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Abstract: This study represents the first large-scale study on the chemical space of inhibitors of 

dipeptidyl peptidase-4 (DPP4), which is a potential therapeutic protein target for the treatment 

of diabetes mellitus. Herein, a large set of 2,937 compounds evaluated for their ability to 

inhibit DPP4 was compiled from the literature. Molecular descriptors were generated from 

the geometrically optimized low-energy conformers of these compounds at the semiempirical 

AM1 level. The origins of DPP4 inhibitory activity were elucidated from computed molecular 

descriptors that accounted for the unique physicochemical properties inherently present in the 

active and inactive sets of compounds as defined by their respective half maximal inhibitory 

concentration values of less than 1 μM and greater than 10 μM, respectively. Decision tree 

analysis revealed the importance of molecular weight, total energy of a molecule, topological 

polar surface area, lowest unoccupied molecular orbital, and number of hydrogen-bond donors, 

which correspond to molecular size, energy, surface polarity, electron acceptors, and hydrogen 

bond donors, respectively. The prediction model was subjected to rigorous independent testing 

via three external sets. Scaffold and chemical fragment analysis was also performed on these 

active and inactive sets of compounds to shed light on the distinguishing features of the functional 

moieties. Docking of representative active DPP4 inhibitors was also performed to unravel key 

interacting residues. The results of this study are anticipated to be useful in guiding the rational 

design of novel and robust DPP4 inhibitors for the treatment of diabetes.

Keywords: QSAR, decision tree, scaffold analysis, fragment analysis, antidiabetic, molecular 

docking, rational drug design

Introduction
Diabetes is a chronic disease and a major public health concern with an estimated global 

prevalence of 285 million.1 In the United States, 29.1 million (or approximately 9.3% of 

the population) have diabetes, in which 21 million and 8.1 million are diagnosed and undi-

agnosed, respectively.2 In fact, the estimated economic costs of diagnosed diabetes in the 

United States for 2012 was $245 billion, which increased from $174 billion in 2007.3

Given the multifaceted nature of diabetes, the search for robust drugs has been 

reported to entail a multitude of molecular targets.4,5 Dipeptidyl peptidase-4 (DPP4) 

has emerged as a promising therapeutic route for the treatment of type 2 diabetes 

(T2D) because it regulates glucose homeostasis.6 DPP4 is a serine protease that medi-

ates the cleavage of two endogenous incretin hormones consisting of glucagon-like 

peptide and glucose-dependent insulinotropic polypeptide. Upon food ingestion, 

intestinal cells secrete these incretin hormones targeting pancreatic β-cells to stimu-

late insulin release. Generally, these two hormones exert a great effect on reducing 

blood glucose concentration; however, the rapid degradation of these hormones by 

DPP4 in T2D results in persistent high glucose level.7 Therefore, the inhibition of 
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DPP4 reduces blood glucose by preventing the degradation 

of these incretin hormones. Several DPP4 inhibitors have 

been released on the market, beginning with sitagliptin in 

2006, vildagliptin in 2007, saxagliptin in 2009, alogliptin 

in 2010, linagliptin in 2011, and, finally, teneligliptin in 

2012.8 Generally, DPP4 inhibitors are considered to afford 

a favorable safety profile,9,10 although rare side effects  

(ie, angioedema, hemolysis, leucopenia, rheumatoid arthritis, 

and drug-induced acute hepatic injury) have been docu-

mented but with low incidence.11 Thus, there is ample room 

for additional improvement of the inhibitory and pharma-

cokinetic properties of DPP4 inhibitors. Medicinal chemistry 

approaches have been instrumental in the development of 

DPP4 inhibitors by facilitating the investigation of substituent 

effects in the quest for improved potency.8,12 Complementing 

the effort of medicinal chemistry is computer-aided drug 

design, of which chemical space exploration and quantita-

tive structure–activity relationship (QSAR) methods are 

employed in this study. The former entails exploration of the 

chemical space to gain insights on the molecular complexity 

of investigated compounds. The latter enables the correlation 

of molecular structure with its respective biological activity 

via multivariate learning methods.13,14

The availability of public databases of bioactivity sig-

nificantly lowers the barriers for large-scale investigation 

of the structure–activity relationship for compounds of 

interest15,16 and leads to accelerated drug discovery efforts. 

This study takes advantage of bioactivity data compilation 

of DPP4 inhibitors available from the BindingDB.17 To the 

best of our knowledge, this study represents the first large-

scale chemical space exploration and QSAR investigation 

of DPP4 inhibitory activity. Chemical space exploration was 

achieved by exploratory data analysis, cluster analysis, and 

chemical substructure analysis, whereas QSAR analysis was 

performed using decision tree (DT) analysis. A schematic 

representation of the computational workflow is summarized 

in Figure 1.

Material and methods
Compilation of the dataset
A large compilation of known compounds with inhibitory 

activity against DPP4 was extracted from the BindingDB,17 

which constituted 138 original articles. This nonredundant 

dataset comprises 2,937 compounds with the associated 

bioactivity reported as half maximal inhibitory concentration 

(IC
50

) values. An IC
50

 cutoff value of 1 μM was employed 

to categorize compounds as “actives”, whereas a cutoff 

value of 10 μM was utilized to categorize compounds 

as “inactives”, which resulted in subsets of 2,075 and 534, 

respectively. The remaining 328 compounds exhibiting 

Internal
set

External set

Three external
sets

Calculation of molecular
descriptors
   Univariate analysis
   Principal component analysis 

Construct QSAR model
based on J48 algorithm 

Prediction active and
inactive DPP4 inhibitors 

Chemical substructure analysis
Molecular docking
Scaffold analysis

■
■
■

•
•

Figure 1 Schematic representation of the computational workflow.
Abbreviation: QSAR, quantitative structure–activity relationship.
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intermediate bioactivity were not considered in this study 

due to their dubious nature while the subset of 2,609 was 

subjected to further investigations. Data imbalance observed 

for the active and inactive classes was addressed by subject-

ing the 2,075 actives to fuzzy C-means clustering,18 which 

produced a final dataset consisting of 588 actives and 534 

inactives (DPP4-TRN).

The constructed predictive model was rigorously 

validated against three external validation sets. To show 

the ability of predictive models for filtering inactives, in the 

present study, three external validation sets were employed 

as negative control and were compiled from the BindingDB 

as follows: 1) random selection of active and inactive 

inhibitors against a wide range of human target proteins 

(DPP4-TEST1); 2) random selection of active and inactive 

inhibitors against other human proteases (DPP4-TEST2); 

and 3) random selection of active and inactive inhibitors 

against other human DPP types such as DPP1, DPP2, and 

DPP7 (DPP4-TEST3).

According to the applicability domain, the robustness 

of a QSAR model applies well for predicting the activity of 

compounds belonging to similar chemotypes as those used 

as the training data for constructing the predictive model.19 

Thus, applicability domain was applied by selecting com-

pounds to include in the external validation sets. Tanimoto 

coefficient is a commonly used metric for measuring the 

similarity between compounds of the internal and external 

sets, which varies between 0 (total lack of similarity) and 1 

(compound from the internal set is identical to a compound 

in the external set). Herein, the average Tanimoto coefficient 

value was used as the cutoff for selection of compounds 

to include in the external validation sets.20–22 Finally, the 

remaining DPP4-TEST1, DPP4-TEST2, and DPP4-TEST3 

consisted of 149, 160, and 167 compounds, respectively.

Calculation of molecular descriptors
The molecular structures of the investigated compounds 

were converted to three-dimensional structures from their 

simplified molecular-input line-entry system notation using 

MarvinSketch, version 6.2.1, from ChemAxon (ChemAxon 

Ltd., Budapest, Hungary).23 The file format of these struc-

tures was then converted to the appropriate file format using 

Babel, version 3.3,24 for subsequent geometry optimization 

at the B3LYP/6-31G(d) level in Gaussian 09.25 Our previ-

ous chemical space exploration of aromatase inhibitors was 

performed using a set of 13 descriptors selected to represent 

the general properties of a molecule.26 Given the readily inter-

pretative nature, this set of descriptors was also employed 

for this investigation. This set of descriptors included the 

following: 1) mean absolute charge (Q
m
); 2) energy; 3) dipole 

moment; 4) highest occupied molecular orbital (HOMO); 5) 

lowest unoccupied molecular orbital (LUMO); 6) energy gap 

between the HOMO and LUMO states (HOMO–LUMO); 7) 

molecular weight (MW); 8) rotatable bond number (RBN); 9) 

number of rings (nCIC); 10) number of hydrogen bond donors 

(nHDon); 11) number of hydrogen bond acceptors (nHAcc); 

12) Ghose–Crippen octanol–water partition coefficient 

(ALogP); and 13) topological polar surface area (TPSA).

