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Abstract: Systematic biological measurement of “cytogenetic endpoints” has helped 

phenomenally in assessment of risks associated with radiation exposure. There has been a surge 

in recent times for the usage of radioactive materials in health care, agriculture, industrial, and 

nuclear power sectors. The likelihood of radiation exposure from accidental or occupational 

means is always higher in an overburdened ecosystem that is continuously challenged to meet 

the population demands. Risks associated with radiation exposure in this era of modern industrial 

growth are minimal as international regulations for maintaining the safety standards are stringent 

and strictly adhered to, however, a recent disaster like “Fukushima” impels us to think beyond. 

The major objective of radiobiology is the development of an orally effective radio-modifier that 

provides protection from radiation exposure. Once available for mass usage, these compounds 

will not only be useful for providing selective protection against accidental and occupational 

radiation exposure but also help to permit use of higher doses of radiation during treatment of vari-

ous malignancies curtailing unwarranted adverse effects imposed on normal tissues. Bio-active 

compounds isolated from natural sources enriched with antioxidants possess unique immune-

modulating properties, thus providing a double edged benefit over synthetic radioprotectors. 

We aim to provide here a comprehensive overview of the various agents originating from plant 

sources that portrayed promising radioprotection in various experimental models with special 

emphasis on studies that used cytogenetic biomarkers. The agents will include crude extracts 

of various medicinal plants, purified fractions, and herbal preparations.

Keywords: cytogenetic biomarkers, medicinal plants, radioprotectors, radiation exposure

Overview of radiation-induced cytogenetic damage
Radiation is a form of energy that gets converted to other forms on absorption by matter 

thus resulting in cellular damage after exposure to radiation, however, the degree of dam-

age is dependent on the nature and quality of radiation as well as the type of cells being 

exposed. Additional factors such as age, sex, and species of the animal also play a great 

role in variation in degree of radiation damage. In contrast to other forms of radiation, 

ionizing radiation has the capacity to break chemical bonds, impart energy to living cells 

through random interactions with atoms, giving rise to ions and reactive radicals, these 

in turn cause molecular changes that may lead ultimately to biological injury. Due to the 

high incidence of deaths resulting from exposure to high radiation doses, these effects 

are prominently analyzed qualitatively and quantitatively. However, harmful biological 

effects from low doses of radiation cannot easily be detected and analyzed. Moderate 

doses of radiation are known to increase the likelihood of cancer and birth defects.  
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Lower doses may cause temporary cellular changes, but higher 

doses have a higher incidence of causing abnormalities.

Manifestation of biological effects is preceded by physi-

cal and chemical changes caused due to radiation energy 

deposition in the living materials. Radiation can produce 

damaging effects by transferring its energy directly to the 

target molecules of the cells or by deposition of energy to 

the molecules of water present in surroundings. Radicals are 

more predominant in causing damage to biological systems 

since, cells and tissues consist of approximately 80%–90% 

water.1 The prominent effect of radiation is by the indirect 

action of free radical generation in water, which subsequently 

reacts with vital biological molecules producing a variety 

of consequences such as genetic effects, cell death, and 

carcinogenesis.2

Ionizing radiation is an extremely competent potent 

cytotoxic mediator. It is expected that in cellular systems 

an X-ray dose of 1.5 Gy results in the production of 10-6 

radicals.3 Ionizing radiation causes cell death by targeting 

DNA and thus DNA double-strand breaks are accountable for 

the damage. However, damage to other biological molecules 

apart from DNA has also shown potential for cell death.4 

The structural aberrations can be produced in chromosomes 

by radiation at any stage of their mitotic cycle. When cells 

are irradiated just as they enter division, there is apparently 

some change in the surface properties of the chromosomes, 

which cause them to stick together. This stickiness has been 

attributed to a partial dissociation of the nucleoproteins and 

alterations in their pattern of organization.5 Thus, radiation-

induced structural chromosomal aberrations are probably 

due to double-strand breaks.6,7

The radiation-induced double-strand breaks are found to 

be highly deleterious, interfering with transcription/replica-

tion leading to chromosomal rearrangements responsible 

for various types of cancers.8 The double-strand breaks get 

repaired by non-homologous end joining and homologous 

recombination repair mechanisms.9 The template for repair 

in homologous recombination repair mechanism is served 

by homologous chromosome. However, the non-homologous 

end joining mechanism is a major mechanism and involves 

several steps. The erroneous repair of double-strand breaks 

is the cause of cell death, genomic instability, and hereditary 

diseases including cancer.

