production 

for the tumor proliferation.15 SCC of the head and neck 

showed little response to COX-2 inhibition. Therefore, 

a cotreatment of COX-1 and -2 determined a meaningful 

inhibition of VEGF, as observed by Park et al.15 Increased 

levels of prostaglandin E
2
 and F

2
 (PGE

2
 and PGF

2
) in pre-

malignant and/or malignant cutaneous tumors are favored 

by upregulation of COX-2 and downregulation of tumor 

suppressor gene 15-hydroxy-prostaglandin dehydrogenase 

(15-PGDH).16 Chemoprevention can be a hopeful approach 

to inhibit carcinoma occurrence before an invasive tumor 

develops. The chemopreventive effect of NSAIDs on 

NMSC has been established in animals17–20 and in vitro 

studies.21 Experimental studies have proposed the topical 

or oral use of NSAIDs in human subjects for the regression 

of cutaneous tumors.22 Findings from observational cases 

studies or clinical trials documented a defensive effect 

of NSAIDs against colorectal cancer.23–25 The hypothesis 

that NSAIDs might prevent the occurrence of colorectal 

cancer arose from studies showing that PGE
2
 levels were 

higher in colorectal cancer than in surrounding normal tis-

sue. On the other hand, few epidemiological studies have 

investigated the efficacy of NSAIDs in the prevention of 

skin cancer.26–28

PXM effects for the prevention of 
NMSC
It is well known that UV irradiation is the major cause of 

induction and development of AK and NMSC. Normally, sun-

damaged cells undergo, through p53 activation, apoptosis for 

self-destruction.5 Skin cells can acquire tumorigenic muta-

tions by UV irradiation or chemical stimulation and loss of 

the normal ability of cell differentiation and apoptosis. The 

stepwise evolution of AK with an increased expression of 

antiapoptotic Bcl-2 favors the progression to SCC.29 As a 

matter of fact, retinoid-induced modulation of apoptosis in 

NMSC is an efficacious therapeutic approach.30–32 In addition, 

the dermal response with inflammation, characterized by ery-

thema and edema, mediated by PGs is a critical component 

of tumorigenesis, promoting tumor growth, tissue invasion, 

angiogenesis, and metastasis.29 The action of PXM plays a 

role in early stages of carcinogenesis by blocking the phases 

of inflammation and thus angiogenesis; the evidence of its 

effectiveness for the treatment of AKs has been described 

in our previous study.4
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Also, prolonged use of PXM acts on photodamaged 