Univariate analysis
Univariate statistical approaches were employed to perform 

exploratory data analysis. Specifically, six descriptive 

statistical parameters were used to summarize the afore-

mentioned set of 13 descriptors. These parameters consisted 

of the minimum (Min), first quartile (Q1), median, mean, 

third quartile (Q3), and maximum (Max) of the dataset. Box 

plots were applied to visualize the relative distribution of 

the values for each investigated variable; this involved the 

analysis of a set of 13 descriptors to identify the descriptors 

that exert great influence on the active and inactive classes 

of DPP4 inhibitors. Histograms were used to visualize and 

estimate the  distribution  of active and inactive classes of 

DPP4 inhibitors. Furthermore, the P-value was used to assess 

whether active and inactive classes of DPP4 inhibitors were 

significantly different using Student’s t-test.27

Principal component analysis
Principal component analysis (PCA) is an unsupervised 

learning approach that groups data into related clusters in 

an a priori fashion. Practically, the PCA approach reduces 

the dimensionality of the dataset, while most of the informa-

tion of the original dataset is preserved.28 This approach is 

performed by identifying directions, so-called principal com-

ponents (PCs), along which variation in the data is maximal. 

In practice, PCs are obtained by calculating eigenvectors 

and eigenvalues of a data covariance (or correlation) matrix. 

The eigenvector associated with the largest eigenvalue has a 

direction that is identical to the first PC (PC1), whereas the 

eigenvector associated with the second largest eigenvalue 

determines the direction of the second PC (PC2) and so forth. 

In performing PCA analysis, a dataset is represented by a 

small number of PCs, in contrast to the initially large number 

of variables present in the original dataset.29 In this study, 

PCA was performed on a set of 13 molecular descriptors, as 

described in the previous section. Prior to PCA analysis, all 

data were standardized to a comparable scale by transforming 
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variables to zero mean and unit variance. Active and inactive 

classes of DPP4 inhibitors were individually calculated using 

the FactoMineR30 package of the R statistical language.

DT analysis
A DT is composed of a hierarchical arrangement of nodes 

and branches in which the nodes represent the molecular 

descriptors, whereas the branches refer to decision rules 

to categorize compounds as actives and inactives. DT has 

been successfully applied in the analysis of various types 

of compounds, such as aromatase inhibitors,26 volatile 

organic compounds,31 and cytochrome P450-interacting 

compounds.32 A DT was constructed with WEKA, ver-

sion 3.6,33 using the J48 algorithm (a Java implementation 

of the C4.5 algorithm). C4.5 establishes a DT by iteratively 

appending features having high information gains.34 Finally, 

C4.5 automatically calculates the feature usage obtained 

from the full DT or collection of rules. Molecular descrip-

tors having the highest feature usage are considered to be 

the most important features.

Chemical substructure analysis
In preparation for substructure analysis, the chemical struc-

tures of all DPP4 inhibitors were generated in structure-data 

file (SDF) format using MarvinSketch, followed by append-

ing the bioactivity label to the SDF files using an in-house 

text processing tool coded in C++. Substructure analysis was 

performed using the Fragmenter and FragmentStatistics 

components of JChem version 14.8.18.0.35 Fragmenter pro-

cessed the activity-tagged SDF file by generating molecular 

fragments according to the FragmenterAll protocol. Produced 

fragments were analyzed using the FragmentStatistics 

toolkit, whereby fragments were categorized as actives and 

inactives using pIC
50

 cutoff values of 6 and 5, respectively. 

Subsequently, fragments were assigned molecular scores 

according to the following equation:

	 Molecular score = N
atom

 × (N
active

 - N
inactive

)� (1)

where N
atom

 denotes the atom count of a given fragment of 

interest, whereas N
active

 and N
inactive

 represent the number of 

occurrences of the fragment in the active and inactive classes, 

respectively.

Molecular docking and binding mode 
analysis
Molecular docking was performed to gain insights on how 

the inhibitors bind DPP4. Geometrically optimized structures 

of each compound were docked with the crystal structure of 

DPP4 catalytic domain (PDB code 3C45, resolution of 2.05 Å)  

using AutoDock version 4.2.6,36 in which the rotational 

bonds of compounds were treated as flexible whereas those 

of DPP4 were rigid. United atom model was applied to 

both protein and ligand structures. Grid boxes were created 

to cover the inhibitor-binding site of the protein with the 

grid spacing of 0.375 Å while the co-crystalized ligand site 

was set as the center of the box. The Lamarckian genetic 

algorithm with 50 runs was used as the search parameter in 

which the population size was set at 150 and the Max number 

of energy evaluations was set to the high level. The anchor-

binding mode of ligand docking poses with the lowest bind-

ing energy to the DPP4 active site was subsequently analyzed 

by the SiMMap server.37 Three-dimensional models of the 

binding mode were visualized with PyMOL version 1.3.38

Results and discussion
Univariate analysis of active and inactive 
DPP4 inhibitors
The number of active and inactive DPP4 inhibitors compiled 

in this study was 2,075 and 534, respectively. Table 1 displays 

the six descriptive statistical parameters that offer the follow-

ing advantages for summarizing the data: 1) the median and 

mean provide a measure of the centrality of the data; 2) the 

Min and Max indicate the data range; and 3) Q1 and Q3 pro-

vide the lower and upper boundaries, respectively, of the data. 

Furthermore, histograms shown in Figure 2 afford a graphical 

display of the data as tabulated frequencies of bars derived by 

binning continuous values into several data ranges. Figure 2A 

shows the distribution of active and inactive DPP4 inhibitors 

as red and blue bars, respectively, whereas the overlapping 

region is shown in purple. Figure 2B, which will be discussed 

in further details in the “Analysis of active DPP4 inhibitors” 

section, displays the distribution of two subsets of active DPP4 

inhibitors that will be referred to as active I and active II.

MW is a general measure of the molecular size, and 

actives were found to be larger than inactives, with P0.001, 

Q1 =340.9, median =386.5, mean =385.8, and Q3 =430.5 for 

actives, and Q1 =238.4, median =303.9, mean =315.1, and 

Q3 =359.5 for inactives (Table 1). As shown in Figure 2A, 

the distributions of actives and inactives were normal and 

positively skewed, respectively.

RBN is the number of rotatable bonds in a molecule and 

provides a relative measure of molecular flexibility. RBN is 

defined as any single bond, not in a ring, bound to a nonter-

minal heavy atom. Amide C–N bonds are excluded from the 

count because of their high rotational energy barrier. Actives 
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Table 1 Exploratory data analysis of actives and inactives using the six-term descriptive statistics

Statistics MW RBN nCIC nHDon nHAcc ALogP TPSA Qm Energy Dipole 
moment

HOMO LUMO HOMO– 
LUMO

Actives
Min 167.2 0.000 0.000 0.000 1.000 -2.936 29.260 0.137 -0.908 0.747 -0.572 -0.298 0.217
Q1 340.9 4.000 3.000 2.000 5.000 0.586 72.800 0.202 -0.260 4.075 -0.354 -0.039 0.301
Median 386.5 5.000 3.000 3.000 7.000 1.571 85.250 0.217 -0.123 5.831 -0.343 -0.025 0.314
Mean 385.8 5.008 3.155 2.735 6.897 1.566 89.490 0.222 -0.144 9.842 -0.352 -0.035 0.318
Q3 430.5 6.000 4.000 3.000 8.000 2.586 103.660 0.236 -0.017 8.111 -0.331 -0.008 0.332
Max 753.8 16.000 6.000 9.000 16.000 6.598 234.780 0.535 0.488 284.562 -0.286 0.047 0.386

Inactives
Min 128.2 1.000 0.000 0.000 1.000 -2.485 3.240 0.142 -1.281 0.629 -0.490 -0.154 0.242
Q1 238.4 3.000 2.000 1.000 4.000 0.848 47.720 0.193 -0.172 2.890 -0.344 -0.022 0.310
Median 303.9 4.000 2.000 2.000 5.000 1.806 72.350 0.209 -0.097 3.961 -0.338 -0.005 0.331
Mean 315.1 4.605 2.609 2.375 4.991 1.859 72.002 0.213 -0.119 4.443 -0.337 -0.007 0.331
Q3 359.5 6.000 3.000 3.000 6.000 2.949 88.840 0.231 -0.048 5.262 -0.329 0.011 0.347
Max 1,174.6 36.000 6.000 11.000 25.000 7.528 351.810 0.346 0.139 42.433 -0.290 0.100 0.414

Abbreviations: ALogP, Ghose-Crippen octanol-water partition coefficient; HOMO, highest occupied molecular orbital; HOMO-LUMO, energy gap between the HOMO 
and LUMO states; LUMO, lowest unoccupied molecular orbital; Max, maximum; Min, minimum; MW, molecular weight; nCIC, number of rings; nHAcc, number of hydrogen 
bond acceptors; nHDon, number of hydrogen bond donors; Q1, first quartile; Q3, third quartile; Qm, mean absolute charge; RBN, rotatable bond number; TPSA, topological 
polar surface area.