Available tools for assessment of 
radiation injury using cytogenetic 
biomarkers
It is known that the medical use of low-dose ionizing has a 

high risk for causing cancer development and children are 

more prone to have such exposures. It has been observed 

that the somatic DNA was found to be damaged in subjects 

who received low doses of diagnostic X-rays.10 High-linear 

energy transfer (LET) radiation exposure during space travel 

or cancer therapy is more damaging than low-LET radiation 

and may result in cell inactivation, genetic mutations, cata-

racts, and cancer. However, these endpoints are interrelated 

to chromosomal damage and may be utilized as a biomarker 

for radiation-induced damage (Table 1).

Conventional cytogenetic biomarkers
For assessment of radiation exposure, biological dosimetry uti-

lizing dicentric chromosomes analysis in human lymphocytes 

is a well-known method practiced since long ago along with 

physical dosimetry for radiation dose assessment in potentially 

overexposed people as well as for suspected exposures to 

estimate risk of health effects.11 Micronuclei, small satellite 

structures are the chromosomal fragments lacking centrom-

eres. The frequency of micronuclei is also commonly used 

as a cytogenetic biomarker. Another cytogenetic endpoint, 

cytokinesis-block micronucleus assay, is considered to be 

simple in terms of scoring criteria as a reliable and sensitive 

cytogenetic biomarker. The premature chromosome condensa-

tions assay is also being used for biological dosimetry follow-

ing radiation exposures. The main advantage of the premature 

chromosome condensations assay is that there is no need for 

cells to divide for evaluation of cytogenetic damage.12 Many 

authors have documented that cells exposed to radiation had 

significant increase in sister chromatid exchanges. The radia-

tion had great capacity to induce DNA damage and form stable 

chromosomal aberration. For dose assessment translocations 

can be used as biological dosimetry.

Molecular cytogenetic biomarkers
A relatively new developed technique, fluorescence in situ 

hybridization, has revealed unique endpoints related to 

radiation quality. It has now become possible to detect inter-

chromosomal and intra-chromosomal exchanges as well as 

distribution of the breakpoints of aberrations with the help of 

the mBAND technique. The cytokinesis-block micronucleus 

cytome assay is also being utilized to measure the cytogenetic 

damage induced by radiation. The single cell gel electropho-

resis or comet assay, developed for the evaluation of DNA 

single-strand breaks, utilizes the DNA migration as a measure 

of the DNA damage, however, the DNA double-strand breaks 

can be measured by neutral comet assay.13 With the devel-

opment of microarray formats, analysis of the chromosome 

damage of human peripheral lymphocytes is done with the 

modern technology of integration of techniques.14 The human 
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telomerase reverse transcriptase (hTERT)-immortalized cells 

have been found to be useful for determination of the effects 

of radiation. Double-strand break (DSB) repair pathways are 

responsible for maintaining genomic integrity, genetic insta-

bility, and neoplastic transformation. It has been speculated 

that DNA-PK plays an essential role in DNA double-strand 

break repair and maintenance of genomic integrity.

Modulation of radiation-induced 
cytogenetic damage by various 
medicinal plant products
It is well-known that ionizing radiation damages DNA 

through direct and indirect action. In the direct mechanism, 

the DNA structure is altered due to disrupted chemical 

bonds, whereas in the indirect mechanism, DNA interacts 

with the reactive free radicals like •OH, •H, and e-
aq

 gener-

ated by radiolysis of water. These reactive free radicals can 

be scavenged by compounds called scavengers thus having 

the ability to provide protection against damage caused by 

radiation. Therefore, it is of special interest to identify and 

develop effective agents which could be used for protec-

tion against radiation-induced genetic damage especially in 

humans. A series of chemicals like WR2721, WR1065, and 

S-(2-aminoethyl)isothiouronium bromide hydrobromide 

(AET) were studied but these chemical radioprotectors 

were found to have limitations in medicine due to their 

toxic side effects at effective doses. One of the avenues for 

non-toxic radioprotectors of plant origin has been explored 

Table 1 Tools for assessment of radiation injury using cytogenetic biomarkers

Cytogenetic biomarkers Particulars References

Conventional cytogenetic biomarkers
Total number of aberrations The radiation damage is quantified by scoring different types of chromosomal aberrations, 

and is considered to be one of the accurate technique among cytogenetic tools used as 
biological dosimeter. This technique is used to estimate the dose–response curves and is 
also popular in radiation biology for radioprotective studies.