areas which is expression of field cancerization.4 To date, 

a higher occupational sun exposure of men compared with 

women justified the different incidence of NMSC.33 A study 

of Johannesdottir et al34 provides an alternative elucidation, 

which attributes the reduced incidence to the chronic use of 

analgesics for menstrual cycle–related symptoms. Several 

epidemiological studies confirm that aspirin can act as a 

chemopreventive agent and can decrease the incidence of 

various cancers, including skin tumors. The major inhibitor 

effect of aspirin on NMSC and precursors is related to its 

targeting elevated COX-2 levels in SCC. Most studies also 

examined the use of PXM in different disorders, especially 

for analyzing absorbance, tolerance, and efficacy in animal 

models,35–37 but the efficacy of PXM in humans was analyzed 

considering the general effects of NSAIDs, as in colon rectal 

carcinoma38,39 or in NMSC.40–42

Rathore et al43 recently reported that cotreatment of 

PXM with masitinib significantly inhibited cell prolifera-

tion of oral squamous cell carcinoma (OSCC) as compared 

to either drug alone, through the c-kit and AKT signaling 

pathways. PXM inhibited masitinib-induced COX-2 expres-

sion in all tested OSCCs. Therefore, targeting these two 

signaling pathways simultaneously was more efficient for 

inhibition of OSCCs across these species.43 A few studies 

evidenced the chemopreventive use of PXM for NMSC,4,44 

but its interaction with COX-2 is well known;43 however, 

more studies provided evidences for efficacy of PXM in 

melanoma treatment.45–47

Cycloxygenase pathway
In vertebrates, two isoforms of active COX enzymes have 

been identified, which display similar enzymatic properties, 

but differ in their expression and regulation.48 The best-

known mechanism of action of NSAIDs is the inhibition 

of COX isoforms, in particular, COX-1 and COX-2, both 

implicated in inflammation and promotion of tumorigenesis.16 

Chronic inflammation correlates with the increased risk of 

developing cancer in the affected organ and can be caused 

by acute UV radiation and other factors.49,50 The metabolism 

of arachidonic acid, the predominant precursor of PGs and 

the major control point for their synthesis, can be triggered 

by UV effect on the skin cell membranes, thus starting the 

inflammatory process.51 Arachinoid acid metabolism and PG 

synthesis through the COX-related pathway promotes cancer 

progression. COX is the key enzyme in prostanoid biosyn-

thesis, which catalyzes the conversion of arachidonic acid to 

prostaglandin H
2
 (PGH

2
), which is subsequently converted to 

biologically active lipids such as TX, PGE
2
, and prostacyclin 

(PGI
2
) by different enzymes.52 The skin is a major site of PG 

synthesis. All skin cells are PGs producers: keratinocytes, 

melanocytes, Langerhans cells, mast cells, fibroblasts, and 

endothelial cells.53 While COX-1 is constitutively expressed, 

COX-2 is induced by tumor promoters, growth factors, 

and cytokines.54 COX-1 is responsible for maintenance of 

the gastric and platelet functions, vascular homeostasis, as 

well as renal blood flow, and it also seems to contribute to 

PG synthesis during tumor progression in various tissues, 

including skin.55,56 The relative contribution of the two COX 

isoforms to skin inflammation is evaluated by combining 

studies with genetic knockout models and pharmacologi-

cal intervention with isozyme-selective inhibitors.57,58 The 

carcinogenic actions of COX-2 should be distinguished 

from those of COX-1 in the application of PG-blocking 

therapy for cancer treatment.59 The proliferative effects of 

COX-2 are due primarily to the increased synthesis of PGs, 

which directly influence cell growth after binding to specific 

cell surface receptors, including PG E, F, and I classes of 

receptors.60,61 The protumorigenic effect of prostaciclins can 

be mediated by specific receptors as EP2, and the different 

forms of PGs mediated their biological effects through EP, 

FP, and IP receptors.62 PGs may also promote the retention 

of UV-damaged cells through the inhibition of apoptosis.63 

A study of Kuzbicki et al64 demonstrated that differently 

from SCC, neither benign epithelial skin lesions nor BCC 

are associated with enhanced COX-2 expression. Both COX 

isoenzymes are strongly expressed in SCC, deriving from a 

more differentiated epidermal layer.64 A high COX-2 expres-

sion could be considered a risk factor of BCC recurrence, 

determining a role in BCC prognosis.65 In general, NSAIDs 

are effective chemopreventive agents for skin cancer, and 

they function by acting on COX pathway specifically during 

the treatment of AK and SCC.

PXM binding mode
The inhibitory effects of PXM on COX-1 and -2 activity 

have been investigated by analyzing its binding mode. 

Protein–ligand molecular docking has been used to evalu-

ate binding modes and energies between COX-1 or COX-2 

and the PXM drug (Figures 1 and 2). The docking simula-

tions have been performed by using the AutoDock Vina 

1.1.2 program,66 through the AutoDock/Vina PyMOL 

plugin (http://wwwuser.gwdg.de/~dseelig/adplugin.html; 

the PyMOL Molecular Graphics System Version 1.5.0.4. 

Schrödinger, LLC). The PXM SDF file,67 downloaded 

from the PubChem compound database (https://pubchem.

ncbi.nlm.nih.gov), has been converted into mol2 file and 

filled with hydrogens using the Open Babel program.68 In 
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the absence of the human enzymes, the X-ray structures of 