Figure 2 (Continued)
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Figure 2 Histograms of the molecular descriptors for actives/inactives (A) and active I/active II DPP4 inhibitors (B).
Notes: Actives/active I and inactives/active II are shown in red and blue, respectively; purple regions represent their overlap.
Abbreviations: ALogP, Ghose–Crippen octanol–water partition coefficient; HOMO, highest occupied molecular orbital; HOMO–LUMO, energy gap between the HOMO 
and LUMO states; LUMO, lowest unoccupied molecular orbital; MW, molecular weight; nCIC, number of rings; nHAcc, number of hydrogen bond acceptors; nHDon, 
number of hydrogen bond donors; Qm, mean absolute charge; RBN, rotatable bond number; TPSA, topological polar surface area.

were found to have higher RBN values than their inactive 

counterparts, thereby implying the importance of molecular 

flexibility for DPP4 inhibitory activity. Corresponding 

values of Q1 =4.0, median =5.0, mean =5.0, and Q3 =6.0 

were obtained for actives, whereas values of Q1 =3.0, 

median =4.0, mean =4.6, and Q3 =6.0 were obtained for 

inactives. Although the distribution of actives and inactives 

are both positively skewed, the RBN values for actives are 

greater than those for inactives. Remarkably, all of these 

results indicated that the number of rotatable bonds in a 

molecule between active and inactive DPP4 inhibitors was 

slightly different, with P=0.001.

The nCIC is calculated as the cardinality of the set of 

independent rings known as the smallest set of smallest rings. 

The nCIC from actives was higher than that from inactives 

(P0.001), affording values of Q1 =3.000, median =3.000, 

mean =3.155, and Q3 =4.000 for actives, and Q1 =2.000, 

median =2.000, mean =2.609, and Q3 =3.000 for inactives.

nHDon is the number of hydrogen bond donors present 

in a molecule. The mean of nHDon in actives (2.735±1.202) 

was higher than that in inactives (2.375±1.355). A six-num-

ber statistical descriptive confirmed that active and inactive 

DPP4 inhibitors differed from each other, with values in the 

range of [0.000, 9.000] and [0.000, 11.000], respectively; for 

active DPP4 inhibitors, median =3.000, mean =2.735, and 

Q3 =3.000, and for inactive DPP4 inhibitors, median =2.000, 

mean =2.373, and Q3 =3.000. Furthermore, the histogram for 

active DPP4 inhibitors does not differ from that of inactive 
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DPP4 inhibitors. Notably, all of these results indicated that 

the nHDon between active and inactive DPP4 inhibitors was 

significantly different, with P0.001.

nHAcc represents the number of hydrogen bond acceptors 

present in a molecule. The mean values of rotatable bonds 

of DPP4 inhibitors are in the range of 6.897±2.122 (active) 

and 4.991±2.217 (inactive), whereas the values of descrip-

tive statistics are Min =1.000, Q1 =5.000, median =7.000, 

mean =6.897, Q3 =8.000, and Max =16.000 for active DPP4 

inhibitors, and Min  =1.000, Q1  =4.000, median  =5.000, 

mean  =4.991, Q3  =6.000, and Max  =25.000 for inactive 

DPP4 inhibitors. The histograms of these two inhibitor 

classes were found to differ from each other. These results 

indicated that the nHAcc for active and inactive DPP4 inhibi-

tors was significantly different, with P0.001.

ALogP is a computational estimation of the logarithm 

of the 1-octanol/water partition coefficient, and it is a well-

known measure of molecular hydrophobicity. The mean 

values of ALogP are 1.556±1.488 and 1.859±1.691 for 

active and inactive DPP4 inhibitors, respectively, which 

are different, and the values of descriptive statistics con-

firm this finding, with values of Min =-2.936, Q1 =0.586, 

median =1.571, mean =1.566, Q3 =2.586, and Max =6.598 

for active DPP4 inhibitors, and Min =-2.485, Q1 =0.848, 

median =1.806, mean =1.859, Q3 =2.949, and Max =7.528 

for inactive DPP4 inhibitors. Additionally, the histograms 

of active and inactive DPP4 inhibitors were significantly 

different, with P0.001.

TPSA is an empirical measure of the polar surface area of 

a molecule, and it describes the contribution of polar atoms to 

the molecular charge. TPSA is frequently used in the study of 

drug transport properties such as intestinal absorption10 and 

blood–brain barrier permeability.11 High TPSA, in addition to 

indicating that the molecule possesses a complex surface charge 

environment, also indicates that the molecule inherently pos-

sesses poor membrane permeability and would need to rely on 

active transport, such as membrane-bound receptors. The mean 

value of active DPP4 inhibitors (89.490±26.130) is greater than 

that of inactive DPP4 inhibitors (72.002±32.154); moreover, 

a six-number statistical descriptive confirms that the charac-

teristics of active and inactive DPP4 inhibitors differ, with 

Min =29.260, Q1 =72.800, median =85.250, mean =89.490, 

Q3 =103.660, and Max =234.780 for active DPP4 inhibitors, 

and Min =3.240, Q1 =47.720, median =72.350, mean =72.002, 

Q3 =88.840, and Max =351.810 for inactive DPP4 inhibitors. 

These results indicated that the overall pattern of active and 

inactive DPP4 inhibitors, including the histogram shape in 

Figure 2A, were significantly different, with P0.001.

Q
m
 is a global measure of the molecular charge. The 

mean values of active and inactive DPP4 inhibitors are 

0.222±0.034 and 0.213±0.030, respectively. Histograms of 

these two inhibitor classes were significantly different, with 

P0.001. A six-number statistical descriptive confirms this 

finding, with range values of [0.137, 0.535] for active DPP4 

inhibitors and [0.142, 0.346] for inactive DPP4 inhibitors, 

whereas the top quartiles are [0.202, 0.236] for active DPP4 

inhibitors and [0.193, 0.231] for inactive DPP4 inhibitors. 

Energy is the sum of the atomic energy. The mean values 

of active and inactive DPP4 inhibitors are -0.144±0.183 

and -0.119±0.129, respectively. Notably, the distributions 

of these two inhibitor classes are significantly different, 

with P0.001. Furthermore, the six-number statistical 

descriptive indicates that active DPP4 inhibitors differ from 

inactive DPP4 inhibitors, ie, Min  =-0.908, Q1  =-0.260, 

median =-0.123, mean =-0.144, Q3 =-0.017, and Max =0.488  

for active DPP4 inhibitors, whereas Min  =-1.281, 

Q1 =-0.172, median =-0.097, mean =-0.119, Q3 =-0.048, 

and Max =0.139 for inactive DPP4 inhibitors.

The dipole moment is a measure of the asymmetric 

distribution of charge in a molecule, where a low value sug-

gests minimal charge distribution and vice versa. Table 1 

indicates that the average value of active DPP4 inhibitors 

(9.842±15.038) is greater than that of inactive DPP4 inhibi-

tors (4.443±3.303). The different patterns of these two 

DPP4 inhibitor classes are also indicated by a six-number 

statistical descriptive. The 6-number statistical descrip-

tive of active DPP4 inhibitors consisted of Min  =0.747, 

Q1  =4.075, median  =5.831, mean  =9.842, Q3  =8.111, 

and Max =284.562, whereas that of inactive DPP4 inhibi-

tors consisted of Min =0.629, Q1 =2.890, median =3.961, 

mean =4.443, Q3 =5.262, and Max =42.433. The ranges of 

active and inactive DPP4 inhibitors were dramatically dif-

ferent, with values of [0.747, 284.562] and [0.629, 42.433], 

respectively, as shown in the corresponding histograms. 

Notably, these results indicated that the characteristics of 

active and inactive DPP4 inhibitors were significantly dif-

ferent, with P0.001.