82–89,160

Dicentrics and ring chromosomes For assessment of radiation exposure, biological dosimetry utilizing dicentric chromosomes 
analysis in human lymphocytes is a well-known method practiced since long ago, along with 
physical dosimetry for radiation dose assessment in potentially overexposed people as well 
as for suspected exposures to estimate risk of health effects.

11,90–101

Micronuclei assay/cytokinesis-block 
micronucleus assay

Micronuclei, small satellite structures, are the chromosomal fragments lacking 
centromeres. The frequency of micronuclei is variously used as cytogenetic biomarker. 
The cytokinesis-block micronucleus assay is simple in terms of scoring criteria and is a 
reliable and sensitive cytogenetic biomarker.

102–117

Sister chromatid exchanges Many authors have documented that cells exposed to radiation had significant increase in 
sister chromatid exchanges.

87,88, 
118,119

Translocations irradiation causes various types of DNA damage that lead to stable chromosomal 
aberration. Translocation chromosomal aberration is stable and can be used as biological 
dosimetry for dose assessment.

120–127

Premature chromosome 
condensation

The premature chromosome condensations assay is being used for biological dosimetry 
following radiation exposures. The main advantage of the premature chromosome 
condensations assay is that there is no need for cells to divide for evaluation of cytogenetic 
damage.

128–140

Molecular cytogenetic biomarkers
FiSH/chromosome painting/mBAND 
analysis

A relatively newly developed technique, FiSH has revealed unique endpoints related to 
radiation quality. it has now become possible to detect inter-chromosomal and intra-
chromosomal exchanges as well as distribution of the breakpoints of aberrations with the 
help of mBAND technique.

121,122, 
141,142

DNA-PK Double-strand break repair pathways are responsible for maintaining genomic integrity, 
genetic instability, and neoplastic transformation. it has been speculated that DNA-PK plays 
an essential role in DNA double-strand break repair and maintaining genomic integrity.

143–147

hTeRT (telomerase reverse 
transcriptase) and genomic instability

The hTeRT-immortalized cells have been found to be useful for determining the effects of 
radiation.

148–151, 
159

Cytokinesis-block micronucleus 
cytome assay

Development of microarray formats analysis of the chromosomal damage of human 
peripheral lymphocytes is done with the modern technology of integration of techniques. 
The cytokinesis-block micronucleus cytome assay is being utilized as radiation biological 
dosimetry specifically developed to assess various forms of chromosomal damage.

10,152–155

The single cell gel electrophoresis 
assay/comet assay

The single cell gel electrophoresis or comet assay, developed for the evaluation of DNA 
single-strand breaks utilizes DNA migration as a measure of the DNA damage, however, 
the DNA double-strand breaks can be measured by neutral comet assay.

13,15,156, 
157

Abbreviations: FISH, fluorescence in situ hybridization; mBAND, high resolution multicolor chromosome banding.
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in recent years, with the advantage of low or no toxicity at 

the effective doses.

Radioprotective effects of medicinal 
plants
Plant parts such as fruits, roots, stem/bark, leaves, and 

medicinal herbs have been found to have antioxidant capac-

ity due to the presence of phenolic compounds, vitamins, 

nitrogen compounds, terpenoids, and other metabolites. 

These compounds have been shown to possess antioxidant, 

immunostimulatory, and antimicrobial activity and to impart 

radioprotective effects (Table 2). Several studies have 

focused on screening of herbal-/plant-based drugs for the 

development of drug discovery.16

Adhatoda vasica
The radiomodulatory effect of A. vasica extract was studied 

through chromosomal analysis in bone marrow as well as 

histological and biochemical alterations in testis of mice.17 

A. vasica extract pretreatment was effective in increasing 

survival rate (dose reduction factor [DRF] =1.43) and reduc-

ing cytogenetic damage in irradiated mice. Thus, A. vasica 

extract was found to possess radioprotective properties.