Ovis aries COX-1, PDB ID code 1CQE,69 and Mus musculus 

COX-2, PDB ID code 1PXX,70 deposited in the Protein Data 

Bank (PDB, http://www.rcsb.org/pdb), have been selected as 

receptors since their sequence identity with human enzymes 

is very high (~95%) and the residues comprising the active 

sites fully conserved. In COX-1 and COX-2, the active sites 

are composed of the same group of amino acids with the 

exception of the residue in position 523, which is located 

at the border of the substrate pocket: that in COX-1 is an 

isoleucine, while in COX-2 is a valine.71 The cocrystallized 

ligands flurbiprofen (1CQE) and diclofenac (1PXX) have 

been removed before starting the simulations that have been 

performed using the Genetic Algorithm with local gradient 

optimization.66 The docking boxes (dimensions X=22.5; 

Y=22.5; Z=22.5 Å) have been centered according to the 

X-ray ligand positions and include all the residues forming 

the binding sites. As previously reported,4 the molecular 

docking analysis confirms that PXM is a nonselective drug 

that blocks the activity of COX-1 and -2, detecting the same 

binding energy (-7.6 kcal/mol) in both the enzymes, even 

if some slight differences in the binding mode are pres-

ent. In COX-1 (Figures 1A and 2A), the Ser530 residue 

forms a hydrogen bond with the carboxamide group of the 

PXM, while a second hydrogen bond involves the Tyr355 

hydroxyl group and the benzothiazine moiety of the drug. 

In COX-2 (Figures 1B and 2B), the same hydrogen bond 

occurs between Tyr355 and benzothiazine group, while the 

Ser530–carboxamide interaction is lost and a new hydrogen 

bond, involving the Arg120 side chain and the benzothiazine 

Figure 1 Schematic view of the interactions between COX-1 (A), COX-2 (B), and PXM (Pyr1). 
Notes: The two-dimensional depictions show hydrogen bonds as green dashed lines between the interaction partners on either side. Residues comprising the active sites 
and in proximity of the drug are shown. The ligand itself is drawn using the two-dimensional draw engine according to chemical drawing conventions.
Abbreviations: COX-1 and -2, cyclo-oxygenases-1 and 2; PXM, piroxicam.

Figure 2 Best docking complexes between COX-1 (A), COX-2 (B), and PXM. 
Notes: The α-helices are shown as orange spirals and the loops are represented by 
light gray wires. The PXM molecules, hosted in both the active sites in a very similar 
binding mode, are depicted by stick representations.
Abbrevaitions: COX-1 and -2, cyclo-oxygenases-1 and 2; PXM, piroxicam.
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group, occurs. The remaining interacting residues show a 

similar distribution pattern, leading to a very comparable 

binding mode of the PXM molecule in the two binding 

sites. These results are in line with previous site-directed 

mutagenesis experiments that identified Arg120 as the key 

residue for selective inhibition of COX-2, while identifying 

Ser530 and Tyr355 as nonspecific binding determinants.72 

Moreover, this structural analysis, determining the same 

binding energy, confirms that PXM is a nonselective COX-1 

and COX-2 inhibitor.

Pathogenesis of AKs as therapeutic 
target of PXM
AK is a chronic, progressive disease, which is expected to 

develop into SCC at a rate of 10% over 10 years,73 the latter 

potentially metastasizing in 5% of cases. Although it is not 

possible to predict which specific AKs will progress to SCC, 

histologic evidence indicates the majority (60%–70%) of 

SCCs arise from AKs lesions.74 The entire sun-damaged skin 

is a result of UV-induced field cancerization with multiple 

visible and subclinical lesions.75 AKs are typically seen on 

fair-skinned population on chronic sun-exposed areas such 

as the face, arms, dorsum of the hands, bald scalp, and upper 

back.76 UVB radiation, considered the most important fac-

tor implicated in AK pathogenesis, cause mutations in the 

telomerase gene and tumor suppressor gene p53.5 Increased 

telomerase activity delays programmed cell death, making 

the mutated cells immortal. The tumor suppressor gene p53 

leads to the arrest of cell cycle, allowing the repair of dam-

aged DNA. If mutated, the proliferation of damaged cells 

will give rise to potentially neoplastic cells.77 Several other 

factors increase the prevalence of AK, like skin type I and 

II, advanced age, genetic predisposition, photodamage in 

outdoor workers, sun exposure in childhood, use of artificial 

tanning beds, PUVA (psoralens ultraviolet radiation) 