The HOMO and LUMO are the highest- and lowest-

energy molecular orbitals that are occupied by electrons. 

The mean values of HOMO and LUMO in active and 

inactive DPP4 inhibitors are -0.352±0.038/-0.337±0.019 

and -0.035±0.049/-0.007±0.031, respectively. The values 

of HOMO range from [-0.572, -0.286] for active DPP4 

inhibitors and [-0.490, -0.290] for inactive DPP4 inhibitors, 

whereas the values of LUMO range from [-0.289, 0.047] for 

active DPP4 inhibitors and [-0.154, 0.100] for inactive DPP4 
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Table 2 Exploratory data analysis of subclasses of actives (I and II) using the six-term descriptive statistics

Statistics MW RBN nCIC nHDon nHAcc ALogP TPSA Qm Energy Dipole  
moment

HOMO LUMO HOMO– 
LUMO

Actives I
Min 167.2 0.000 0.000 0.000 1.000 -2.936 29.260 0.137 -0.908 0.747 -0.572 -0.298 0.217
Q1 333.5 3.000 3.000 2.000 5.000 0.637 73.250 0.203 -0.264 3.998 -0.353 -0.036 0.303
Median 381.0 5.000 3.000 3.000 7.000 1.587 85.250 0.219 -0.133 5.675 -0.343 -0.023 0.317
Mean 381.9 5.000 3.103 2.636 6.961 1.585 89.980 0.224 -0.154 7.976 -0.350 -0.029 0.320
Q3 429.4 6.000 4.000 3.000 8.000 2.577 104.670 0.237 -0.041 7.635 -0.331 -0.006 0.334
Max 753.8 16.000 6.000 9.000 16.000 6.598 234.780 0.535 0.488 80.233 -0.286 0.047 0.386

Actives II
Min 202.4 2.000 1.000 1.000 3.000 -2.163 47.950 0.162 -0.695 1.035 -0.492 -0.155 0.243
Q1 375.5 4.000 3.000 3.000 5.000 0.350 69.460 0.200 -0.216 4.861 -0.411 -0.127 0.293
Median 403.4 5.000 3.000 3.000 6.000 1.504 84.660 0.210 -0.034 7.328 -0.349 -0.035 0.305
Mean 407.0 5.052 3.431 3.263 6.557 1.463 86.870 0.217 -0.093 19.814 -0.367 -0.062 0.304
Q3 435.4 6.000 4.000 4.000 8.000 2.641 101.040 0.224 0.068 33.395 -0.332 -0.023 0.316
Max 658.7 16.000 6.000 7.000 14.000 4.985 188.480 0.390 0.271 284.562 -0.307 0.037 0.386

Abbreviations: ALogP, Ghose–Crippen octanol–water partition coefficient; HOMO, highest occupied molecular orbital; HOMO–LUMO, energy gap between the HOMO 
and LUMO states; LUMO, lowest unoccupied molecular orbital; Max, maximum; Min, minimum; MW, molecular weight; nCIC, number of rings; nHAcc, number of hydrogen 
bond acceptors; nHDon, number of hydrogen bond donors; Q1, first quartile; Q3, third quartile; Qm, mean absolute charge; RBN, rotatable bond number; TPSA, topological 
polar surface area.

inhibitors. The top quartiles for HOMO are [-0.354, -0.331] 

for active DPP4 inhibitors and [-0.344, -0.329] for inactive 

DPP4 inhibitors, whereas the top quartiles for LUMO are 

[-0.039, -0.008] for active DPP4 inhibitors and [-0.022, 

0.011] for inactive DPP4 inhibitors. Remarkably, the histo-

grams of HOMO and LUMO indicate that the distributions 

of active and inactive DPP4 inhibitors are significantly dif-

ferent, with P0.001.

HOMO–LUMO is the energetic difference between the 

HOMO and LUMO states. HOMO–LUMO is a measure 

of kinetic stability and chemical reactivity, as HOMO 

and LUMO descriptors play fundamental roles in electron 

donation and acceptance. A large gap suggests high kinetic 

stability and low chemical reactivity because it is energeti-

cally unfavorable to add electrons to a high-lying LUMO 

or to extract electrons from a low-lying HOMO to form the 

activated complex of a potential reaction. Conversely, a mol-

ecule with a small or no HOMO–LUMO is chemically reac-

tive. The mean values of HOMO–LUMO are 0.318±0.026 

and 0.331±0.029 for active and inactive DPP4 inhibitors, 

respectively. The distributions of active and inactive DPP4 

inhibitors are quite different. Additionally, the six-number 

statistical descriptive confirms this finding, with range val-

ues of [0.217, 0.386] for active DPP4 inhibitors and [0.242, 

0.414] for inactive DPP4 inhibitors, whereas the lower and 

upper boundaries are [0.301, 0.332] for active DPP4 inhibi-

tors and [0.310, 0.347] for inactive DPP4 inhibitors. These 

results indicate that the characteristics of active and inactive 

DP4 inhibitors were significantly different, with P0.001.

All of these results indicated that nearly all of the 

13 descriptors were significantly different between the 

two inhibitor classes at the level of P0.001 except for 

RBN (P=0.001). With the exception of RBN descriptors, 

the remaining descriptors are significantly different for 

active and inactive DPP4 inhibitors and are efficient for 

discrimination.

PCA analysis of active and inactive  
DPP4 inhibitors
In this study, the 13 descriptors were analyzed by utiliz-

ing the first three PCs because the amount of cumulative 

variation of these PCs is as high as 70% of the original 

variance, as shown in Figure S1. Scores and loadings plots 

are presented in Figure 3A for actives (top row) and inac-

tives (bottom row, bottom-left). Tables S1 and S2 show 

the loadings and contribution values, respectively, of each 

descriptor to the component. The contribution value of each 

descriptor can be obtained by the ratio of the squared factor 

score of this observation by the eigenvalue associated with 

that component.12

PC1 retained 27.93% and 35.06% of the original variance 

for active and inactive DPP4 inhibitors, respectively. 

Figure S1 indicates that the percentage of variance of 

inactive DPP4 inhibitors was higher than that of active 

DPP4 inhibitors. In Table S1 and Figure 3A (top-right), 

PC1 separates HOMO–LUMO from MW, RBN, nHDon, 

nHAcc, and TPSA for active DPP4 inhibitors, whereas in 

Figure 3A (bottom-right), PC1 separates energy from MW, 
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RBN, nHAcc, TPSA, and Q
m
 for inactive DPP4 inhibitors. 

For loadings score analysis, PC1 highly correlated with 

MW (0.849), RBN (0.638), nHDon (0.578), nHAcc (0.637), 

TPSA (0.693), and HOMO–LUMO (-0.575) for active 

DPP4 inhibitors, whereas in inactive DPP4 inhibitors, PC1 

highly correlated with MW (0.849), RBN (0.664), nHAcc 

(0.893), TPSA (0.815), Q
m
 (0.601), and energy (-0.654). 

These results indicated that PC1 correlated most strongly 

with MW and nHAcc for active and inactive DPP4 inhibi-

tors, respectively. Furthermore, Table S2 also indicates 

that the MW descriptor highly contributes to PC1 for 

active DPP4 inhibitors, whereas the nHAcc descriptor 

highly contributes to PC1 for inactive DPP4 inhibitors. 

Descriptors consisting of nHDon, Q
m
, energy, and HOMO–

LUMO influenced PC1 for either active or inactive DPP4 

inhibitors. Interestingly, the four differential descriptors 

are reported with P0.001 and are significantly different 

between active and inactive inhibitor classes. It may be 

assumed that these four differential descriptors represent 

the informative features that discriminate between active 

and inactive DPP4 inhibitors.

PC2, which is the direction uncorrelated with PC1, 

retained 20.82% and 20.82% of the original variance for 

active and inactive DPP4 inhibitors, respectively. Figure S1 

indicates that the first two components can preserve 51.29% 

and 55.88% of the original variance of active and inactive 

DPP4 inhibitors, respectively. The results indicated that 

the percentage and cumulative percentage of variance for 

inactive DPP4 inhibitors were greater than those for active 

DPP4 inhibitors. In Table S1 and Figure 3A (top-right), 

PC2 separates dipole moment and energy from HOMO and 

LUMO for active DPP4 inhibitors, whereas in Figure 3A 

(bottom-right), PC2 of inactive DPP4 inhibitors separates 

ALogP and nCIC from nHDon and HOMO–LUMO. 