Aegle marmelos
The protective effects of A. marmelos extract against radia-

tion were evaluated using micronucleus test.18,19 An increase 

in micronuclei frequency was noticed in an “irradiated alone” 

group while A. marmelos extract pretreatment was found to 

be effective in significantly reducing the cytogenetic damage 

in lymphocytes.

Alstonia scholaris
The cytogenetic alterations in mouse bone marrow were 

studied to assess the radioprotective effects of A. scholaris.20 

Increased frequencies of dicentrics and chromosomal aberra-

tions were reported after radiation exposure but A. scholaris 

bark extract pretreatment was effective in reducing the 

percentage of dicentrics and chromosomal exchanges sig-

nificantly, thus providing evidence for radioprotective 

potential.

Allium sativum (garlic)
The extract of A. sativum was evaluated for its radioprotective 

effects in mice.21 The extract of A. sativum was found to be 

effective in significantly reducing the frequencies of radiation-

induced micronucleated polychromatic erythrocytes. Also, 

different concentrations were studied against the clastogenic T
ab
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effects of known toxicants.22 A dose-dependent effect on the 

frequencies of damaged cells and chromosomal aberrations 

was observed. It has been recommended that administration 

of the extract for 30 days is required for protection against the 

clastogenic effects of genotoxicants used in the study.

Aphanamixis polystachya
The radioprotection of mice by A. polystachya extract was 

studied using cytogenetic biomarkers.23 The study demon-

strated that A. polystachya extract pretreatment resulted in 

a reduction of the cytogenetic damage in mice exposed to 

radiation.

Brassica campestris
The extract of B. campestris was found to be effective in pro-

tecting mice from chromosomal damage after irradiation.24 

The B. campestris extract pretreatment effectively reduced 

the frequencies of micronuclei in irradiated mouse bone 

marrow. The protection afforded by B. campestris was due 

to its antioxidant capacity.

Biophytum sensitivum
The extract of B. sensitivum was evaluated to study radio-

protection in mice.25 The animals pretreated with extract of 

B. sensitivum and exposed to radiation showed cytogenetic 

protection in terms of colony forming units in spleen (CFU-S) 

and immunomodulation was responsible for hematopoietic 

protection.

Bixa orellana
The radioprotective effects of B. orellana seed extract have 

been studied in mouse bone marrow through chromosomal 

aberration analysis.26 B. orellana extract pretreatment was 

found to be effective in significantly reducing aberrant meta-

phases and chromosomal aberrations in irradiated mice.

Citrus aurantium
The protective effects of citrus extract against irradiation have 

been studied in mouse bone marrow.27 It was observed that 

citrus extract pretreatment greatly reduced the cytogenetic 

damage in bone marrow. It was speculated that the flavonoid 

contents of citrus extract may be responsible for the protec-

tive activity against irradiation in mice.

Coleus aromaticus
The extract of C. aromaticus was evaluated for its radio-

protective effect in Chinese hamster fibroblast V79 cells.28 

It was revealed that C. aromaticus extract treatment before 

irradiation offered significant protection from DNA damage 

induced by irradiation in terms of cytogenetic biomarkers.

Crataegus microphylla
The extract of C. microphylla (hawthorn) was studied for 

radiation-induced genotoxicity in mouse bone marrow cells.29 

Administration of hawthorn extract before irradiation showed 

significant reduction in micronucleated polychromatic 

erythrocyte frequency in bone marrow cells of mice. It was 

speculated that radioprotection offered by hawthorn extract 

could be due to its antioxidant activity that helps in reducing 

the radiation-induced genotoxicity in mice.

Crotalaria retusa and Crotalaria mucronata
The extracts from C. retusa and C. mucronata were evaluated 

for their anticlastogenic effects against irradiation in mice.30 

The study showed that fruit extract of C. retusa caused a dose-

dependent increase in chromosomal aberration frequency 

in mouse bone marrow. The clastogenic effect of C. retusa 

fruit extracts in mouse bone marrow cells was attributed to 

the alkaloids.

