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Dear editor
In the recently published paper by Zhang et al1 in Drug Des Develop Ther, the authors 

have evaluated the role of signal transducer and activator of transcription 3 (STAT3) 

in the antifibrotic activity of paclitaxel in vitro and in mice. They have reported that 

the treatment of paclitaxel at 2–4 µM reduced the level of phosphorylated STAT3 

at Tyr705 in a dose- and time-dependent manner, and downregulated the expression 

of fibronectin, α-smooth muscle actin (α-SMA), and collagen I in cultured rat renal 

interstitial fibroblast NRK-49F cells derived from normal kidney. Treatment of the 

cells with the selective STAT3 inhibitor S3I-201 at 50 mM suppressed the expression 

of fibronectin, α-SMA, and collagen I in NRK-49F cells. However, S3I-201 treat-

ment increased the expression of phosphorylated STAT1 but did not affect that of 

phosphorylated STAT5M. The immunoprecipitation assay has revealed that paclitaxel 

inhibited the STAT3 activity by disrupting the binding of STAT3 with tubulin inde-

pendently of the effect on STAT3 phosphorylation and by inhibiting STAT3 nucleus 

translocation.1 Furthermore, paclitaxel treatment by intraperitoneal injection at 

0.3 mg/kg twice a week ameliorated renal interstitial fibrosis by inhibiting the expres-

sion of fibronectin, α-SMA, and collagen I in a male C57 mouse model of unilateral 

ureteral obstruction. Paclitaxel administration also suppressed the infiltration of mac-

rophages and neutrophils and production of tumor necrosis factor (TNF)-α, interleukin 

(IL)-1β, transforming growth factor (TGF)-β, and intercellular adhesion molecule 1 

(ICAM-1) by inhibition of STAT3 activity in mouse obstructive nephropathy.1 These 

findings indicate that paclitaxel suppresses renal interstitial fibrosis via inhibition of 

STAT3-mediated pathway and production of proinflammatory cytokines. The findings 

from this study indicate that in addition to being a clinically used anticancer agent, 

paclitaxel may represent a new agent that manages renal fibrosis.

Through indication discovery or therapeutic switching, drugs that have been 

approved for clinical use may be used for new indications, and this process is called 

drug repositioning or drug repurposing.2–7 Drug repositioning is different from drug 

coincidence or “serendipity”, which arises from unintentional mishaps in the drug 

discovery process as exemplified by drugs such as sildenafil and thalidomide. Apart 

from the staggering manufacturing cost and time reduction, drug repositioning 

facilitates drug discovery that will overcome bottlenecks in the therapeutic develop-

ment process and prolong patent life, thereby obtaining largest investment return 

throughout the development process coupled with a significantly higher rate of suc-

cess and reduced development risk. The benefits of drug repositioning for patients 

are evident in that newly arising diseases such as severe acute respiratory syndrome 
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and Middle East respiratory syndrome that threaten human 

beings can be treated by existing drugs with established 

pharmacokinetic, formulation, and safety data in animals and 

humans where specific repositioning potential is displayed 

in the associated references.4,8 As such, drug repositioning 

may tremendously decrease the overall development time to 

3–12 years and decrease total cost and attrition rates. There 

are increasing numbers of successes in drug repositioning. 

For example, colesevelam as a bile acid sequestrant was 

originally developed as an adjunct to diet and exercise to 

decrease elevated low-density lipoprotein cholesterol in 

patients with primary hyperlipidemia as monotherapy, but it 

has also gained approval from the Food and Drug Administra-

tion (FDA) to treat type 2 diabetes mellitus with unknown 

mechanism of action.9–11 Gabapentin and pregabalin were 

both originally developed as antiepileptic agents; they have 

been approved by the FDA to treat anxiety disorders and 

neuropathic pain.12–14

There are multiple technical approaches for drug reposi-

tioning. The disease- and drug-derived approaches employ 

available data related to diseases and knowledge of how 

drugs interact with the biological systems at molecular 

and cellular levels to identify potential new indications 

for existing drugs.2,6,7 Computational methods have been 

widely applied to explore drug–protein interactomes, drug 

off-targets, and adverse drug effects that can provide clues 

of new indications. Furthermore, genome-wide association 

studies (GWAS), medical genetics, and data from systems 

biological approaches have been used to conduct drug 

repositioning.15–21 GWAS data provide insights into the 

biology and pathology of diseases via bioinformatic net-

work analysis, which may be translated into potential new 

therapeutic targets that can be hit by approved drugs. Since 

pathologies are often shared between diseases, existing 

drugs against known targets can be retested for possible 

new indications.

Genomic expression data in combination with in vitro 

drug screening and target verification studies provide insights 

into the mechanisms of action of drugs and thus have become 

widely used in drug repositioning.22–25 Recently, we have 

explored prediction of adverse drug reactions (ADRs) based 

on the drug-induced gene-expression profiles from cultured 

human cells in the Connectivity Map (CMap) database.26 

The results show that drugs inducing comparable ADRs 

generally lead to similar CMap expression profiles. On the 

basis of such ADR–gene expression association, we have 

established prediction models for various ADRs, including 

severe myocardial and infectious events. Drugs with FDA 

boxed warnings of safety liability have been identified. We, 

therefore, suggest that drug-induced gene expression change 

in combination with computational methods may offer a new 

way to facilitate systematic drug safety evaluation and drug 

repositioning.

In another study, we have demonstrated that the on-target 

and off-target effects of drugs could be characterized by 

drug-induced in vitro genomic expression data in CMap.24 In 

some cases, a family of ligands for the same target tends to 

interact with common off-targets, which may help increase 

the efficiency of indication discovery and explain the compli-

cated mechanisms of action for some drugs. We propose that 

CMap expression similarity is a new indicator of drug–target 

interactions, which can be used to increase the productivity 

during drug repositioning process.

Finding novel therapeutics to treat and cure diseases is 

a fundamental challenge in biomedical research due to the 

high cost and failure rate. Drug repositioning is considered 

a promising strategy to revitalize the slowing drug discovery 

pipeline due to shorter development time and lower failure 

and toxicity risks. Although drug repositioning has its intrin-

sic limitations, it represents an alternative pathway to achieve 

therapeutic success in the postgenomic era.

Disclosure
The authors report no conflict of interest in this work.
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