The PCA loadings scores indicate that PC2 highly correlated 

with energy (-0.765), dipole moment (-0.617), HOMO 

Figure 3 (Continued)
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Figure 3 PCA scores plots of actives/inactives (A) and active I/active II (B) DPP4 inhibitors.
Note: The scores and loadings plots are shown in the left and right panels, respectively, where actives/active I and inactives/active II DPP4 inhibitors are shown in the top 
and bottom rows, respectively.
Abbreviations: ALogP, Ghose–Crippen octanol–water partition coefficient; HOMO, highest occupied molecular orbital; HOMO–LUMO, energy gap between the HOMO 
and LUMO states; LUMO, lowest unoccupied molecular orbital; MW, molecular weight; nCIC, number of rings; nHAcc, number of hydrogen bond acceptors; nHDon, 
number of hydrogen bond donors; PCA, principle component analysis; Qm, mean absolute charge; RBN, rotatable bond number; TPSA, topological polar surface area.

(0.637), and LUMO (0.732) for active DPP4 inhibitors, 

whereas for inactive DPP4 inhibitors, PC2 highly correlated 

with nCIC (-0.651), nHDon (0.605), ALogP (-0.813), and 

HOMO–LUMO (0.608). Furthermore, Table S2 indicates 

that the LUMO (17.664) and ALogP (24.441) descriptors 

highly contribute to PC1 for active and inactive DPP4 

inhibitors, respectively. Table S1 indicates that descriptors 

consisting of nCIC, nHDon, ALogP, energy, dipole moment, 

HOMO, LUMO, and HOMO–LUMO influence PC2 in 

either active or inactive DPP4 inhibitors. Remarkably, the 

eight different descriptors are reported with P0.001 and 

are significantly different between active and inactive DPP4 

inhibitors. These eight different descriptors may represent 

the informative features that discriminate between active 

and inactive DPP4 inhibitors.

PC3, which is the direction that is orthogonal to both 

PC1 and PC2, accounted for 13.97% and 14.70% of the total 

variance for actives and inactives, respectively. Figure S1 

indicates that the first three components can preserve 65.26% 

(active) and 70.58% (inactive) of the original variance.  

The results indicated that the percentage and cumulative 

percentage of variance of inactive DPP4 inhibitors remained 

larger than those of active DPP4 inhibitors. This result is con-

sistent with the observation that the distribution of active DPP4 

inhibitors can be further divided into two groups represented 

by the score plots in Figure 3A. In Table S1 and Figure 3A  

(top-right), it can be seen that PC3 separates Q
m
 from nCIC 

and ALogP for active DPP4 inhibitors, whereas in Figure 3A 

(bottom-right), PC3 separates dipole moment from HOMO 

and LUMO for inactive DPP4 inhibitors. Table S1 indicates 
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that PC3 highly correlated with nCIC (0.739), ALogP 

(0.564), and Q
m
 (-0.542) for active DPP4 inhibitors, whereas 

PC3 highly correlated with dipole moment (-0.634), HOMO 

(0.698), and LUMO (0.671) for inactive DPP4 inhibitors. 

nCIC and HOMO were the descriptors with the highest cor-

relation with PC1 for active and inactive DPP4 inhibitors, 

respectively. Furthermore, Table S2 indicates that the nCIC 

(30.046) and HOMO (25.521) descriptors highly contribute 

to PC3 for active and inactive DPP4 inhibitors, respectively. 

Table S1 indicates that descriptors consisting of Q
m
, nCIC, 

ALogP, dipole moment, HOMO, and LUMO influenced PC1 

in either active or inactive DPP4 inhibitors. Interestingly, the 

six differential descriptors are reported with P0.001 and 

are significantly different between active and inactive DPP4 

inhibitors. These six different descriptors may represent the 

informative features that discriminate between active and 

inactive DPP4 inhibitors.

Analysis of active DPP4 inhibitors
Figure 3B indicates that the data points of the scores 

plots (top-left) of active DPP4 inhibitors can be well dis-

criminated into two subclasses (called active I and active 

II DPP4 inhibitors). We assumed that the inhibitors in this 

class may be further separated into subclasses. Thus, in this 

section, the active DPP4 inhibitors were analyzed accord-

ing to subclasses. Table 2 indicates that nine descriptors 

exhibit different patterns between active I and active II 

DPP4 inhibitors at the level of P0.001 except for the 

five descriptors RBN (P=0.593), nCIC (P=0.001), ALogP 

(P=0.208), TPSA (P=0.026), and Q
m
 (P=0.001). These five 

descriptors have average values of 5.000±2.240 (RBN), 

3.103±0.895 (nCIC), 1.585±1.461 (ALogP), 89.981±26.752 

(TPSA), and 0.223±0.034 (Q
m
) for active I DPP4 inhibitors, 

whereas active II DPP4 inhibitors have average values of 

5.052±1.468 (RBN), 3.263±0.784 (nCIC), 1.463±1.628 

(ALogP), 86.867±22.370 (TPSA), and 0.217±0.032 (Q
m
). 

In Figure 2B, the histograms of active I and active II DPP4 

inhibitors indicated that these five descriptors were not differ-

ent between the two subclasses. Therefore, except for these 

five descriptors, the remaining descriptors are significantly 

different for active I and active II DPP4 inhibitors and are 

efficient for discrimination.

Figure 3B shows the scores and loadings plots for active 

I (top-left) and active II (bottom-left) DPP4 inhibitors. It 

is observed that the distribution of active I and active II 

DPP4 inhibitors cannot be further divided. The cumula-

tive variances of the first three PCs of active I and active 

II DPP4 inhibitors were 66.63% and 68.21%, respectively, 

of the original variation and obtain 80.0% of the original 

variation performed on the first five PCs. To analyze the 

highest influence of each descriptor on PC, the loadings 

and contribution values are used, as shown in Tables S3 

and S4, respectively. PC1 highly correlated with MW 

(0.834), RBN (0.629), nHDon (0.587), nHAcc (0.675), 

TPSA (0.698), and HOMO–LUMO (-0.565) for active  

I DPP4 inhibitors, whereas PC1 highly correlated with energy 

(-0.815), dipole moment (-0.634), HOMO (0.699), LUMO 

(0.807), and HOMO–LUMO (0.560) for active II  DPP4 

inhibitors. For PC2, the descriptors energy (-0.743), dipole 

moment (-0.602), HOMO (0.634), and LUMO (0.702) 

highly correlated with this component for active I DPP4 

inhibitors, whereas MW (0.750), ALogP (-0.551), and TPSA 

(0.797) highly correlated with this component for active 

II DPP4 inhibitors. The third PC highly correlated with nCIC 

(0.734), ALogP (0.619), and Q
m
 (-0.540) for active I DPP4 

inhibitors, whereas PC3 highly correlated with nCIC (0.698) 

for active II DPP4 inhibitors. The descriptors of MW, energy, 

nCIC, and TPSA provide the absolute highest loadings score 

values on PC1, PC2, and PC3, respectively, for active I DPP4 

inhibitors, whereas the descriptors energy, TPSA, and nCIC 

provide the absolute highest loadings score values on PC1, 

PC2, and PC3, respectively, for active II DPP4 inhibitors. 

These result are consistent with the contribution score of MW 

(17.639), energy (19.829), and nCIC (27.810), providing the 

highest values on PC1, PC2, and PC3, respectively, for active 

I DPP4 inhibitors, whereas the descriptors energy (16.193), 

TPSA (22.921), and nCIC (24.428) provide the highest PCA 

loadings score values on PC1, PC2, and PC3, respectively, 

for active II DPP4 inhibitors, as shown in Table S3.

Prediction and identification of 
informative molecular descriptors for 
DPP4 inhibitors
In this study, a QSAR model based on the J48 algorithm 

is presented for discriminating DPP4 inhibitors as either 

actives or inactives. Each compound was calculated as an 

M-dimensional vector where M =13. The encoded com-

pounds from the DPP4-TRN set were then used to construct 

a QSAR model, which was represented by a DT. To evalu-

ate the internal prediction capacity of our proposed QSAR 

model on the DPP4-TRN set, two different experiments 

were performed: one experiment was performed on the full 

training data and one experiment was evaluated using a ten-

fold cross validation (CV) procedure as shown in Table 3.  