Cynodon dactylon
The radiomodulatory potential of C. dactylon extract was 

studied.31 A significant reduction in micronucleated binucleated 

cells was observed in C. dactylon extract pretreated irradiated 

V79 cells and lymphocytes. Also, C. dactylon extract pretreat-

ment resulted in the significant reduction of percentage of 

micronucleated binucleated cells. Thus, the radioprotective 

effect of C. dactylon has been demonstrated.

Ginkgo biloba
The G. biloba extract was evaluated for its anticlastogenic 

activity.32 It has been demonstrated that clastogenic factors 

in the blood showed significant reduction after treatment of 

G. biloba extract for 60 days.

Haberlea rhodopensis
The radiomodulatory effect of H. rhodopensis extract was 

studied against gamma irradiation in peripheral blood 

lymphocytes of rabbits.33 It has been demonstrated that 

H. rhodopensis extract pretreatment was useful in reduc-

ing radiation-induced cytogenetic damage. Further it was 

demonstrated that the radioprotective as well as antioxidant 

potential of H. rhodopensis in rabbits suggested the need of 

in-depth investigations for identification of the protective 

compounds.34 The different concentrations of H. rhodopensis 

extract were injected into rabbits. The rabbits were exposed to 
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gamma-radiation, which showed dose-dependent reduction in 

frequency of chromosomal aberrations and micronuclei.35

Hippophae rhamnoides
The protective effect of H. rhamnoides extract against 

radiation-induced cytogenetic damage was studied in mice.36 

The H. rhodopensis extract treatment increased the survival 

rate in irradiated mice. It was observed that administration 

of H. rhamnoides alone did not enhance the micronuclei 

frequency but showed a dose-dependent decrease in micro-

nuclei frequency in pretreated irradiated mice, thus protecting 

against radiation-induced cytogenetic damage.

Mangifera indica
The M. indica extract was studied for evaluation of radiopro-

tection in human peripheral blood lymphocytes and lympho-

blastoid cells.37 Dose-dependent DNA damage was observed 

after M. indica extract treatment in human peripheral blood 

lymphocytes and lymphoblastoid cells, without altering the 

DNA repair capacity.

Mentha piperita
Administration of M. piperita extract before radiation expo-

sure in mice was found to provide protection in bone marrow 

cells.38 Pretreatment with M. piperita extract significantly 

reduced the number of aberrant cells and different chromo-

somal aberrations in irradiated mice. Also, M. piperita extract 

pretreatment was found to be effective in protecting against 

hematopoietic damage in bone marrow of irradiated mice by 

maintaining the erythropoietin level.39

Moringa oleifera
The radioprotective property of M. oleifera extract in mice 

has been studied.40 A significantly reduced number of micro-

nuclei and aberrant cells in M. oleifera extract pretreated 

irradiated animals was reported. However, fractionated 

administration of M. oleifera extract offered more protection 

in terms of survival of animals and chromosomal damage in 

bone marrow cells.

Nelumbo nucifera
Pretreatment with N. nucifera extract has been shown to 

provide protection against sickness and mortality in mice 

exposed to radiation.41 It was observed that N. nucifera extract 

effectively maintained spleen index and stimulated endog-

enous spleen colony forming units in mice. Also, a significant 

reduction in cytogenetic damage was noticed in bone marrow 

cells of N. nucifera extract pretreated irradiated animals.

Nigella sativa
The extract of N. sativa was studied in mice to evaluate its 

protection against radiation damage.42 It was observed that 

N. sativa extract pretreatment resulted in significant reduc-

tion in lipid peroxidation and intracellular reactive oxygen 

species in splenocytes. Also it was reported that N. sativa 

extract pretreatment increased the survival rate of irradiated 

animals indicating the radioprotective ability of N. sativa.

Ocimum sanctum
Chromosomal aberration analysis was carried out in mice 

to evaluate the radiation protective property of extract of 

O. sanctum.43 The pretreatment of mice with extract of 

O. sanctum provided faster recovery and helped in removal 

of aberration from the cell. It was found that extract of 

O. sanctum afforded in vivo protection against radiation and 

suggested free radical scavenging as a probable mechanism 

for radioprotection.