therapy, administration of X-rays, and immunosuppressive 

therapies.76 Human papilloma viruses are also implicated in 

etiopathogenesis.78 Many patients with epidermodysplasia 

verruciformis are immunosuppressed patients, ie, renal 

transplant recipients and develop HPV-associated AK and 

NMSCs. The viral E6 protein of HPV promotes proteolytic 

degradation of the proapoptotic BAK-protein, promoting 

skin cancerogenesis.79 Other molecular markers that may 

indicate an increased likelihood of malignancy include the 

expression of p16ink4, the CD95 ligand, tumor necrosis fac-

tor-related apoptosis-inducing ligand (TRAIL) and TRAIL 

receptors, and loss of heterozygosis.80,81 Skin inflammation 

is due to chronic UVB irradiation, which promotes the 

production of eicosanoids and COX-1 and -2 produce PGs 

from arachidonic acid. Inflammation is associated with the 

progression of AK to SCC. In fact, PGs promote tumor 

growth by stimulating cell proliferation, invasion, and 

angiogenesis.82,83 Increased levels of PGE
2
 and PGF

2α in 

premalignant and/or malignant epithelial skin cancers are 

due to the constitutive upregulation of enzymes involved 

in PG biosynthesis, such as COX-2, and downregulation of 

tumor suppressor gene 15-PGDH.16 A schematic represen-

tation of PXM effect on AK after UVB radiation is shown 

in Figure 3: after chronic UVB exposure (290–320 nm), 

several genes underwent mutations, including p53, with 

alterations in the arrest of cell cycle. All the mutations and 

other factors determine the progression in AK. The local use 

of PXM blocked the action of COX, resulting in blocking 

the biosynthesis of PGs and in 15-PGDH increased expres-

sion. Finally, a reduction of proliferation, tumor progression, 

and angiogenesis occurred, whereas there was an increase 

in apoptosis. After topical treatment of AK with PXM, 

normal epidermal architecture was restored (Figure 3). In 

addition, COX-1 seems to contribute to tumor progression in 

various tissues including skin, and its inhibition lowers cell 

proliferation in some cancers, including ovarian and colon 

cancer.84,85 As recently reported, COX-1 and -2 are involved 

in VEGF production in SCC of head and neck.86 The coin-

hibition of COX-1 and -2 could block VEGF synthesis. 

Treg-inducing VEGF reduction counteracted pathological 

angiogenesis.87,88 The efficacy of PXM is related to its activ-

ity on both COX enzymes.89 In a preliminary open-label 

trial, we evaluated the efficacy and tolerability of PXM 

1% gel in the treatment of patients affected by AKs. Ten 

patients affected by multiple AKs were treated twice daily 

for a period of 3 months.4

To measure the efficacy of the therapy, we evaluated the 

lesions clinically and by means ± standard error of mean of 

dermoscopy analysis at an initial baseline visit, at interme-

diate visits, and after 3 months.4 The modifications during 

treatment were evaluated using a new scoring system, named 

AKESA, based on the clinical presence of erythema, scale, 

and atrophy on a target lesion.4

We observed improvement either in the typical features 

of the AKs, as confirmed by the AKESA score, or in the 

perilesional photodamaged skin area in terms of skin soft-

ening and a significant reduction in dermal vessels, also 

documented by dermoscopic investigation.4 On the basis of 

our clinical experience, we observed a healing response in 

more than 50% in AKs with the use of PXM, a reduction 

in the appearance of new lesions in patients with multiple 
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AKs. In the preliminary trial, we showed that PXM exerts 

a significant antitumorigenic effect, and new studies with 

increased number of patients validated our results.4 AK 

is considered as a precursor to SCC, and its eradication is 

mandatory in affected patients. The drug with a nonspecific 

COX-1 and COX-2 inhibitor action works on the early stages 

of skin carcinogenesis, and for this reason it is eligible for 

the treatment of AKs and the field cancerization. The lack 

of side effects and its efficacy allow the use of PXM for a 

longer time even up to 1 year.

Conclusion
PXM appears to be safe, effective, and well tolerated, 

although its use in AKs is still off-label. Further studies 

need to validate the use of PXM on NMSC, exploring its 

activity on different tumorigenesis pathways and on different 

histologic subtypes.
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