The CV procedure was performed by firstly partitioning the 

data into ten equally-sized segments or folds; then, nine folds 
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were used as the training data while the remaining fold was 

used for validation. Finally, the results were then averaged 

across the ten experiments. Four measurements were used 

to assess the performance of the QSAR models, namely 

accuracy (Acc), sensitivity (Sen), specificity (Spec), and 

the Matthews correlation coefficient (MCC). Our proposed 

QSAR model yielded 96.43% Acc, 98.30% Sen, 94.38% 

Spec, and 0.929 MCC as performed on the full training data. 

The prediction results from the tenfold CV procedure were 

82.26% Acc, 84.69% Sen, 79.59% Spec, and 0.644 MCC. 

This result indicated the superiority of the 13 molecular 

descriptors in predicting DPP4 inhibitors to provide Acc 

higher than 80.0% and a MCC as high as 0.644.

Identification of informative molecular descriptors pro-

vided a better understanding of the different characteristics 

between active and inactive DPP4 inhibitors. After construc-

tion of the DT, the informative molecular descriptor could 

be identified using the feature usage score. A molecular 

descriptor having the highest feature usage is the most 

important feature because it contributes the most to predic-

tion performances. Figure 4 shows the feature usage of each 

descriptor or descriptor usage by using the J48 algorithm on 

DPP4-TRN.34 The top five informative molecular descriptors 

having a descriptor usage score larger than 30 were MW, 

LUMO, nHDon, nHAcc, and ALogP. Interestingly, for the 

five top-ranked and informative molecular descriptors, the 

distributions of active and inactive DPP4 inhibitors were 

significantly different, with P0.001, as shown in Table 1. 

Furthermore, the three external validation sets were used for 

evaluating the robustness and generalization ability of the 

proposed QSAR model established from the DPP4-TRN. 

Figure S2 shows the overview of Tanimoto coefficient for 

the four dataset as a heatmap. For example, the top-right 

panel shows the heatmap of DPP4-TRN versus DPP4-

TEST2. Prediction results for QSAR model of DPP4-TEST1, 

DPP4-TEST2, and DPP4-TEST3 achieved test accuracies 

of 91.28%, 95.63%, and 72.25%, respectively. Based on 

our results, it could be concluded that our proposed QSAR 

model was efficient in prediction of DPP4 inhibitors into 

either actives or inactives and filtration of inactive DPP4 

inhibitors from active DPP4 inhibitors.

Chemical substructure analysis
Chemical substructure analysis of active and inactive DPP4 

inhibitors is an effective approach to identify important 

chemical fragments that may govern the biological activity 

toward the DPP4 enzyme. Tables 4 and 5 summarize the top 

ten fragments of the active and inactive inhibitor classes, 

Table 3 Summary of prediction performance of internal and external sets

Dataset Details N Acc (%) Sen (%) Spec (%) MCC

Internal set (DPP4-TRN) Full training 1,122 96.43 98.30 94.38 0.929
Ten-fold CV 1,122 82.26 84.69 79.59 0.644

External set 1 (DPP4-TEST1) External validation 149 91.28 – – –
External set 2 (DPP4-TEST2) External validation 160 95.63 – – –
External set 3 (DPP4-TEST3) External validation 167 72.25 – – –

Note: N is the number of compounds.
Abbreviations: Acc, accuracy; CV, cross-validation; MCC, Matthews correlation coefficient; Sen, sensitivity; Spec, specificity.

Figure 4 Plot of the descriptor usage derived from the J48 algorithm.
Note: The descriptor with the largest descriptor usage value is the most important.
Abbreviations: ALogP, Ghose–Crippen octanol–water partition coefficient; HOMO, 
highest occupied molecular orbital; HOMO–LUMO, energy gap between the HOMO 
and LUMO states; LUMO, lowest unoccupied molecular orbital; MW, molecular 
weight; nCIC, number of rings; nHAcc, number of hydrogen bond acceptors; nHDon, 
number of hydrogen bond donors; Qm, mean absolute charge; RBN, rotatable bond 
number; TPSA, topological polar surface area.
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Table 4 Summary of the top ten fragments in the active set of DPP4 inhibitors

Rank IUPAC name Structure Fragment count

1 1-ethyl-2-fluorobenzene 617

2 2-amino-1-(pyrrolidin-1-yl)ethan-1-one 597

3 1-(1,3-thiazolidin-3-yl)propan-1-one 136

4 1-(pyrrolidin-1-yl)propan-1-one 101

5 Propylbenzene 52

6 2-amino-N-methylpentanamide 50

7 2,3,6-trimethylpyridine 45

8 (1-formylpyrrolidin-2-yl)boronic acid 43

9 1-chloro-2-ethenylbenzene 36

10 4-(1-ethylhydrazin-1-yl)-1-methylpiperazine 32

Abbreviation: IUPAC, International Union of Pure and Applied Chemistry.

respectively. The top ten fragments of active inhibitors indi-

cated that pyrrolidine-based, thiazolidine-based, amino amide-

based, pyridine-based, piperazine-based, and aromatic-based 

fragments are essential for DPP4 inhibition. The fragment 

1-ethyl-2-fluorobenzene ranked first (617 counts), followed 

by 2-amino-1-(pyrrolidin-1-yl)ethan-1-one (597 counts).  

The occurrence of these top two fragments is clearly greater 

than that of the remaining fragments, as indicated by the 

fragment counts (Table 4), which indicate their important 

roles in DPP4 inhibition.

Because DPP4 prefers substrates containing proline or 

alanine at position 2 of the N-terminus, many inhibitors have 

been designed based on the peptidomimetic concept.12 These 

peptidomimetic inhibitors are categorized as glycine-based 

and β-alanine-based types.12 Pyrrolidine has been used as 

a core structure in the design of both inhibitor types with 

respect to its functional groups that play crucial roles for 

interaction at the active site of the enzyme. The DPP4 inhibi-

tory activities of these inhibitors are similarly accomplished 

by hydrophobic and van der Waals interactions,39 as well as 

hydrogen-bond and salt-bridge formation.12 The active site 

of DPP4 consists of a catalytic triad (Ser630, H740, and 

D708), oxyanion hole, and specific residues, ie, S1 and S2 

pockets.12,39 All known DPP4 inhibitors have been reported 

to occupy these pockets for inhibition.39

The most frequently found fragment is 1-ethyl-2-

fluorobenzene, which is a highly lipophilic aromatic-based 

fragment. The aryl substitution on the C-4 position of the 

pyrrolidine ring has been noted to improve the stability 

and duration of DPP4 inhibitors.40 In addition, the fluorine 
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substituent on the C-4 position of the pyrrolidine ring 

has been reported to provide good inhibitory properties, 

selectivity, and pharmacokinetic profiles.41 The preferable 

pharmacokinetic profile may result from a lipophilic prop-

erty governed by a planar aromatic ring and halogen atoms, 

which facilitates cell entry to the target site of action.  

In this study, a similar aromatic-based fragment contain-

ing a halogen atom, ie, 1-chloro-2-ethenylbenzene, was 

found as the ninth-ranked fragment. Additional aromatic-

based fragments were also ranked as top ten fragments, 

such as propylbenzene and 2,3,6-trimethylpyridine.  

It could be hypothesized that the flexibility of the rotatable 

alkyl chain in the propylbenzene fragment may facili-

tate cell penetration and hydrophobic interactions at the 

active site, and the nitrogen atom in the pyridine ring of 

2,3,6-trimethylpyridine may play a role in H-bond forma-

tion in the DPP4 active site.