Panax ginseng
The radioprotective effect of P. ginseng extract (ginsan) was 

evaluated in bone marrow cells of mice.44 It has been shown 

that ginsan pre- or post-treatment resulted in a significant 

dose-dependent increase in frequency of micronucleated 

polychromatic erythrocytes in bone marrow cells, thus reduc-

ing radiation injury in mice.

Panax quinquefolius
The extract of P. quinquefolius has been studied for its 

radioprotective potential on human peripheral lymphocytes 

through cytogenetic biomarkers.45 It has been observed 

that ginseng extract treatment resulted in concentration-

dependent declined micronuclei yield in lymphocytes. 

Therefore, ginseng extract is considered to be a non-toxic 

natural product for dietary supplements as countermeasure 

for radiation risk.

Phyllanthus niruri
The extract of P. niruri has been evaluated in mouse bone 

marrow through chromosomal aberration analysis.46 It was 

noticed that administration of extract of P. niruri caused a 

significant decrease in chromosomal aberrations in irradi-

ated mice.

Podophyllum hexandrum
The extract of P. hexandrum was evaluated for its radio-

protective effects in mice.47,48 The studies showed that 

P. hexandrum provided cytogenetic protection in terms of 
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decreased radiation-induced micronuclei frequency and 

chromosomal aberrations in mouse bone marrow.

Spirulina platensis
Administration of extract of S. platensis before radiation 

exposure has shown significant protection in mouse bone 

marrow cells.50 It has been reported that S. platensis extract 

treatment reduced micronuclei frequency significantly in 

irradiated mice.

Withania somnifera and Plumbago rosea
The extracts of W. somnifera and P. rosea were studied 

for their effects on tumors.49 It was observed that extracts 

of W. somnifera and P. rosea had significantly reduced the 

CFU-S. Further these results have revealed that the effects of 

extracts of W. somnifera and P. rosea were radiosensitizing 

and tumor non-specific in nature.

Radioprotective effects of certain 
phytochemicals
It has been revealed that chromosomal aberrations are 

formed by interaction of free radicals with DNA and cause 

cytogenetic damage (Table 3). Such damage can be reduced 

significantly by agents that scavenge the free radicals, which 

are called antioxidants. Radiation is responsible for the pro-

duction of free radicals in cells, therefore, this damage can be 

minimized by antioxidants. Plants are abundantly available 

and contain a variety of flavonoids with antioxidant capacity 

and have become the prime focus of research in recent years 

in order to develop an effective radioprotector for use in the 

medical field. Therefore, researchers gained momentum to 

work for active principles of plants and isolated compounds. 

Also, it was more convenient, as it greatly reduced the amount 

to use, and determined the possible mechanisms involved in 

radioprotection at a cellular level.

Apigenin
Apigenin was evaluated for radioprotective effects on cell 

cultures exposed to radiation and showed a significant dose-

dependent elevation in the number of micronuclei, it was 

speculated that apigenin may further be studied to illustrate 

its possible role as promising radioprotective drug.51

Beta carotene
The radiation-induced cytogenetic damage in bone marrow 

of mice after beta carotene administration was evaluated 

by micronucleus test.55,161,163,164 It has been demonstrated 

that a significant decline in the number of micronucleated T
ab
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polychromatic erythrocytes (MnPCE) occurred when beta car-

otene was given orally to mice before radiation exposure.

Caffeine
The radioprotective property of caffeine was evaluated in 

mice with acute and chronic dosing as well as caffeine treat-

ment given before or after irradiation.52 It has been reported 

that acute doses of caffeine before or after irradiation were 

responsible for a reduction in the number of chromosomal 

aberrations. The different doses of caffeine were also studied 

for cytogenetic biomarkers in Chinese hamster V79 cells.53 

The various types of chromosomal aberrations were signifi-

cantly decreased with caffeine treatment.

Chlorogenic acid
The radiation-induced cytogenetic damage in bone marrow 

of mice after chlorogenic acid administration was evalu-

ated by micronucleus test.55 It has been demonstrated that a 

significant decline in the number of MnPCE occurred when 

chlorogenic acid was given orally to mice before radiation 

exposure.

Chlorophyllin
The effect of chlorophyllin was studied in mouse bone 

marrow using cytogenetic biomarkers to evaluate its radio-

protective properties.54 Radiation-induced micronucleated 

polychromatic erythrocytes were found to be significantly 

reduced in chlorophyllin treated irradiated animals.

Curcumin
The radiation-induced cytogenetic damage in bone marrow of 

mice after curcumin administration was evaluated by micro-

nucleus test.55,69 It has been demonstrated that a significant 

decline in the number of MnPCE occurred when curcumin 

was given orally to mice before radiation exposure.

eugenol
The radiation-induced genetic damage in bone marrow of 

mice after eugenol administration was determined using 

micronucleus test.56 Eugenol was found to afford signifi-

cant radioprotection through reduction in MnPCEs at post- 

irradiation interval. It has been revealed that eugenol provides 

radioprotection against oxidative stress and its possible role 

as radioprotector has been suggested.

Hesperidin
The radioprotective effects of hesperidin using micronu-

cleus test in irradiated mice were demonstrated.57,58 It has 
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been observed that hesperidin treatment had significant 

radioprotective activity in terms of cytogenetic biomarkers 

assessed in the bone marrow of mice.

Lycopene
The radioprotective potential of lycopene was assessed 

by cytogenetic biomarkers.59,162 It has been reported that 

lycopene-supplemented lymphocytes had a lower chromo-

somal aberration frequency.

Mangiferin
The radioprotective effects of mangiferin were evaluated 

by cytogenetic biomarkers in lymphocytes60 and lympho-

blastoid cells.37 The results of cytogenetic studies revealed 

that mangiferin has significant radioprotective potential 

and has the capacity to suppress radiation-induced DNA 

damage via free radicals in lymphocytes and lymphoblas-

toid cells.

Melatonin
The possible role of melatonin as radioprotector has been 

demonstrated through bone marrow chromosomal aberration 

analysis in mice.61,158 It has been observed that melatonin 

treatment before irradiation caused a decrease in aberrant 

cells as well as structural chromosomal aberrations. These 

cytogenetic biomarkers have provided the evidence for 

melatonin as radioprotector.

Naringin
Cytogenetic analysis was carried out to evaluate the radio-

protective effect of naringin in mice.62 It was observed that 

naringin pretreatment had a protective effect on cytogenetic 

endpoints.

Orientin
A radioprotective study was carried out in mouse bone 

marrow for evaluating orientin as radioprotector.63 It was 

observed that pretreatment with orientin provided signifi-

cant radioprotective activity in terms of DRF (1.6) based on 

CFU-S number. Thus it was demonstrated that orientin had 

protective effects against radiation-induced bone marrow 

damage and had great potential for protection of normal 

tissues during radiotherapy.

Propolis
Propolis was studied for radioprotection using cytogenetic 

biomarkers.15,64,65 It was noticed that the frequency of dicen-

trics was concentration-dependent and showed great potential 

in reducing the chromosomal aberration frequency. Thus, 

propolis had radioprotective effects probably through the 

enhancement of antioxidant and free radical scavenging 

activities.

Quercetin
Quercetin was evaluated for cytogenetic protection against 

radiation in plasmid DNA and lymphocytes by scoring 

micronuclei frequency.66 It was observed that quercetin treat-

ment significantly decreased the micronuclei and dicentric 

frequencies, demonstrating the anti-genotoxic potential of 

quercetin.

Resveratrol
Resveratrol was evaluated for protection against irradia-

tion using cytogenetic endpoints in mice.68 The resveratrol 

treatment had protective effects in vivo against irradiation 

in mice.

Rutin
Rutin was evaluated for protective effects against radiation 

damage.67 A significant decline in dicentric formation in 

the rutin treated group was observed, thus showing its anti-

genotoxic potential. It has been demonstrated that adminis-

tration of rutin prior to radiation exposure decreased DNA 

damage significantly.