The pyrrolidine amide is considered a key moiety in the 

design of DPP4 inhibitors.12 Most of the potent inhibitors 

have been developed by substitution of the amide moiety of 

this core structure with an electrophile42–44 that forms a cova-

lent adduct with Ser630 of the DPP4 active site.12 Therefore, 

Table 5 Summary of the top ten fragments in the inactive set of DPP4 inhibitors

Rank IUPAC name Structure Fragment count

1 Benzyl(ethyl)amine 102

2 2-methyl-2,3-dihydro-1H-isoindole

N CH3

77

3 1-(pyrrolidin-1-yl)propan-1-one 64

4 1-(piperidin-1-yl)ethan-1-one 45

5 Propylbenzene 35

6 3-ethyl-4-methylpyrrolidin-2-one 19

7 2-amino-1-(pyrrolidin-1-yl)ethan-1-one 17

8 3-ethyl-2,4-dimethylpyridine

N

CH3

CH3

CH3

14

9 N-ethylcyclohexanamine 14

10 (Pyrrolidin-2-yl)phosphonic acid 13
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it is not surprising that among the top ten fragments, the 

pyrrolidine-based fragments, ie, 2-amino-1-(pyrrolidin-

1-yl)ethan-1-one, 1-(pyrrolidin-1-yl)propan-1-one, and 

(1-formylpyrrolidin-2-yl)boronic acid, appear to be the most 

frequently occurring fragments. Notably, the 2-amino-1-

(pyrrolidin-1-yl)ethan-1-one fragment, which is presented in 

many compounds, has been used as a prototype for structural 

modification.12 All of these fragments are amide derivatives 

of pyrrolidine. It is possible that the oxygen atom of the amide 

functional group may be essential for H-bond formation with 

the DPP4 active site.12 In addition, the amine group has been 

noted for its role in forming a salt-bridge with Glu205 and/

or Glu206 of DPP4.12 Moreover, the boronic acid derivative 

of pyrrolidine amide, (1-formylpyrrolidin-2-yl)boronic acid, 

ranked eighth. This finding supported the fact that substitu-

tion of boronic acid at the 2-position of the pyrrolidine ring is 

effective for DPP4 inhibition, as observed from the progress 

of talabostat into Phase III clinical trials.12,44

The thiazolidine derivative fragment, 1-(1,3-thiazolidin- 

3-yl)propan-1-one, ranked third. Clearly, the shape of this 

fragment is similar to that of pyrrolidine amide deriva-

tives (ie, 2-amino-1-(pyrrolidin-1-yl)ethan-1-one and 

1-(pyrrolidin-1-yl)propan-1-one) except for the presence of 

a sulfur atom in the five-membered ring. The thiazolidine 

analog of pyrrolidine-based compounds has been noted for its 

stability, potency, selectivity, and oral bioavailability.45–47

The amide-based fragment, ie, 2-amino-N-methylpentan-

amide, was found to be the sixth-ranked fragment. The X-ray 

crystal structure indicated that the amide moiety is essential 

for a key interaction in DPP4 inhibition.12 The amino group 

(-NH
2
) forms a salt-bridge with Glu205, and the O atom of 

the carbonyl group (-C=O) forms an H-bond with Arg125 

in the DPP4 active site.12 In addition, the piperazine-based 

fragment, ie, 4-(1-ethylhydrazin-1-yl)-1-methylpiperazine, 

was found as the tenth-ranked fragment. DPP4 inhibitors 

containing a piperazine substituent have been reported to 

exhibit high potency.48

Notably, some fragments of active inhibitors, ie, 

2-amino-1-(pyrrolidin-1-yl)ethan-1-one, 1-(pyrrolidin- 

1-yl)propan-1-one, and propylbenzene, were also found in 

the top ten fragments of the inactive inhibitor class. This 

finding may indicate that the inhibitory activities of DPP4 

inhibitors are influenced by additional factors. The results 

of the inactive inhibitors (Table 5) indicated that the type 

and position of the substituents, type of functional groups, 

appropriate size, and arrangement of substructures may be 

crucial for DPP4 inhibition. For example, the effect of the 

position of substituents and the length of the alkyl chain were 

found when comparing 2,3,6-trimethylpyridine (active) and 

3-ethyl-2,4-dimethylpyridine (inactive).

Scaffold analysis
Analysis of the molecular scaffold of DPP4 inhibitor was per-

formed in order to discern important core structures giving rise 

to their bioactivity. Datasets of both active and inactive DPP4 

inhibitors were subjected to molecular scaffold analysis using 

the Bemis–Murcko framework clustering method as imple-

mented by JKlustor version 0.07.49 In brief, this clustering 

method initially generates molecular frameworks representing 

molecular scaffolds as derived from compounds in datasets 

by removing side chain atoms from the main structures and 

finally presenting them in the form of a molecular graph, 

which is subsequently clustered based on the Bemis–Murcko 

framework algorithm.50 A total of 332 and 152 scaffolds were 

obtained for actives and inactives, respectively. The large 

number of molecular scaffolds that were obtained is indicative 

of the higher diversity of molecular patterns presented in the 

dataset. Herein, this result suggests that molecular patterns 

in active DPP4 inhibitors are more diverse than their inactive 

counterpart. Further in-depth analysis of scaffolds from both 

active and inactive classes was performed by comparing mem-

bers of each molecular scaffold from both classes. It was found 

that there were no significant differences in the molecular 

frameworks for both classes as can be seen in Tables S5 and 

S6 and Figure 5. This suggested that the important structures 

responsible for the bioactivity were functional groups as well 

as substructures of molecules.

In order to elucidate such important substructures, 

Klekota–Roth fingerprints consisting of 4,860 descriptors 

were generated by the PaDEL-Descriptor software on 

DPP4-TRN.51,52 Consequently, a mean decrease of the Gini 

index (MDGI) as derived from random forest53,54 was used 

as the basis for selecting the most important feature from 

the initial set of 4,860 descriptors. The descriptor having the 

highest MDGI value was deemed to be the most important 

feature because it affords the most influence to the prediction 

performance. The set of 30 top-ranked fingerprints hav-

ing the largest MDGI values are summarized in Figure S3  

and Table S7. It can be seen that the most important struc-

tural fingerprint is piperazine-1-carbaldehyde (KRFP4541) 

with a MDGI value as high as 9.197. Meanwhile, the second 

most important structural fingerprint with a MDGI value 

of 3.610 is the piperazine ring (KRFP2428). Interestingly, 

the significance of piperazine is supported by the fact that 

it is an important structural part of oral antihyperglycemic 

agents called gliptins, which target DPP4 receptors and have 
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Figure 5 Summary of top 20 molecular frameworks for actives (1a–20a) and inactives (1b–20b).
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been approved by the US Food and Drug Administration 

(FDA) for use in T2D treatment. Particularly, sitagliptin 

and teneligliptin, which are piperazine containing gliptins, 

have shown an additional mode of binding with the DPP4 

receptor. In brief, the DPP4 inhibitors can be categorized 

into three classes according to their binding subsites.55 Class 

I DPP4 inhibitors (ie, vildagliptin and saxagliptin) employed 

cyanopyrrolidine and hydroxyl adamantyl moieties to bind to 

S1 and S2 subsites of the DPP4 active site, respectively. In 

addition to the binding mode of class I, class II DPP4 inhibi-

tors (ie, two recently released DPP4 inhibitors alogliptin and 

linagliptin) can further engage in π–π interaction with S’
1
 and 

S’
2
 subsites. As for class III DPP4 inhibitors (ie, sitagliptin 

and teneligliptin), the presence of the piperazine ring at the 

P2 position engages in interaction with the S2 extensive 

subsite and introduces the “anchor lock domain” resulting 

in an increase of the binding activity owing to the stronger 

hydrophobic interactions mediated by this domain.56–59 

In addition, results of contact area calculation of this domain 

also revealed correlation between the binding surface and the 

inhibitory activity against DPP4 receptor, further emphasiz-

ing the importance of this domain.55 Nevertheless, the role 

of piperazine derivatives in DPP4 inhibitory activity is not 

only found in these two drugs but is also reported in various 

DPP4 inhibitors that are under active development.60–62

Binding mode of DPP4 inhibitors
Molecular docking and subsequent post-docking analyses 

using the SiMMap server identified the common binding 

mode of DPP4 inhibitors as well as key interactions with the 

enzyme. The SiMMap server provided a site-moiety map of 

the binding pocket along with details on conserved interact-

ing residues, moiety preferences, and interaction types.37 

Analyses based on 100 active DPP4 inhibitors revealed 

three different binding anchors (HB1, HB2, and vdW) and 

their moiety preferences (Figure 6). The anchor HB1 com-

prised side chains of Arg125, Glu205, Glu206, and Tyr662 

while anchor HB2 contained only the hydroxyl side chain of 

Tyr547. Both anchors were found to make hydrogen bonds 

with several nitrogen functional groups (ie, amine-, amide-, 

imine-, and nitrile-based) as well as ketone-based moieties 

of the inhibitors. In contrast, the anchor vdW consisted 

primarily of hydrophobic side chains of Tyr547, Tyr631, 

Trp659, Tyr662, and Tyr666 as well as the hydroxyl group 

of the catalytic residue Ser630. This pocket formed van der 

Waals contacts with aromatic, heterocyclic, and aliphatic 

moieties of DPP4 inhibitors. It should be noted that from our 

SiMMap analyses, the anchor HB1 has been known as the 

S2 pocket, which is involved in key salt bridge interactions 

of either the free amino terminus of a peptide substrate or 

the cationic groups of an inhibitor with the carboxylate side 

chains of Glu205 (and/or Glu206) as well as the guanidinium 

side chain of Arg125, which also helps stabilize either the 

amide carbonyl group of a substrate or the ketone moiety 

of an inhibitor.7,12 The anchor vdW corresponds to the S1 

selectivity pocket of the enzyme that has been shown to 

be occupied with specific benzene- and pyrrolidine-based 

moieties of the DPP4 inhibitors.7,12

Figure 6 Three different binding modes of interaction of DPP4 inhibitors in the active site of the enzyme.
Notes: The identified anchors HB1, HB2, and vdW from the SiMMap server are labeled and shown in cyan and yellow spheres, respectively. Docking poses of two selected 
inhibitors are visualized herein: the compound with the best SiMMap score (A) and the compound with the lowest half maximal inhibitory concentration values (B). Residues 
at the active site are shown in green sticks while key interacting residues are labeled and shown in dark grey lines.
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It should be noted that at least the first five DPP4 

inhibitors with the best SiMMap score contained the amine-, 

amide-, and aromatic moieties for making interactions with 

all three different binding anchors (HB1, HB2, and vdW) of 

the enzyme. These findings suggested the significance of 

moiety preferences of inhibitors for binding and inhibiting 

DPP4 as well as serve as a general guideline for the design 

of novel inhibitors towards DPP4.