Turmeric
The protective effect of turmeric against radiation-induced 

cytogenetic damage was evaluated in Chinese hamster ovary 

cells.69 It was demonstrated that turmeric had a radiomodula-

tory effect in Chinese hamster ovary cells.

vanillin
Vanillin was evaluated for cytogenetic protection against 

radiation in V79 cells by scoring micronuclei frequency 

and chromosomal aberration analysis.70 It was observed that 

vanillin treatment decreased the percentage of structural 

chromosomal aberrations and percentage of micronucleated 

binucleated cells, thus indicating protection against cytoge-

netic damage induced by X-ray.

vicenin
The radioprotective study was performed in mouse bone mar-

row to elucidate vicenin as radioprotector.63 It was observed 

that pretreatment with orientin had significant radioprotective 

activity evident from DRF (1.7) value. Thus it was demon-

strated that vicenin had protective effects against radiation-

induced bone marrow damage and had great potential for 

protection of normal tissues during radiotherapy.
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vinblastine
The cytogenetic analysis was carried out to evaluate the 

radioprotective effect of vinblastine in mouse bone mar-

row cells.71 The vinblastine pretreatment showed increased 

frequency of micronuclei with increasing radiation dose. It 

was noted that vinblastine pretreatment provided protection 

against cytogenetic damage induced by radiation in mice.

vitamin C and e
Pre- and post-treatment with vitamin C and E was found to 

be effective in protecting human lymphocytes against gamma 

irradiation in terms of micronuclei frequency.161 Furthermore, 

vitamin treatment did not show any adverse effects.

Zingerone
Zingerone was evaluated for its protective effects against 

radiation-induced cytogenetic damage in mice by micro-

nucleus test.72 It has been demonstrated that zingerone had 

a role in protecting against cytogenetic damage in mice as 

evident in survival assay and CFU-S studies.

Radioprotective effects of certain herbal 
preparations
Abana
A herbal preparation, abana, was studied to evaluate the radio-

protective effect in mice using micronucleus test.73 The results 

of the cytogenetic study revealed that pretreatment with abana 

had prevented radiation-generated damage in bone marrow of 

mice, which was evident in micronuclei frequency and ratio of 

polychromatic erythrocytes to normochromatic erythrocytes.

Brahma Rasayana
The hematopoietic protection effect of Brahma Rasayana 

on cancer patients undergoing radio/chemotherapy was 

demonstrated.74 It was observed that administration of 

Brahma Rasayana prevented the hematopoietic damage in 

terms of increase in total leukocytes, thus finding application 

as an adjuvant in cancer therapy.

Liv. 52
Cytogenetic analysis was carried out to evaluate the radio-

protective effect of Liv. 52 in mouse bone marrow cells.75 It 

was observed that Liv. 52 pretreated irradiated animals had 

significant recovery in cytogenetic endpoints studied.

Future perspectives
In recent years there has been a surge in the use of plant 

products for treatment of various illnesses including cancer. 

The use of plant-based medicine has limitations in terms of 

systematic studies carried out for each plant product. There-

fore, research must be done to acquire knowledge about the 

safe use of plant-based drugs before their possible use in 

medicine.76 Studies on pharmacokinetics and pharmacody-

namic properties including toxicity are essentially needed.77 

Quality control studies must focus on proper elucidation 

regarding evaluation process to report defined effects of the 

drug and factors such as age, sex, and species of the animal 

must also be considered.78 The damage induced by ionizing 

radiation in cells is modulated by various mechanisms and 

pathways.79 It has been suggested that radioprotectors protect 

cells by scavenging free radicals, or by hydrogen atom dona-

tion to repair sites of DNA damage.3,80 The deleterious effects 

of radiation are minimized by radioprotective agents, these 

agents are known to scavenge the reactive oxygen species 

thus preventing their immediate interaction with biochemical 

molecules.165 The plants have varied antioxidant capacities 

probably due to differences in their contents of chemical 

constituents thus resulting in inconsistent radioprotective 

effects.81 For instance, in human studies with carotenoids 

it was shown that carotenoids can protect against radiation 

but a high dose of single compound carotenoid led to high 

mortality.164 Several scientific studies16 have demonstrated 

the role of plants and phytochemicals for prevention of 

radiation-induced toxicity and damage thus demonstrating 

the significance, and demanding more attention.16 However, 

most of the studies have used either animal models or cell 

cultures and therefore, it is difficult to extend their validity 

in clinical settings thus causing a major limitation.166 In fact 

these studies throw light on the mechanism of action. Apart 

from applications in clinics, plants, herbal formulations, and 

phytochemicals may have a use in case of accidental exposure 

to radiation. However, considering relevance of the field of 

plant-based radioprotectors, plant extracts and plant-derived 

compounds must be stringently analyzed in different models 

of radiation injury.
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