Comparison with FDA-approved drugs
In order to investigate the similarity between compounds 

investigated herein with those of FDA-approved DPP4 

inhibitors, Tanimoto coefficient was computed for each 

compound in the dataset as well as six FDA-approved DPP4 

inhibitors (ie, sitagliptin, vildagliptin, saxagliptin, alogliptin, 

linagliptin, and teneligliptin). The Tanimoto coefficient is 

a well-known metric for assessing the pairwise similarity 

between two molecules in which higher score represents high 

similarity. Results revealed that four of six DPP4 inhibitors 

(ie, sitagliptin, vildagliptin, saxagliptin, and linagliptin) were 

included in our curated dataset as observed from a Tanimoto 

coefficient of 1.000. The closest analog in our dataset to 

alogliptin and teneligliptin had Tanimoto coefficients of 

0.819 and 0.602, respectively. Manual inspection of the 

pairwise Tanimoto coefficients between each compound of 

the dataset and the six FDA-approved drugs revealed that 

there were indeed several analogs of FDA-approved drugs 

present in the dataset. Such presence of analogs of FDA-

approved drugs may densely populate the dataset and pos-

sibly mask the effect of less densely populated compounds. 

Concomitant with this issue is the observed imbalance in size 

of actives and inactives. Particularly, the rather small size of 

inactives may arise from the possibility that poor results for 

DPP4 inhibitory assays may not be published as often and 

therefore may contribute to the lower number of inactives. 

As fuzzy C-means clustering was applied in sampling the 

dataset for QSAR modeling, such aforementioned chemical 

space bias would not exert its influence on the constructed 

QSAR models.

A further look at the bioactivity of compounds exhibit-

ing Tanimoto coefficient 0.5 to FDA-approved DPP4 

inhibitors was performed. It was observed that the number 

of highly similar compounds with sitagliptin, vildagliptin, 

saxagliptin, alogliptin, linagliptin, and teneligliptin were 

131, 273, 266, 87, 76, and 60 compounds, respectively. Of 

these compounds, a total of 130, 214, 192, 86, 76, and 60 

compounds were classified as actives (IC
50

 less than 1 μM) 

for sitagliptin, vildagliptin, saxagliptin, alogliptin, linagliptin, 

and teneligliptin, respectively. Interestingly, a total of 59 and 

74 compounds exhibiting high similarity with vildagliptin 

and saxagliptin, respectively, were classified as inactive. 

The R-group analysis of pyrrolidine as privileged structure 

of these molecules revealed pertinent insight of important 

substituent at positions 1, 2, and/or 5 on this ring. Alkyl 

group connected with nitrogen atom at position 1 seemed to 

be an important position since many structural modifications 

were observed at this position, which is followed by positions 

2 and/or 5 where active moiety is usually nitrile. Herein, 

functional group and molecular fragment modifications 

based on commercially available DPP4 inhibitors could be 

a potent initial structure for further improving its bioactivity. 

Nevertheless, the agreement of binding mode to DPP4 recep-

tor of any modified structures should be considered at the 

same time in order to abstain from steric effects that could 

lead to lowered bioactivity.

Furthermore, the Lipinski’s rule of five was applied to 

the compiled compounds from all datasets and results are 

summarized in Table S8. Interestingly, it can be seen that 

compounds belonging to the internal set (DPP4-TRN) along 

with the external set (DPP4-TEST3) afforded roughly similar 

percentages of compounds passing the rule of five at approxi-

mately 90%, while DPP4-TEST1 and DPP4-TEST2 afforded 

close to 70%. The former sets contained primarily proteins 

belonging to the DPP family while the latter sets represent 

random proteins and proteases. Furthermore, actives (~94%) 

from DPP4-TRN provided higher percentages than their 

inactive counterpart (~84%–89%).

Limitations
In exploring the chemical space of DPP4 inhibitors through 

various means, an issue arises pertaining to the possibility 

of chemical space bias that may be inherently present in the 

compiled datasets. It should be noted that compounds were 

derived from the BindingDB, and although it is assumed to 

house nearly all (if not all) bioactivity data of DPP4, there 

is a possibility that some negative results for investigated 

compound series against DPP4 may not be published, while 

those that are published are those reporting favorable results 

for compounds affording nanomolar potency or those that 

further optimize lead compounds undergoing clinical trials. 

Bias may arise from medicinal chemists who may have inher-

ent preference for certain chemical scaffolds, which could be 

attributed to the existence of common chemistry or the use of 

known fragments commonly found in drugs called privileged 

structures.63 Thus, great caution should be taken in evaluating 

the essential functionality giving rise to potent bioactivity.
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Conclusion
The search for novel antidiabetic agents has become increas-

ingly important in drug design and development in light of the 

continual increase in the prevalence of diabetes worldwide. 

The inhibition of DPP4 is one strategy to combat diabetes. 

This study reports the large-scale chemical space explora-

tion and QSAR investigation of DPP4 inhibitors. The QSAR 

model constructed by 13 descriptors provided good predictive 

performance as represented by an Acc close to 83.0% and 

a MCC as high as 0.644 for tenfold CV. In addition, a set 

of descriptors was identified as informative features influ-

encing the predictive performance. The univariate analysis 

revealed the inherent physicochemical properties and impor-

tant substructures governing inhibitory activity. The active 

inhibitors were found to be larger and more charged, polar, 

flexible, and stable than the inactive inhibitors. Furthermore, 

the chemical substructure analysis suggested that highly 

lipophilic aromatic-based and pyrrolidine-based fragments 

may be essential for DPP4 inhibition. Furthermore, the scaf-

fold analysis revealed piperazine to be a privileged structure 

affording DPP4 inhibitory activity. Finally, our findings may 

provide a deeper understanding and pertinent knowledge for 

the design and development of DPP4 inhibitors.
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Table S1 PCA loadings score for active and inactive DPP4 inhibitors

Descriptor Active Inactive

PC1 PC2 PC3 PC1 PC2 PC3

MW 0.849 0.195 0.402 0.849 -0.376 0.224
RBN 0.638 0.431 -0.025 0.664 -0.017 0.476
nCIC 0.297 -0.241 0.739 0.489 -0.651 0.077
nHDon 0.578 -0.231 -0.204 0.341 0.605 0.289
nHAcc 0.637 0.527 0.013 0.893 0.160 0.112
ALogP 0.061 0.267 0.564 0.164 -0.813 0.203
TPSA 0.693 0.268 -0.239 0.815 0.405 0.094
Qm 0.445 0.410 -0.542 0.601 0.483 -0.144
Energy -0.242 -0.765 0.102 -0.654 -0.264 -0.234
Dipole moment 0.361 -0.617 -0.261 0.439 0.091 -0.634
HOMO -0.361 0.637 0.380 -0.211 -0.352 0.698
LUMO -0.585 0.732 0.073 -0.559 0.344 0.671
HOMO–LUMO -0.575 0.452 -0.413 -0.463 0.608 0.258

Notes: The bold values represent the highest loadings scores at the current PC, compared to other PCs. For instance, MW has a higher loading score of 0.849 at PC1, 
compared to PC2 (0.195), and PC3 (0.402). 
Abbreviations: ALogP, Ghose–Crippen octanol–water partition coefficient; HOMO, highest occupied molecular orbital; HOMO–LUMO, energy gap between the HOMO 
and LUMO states; LUMO, lowest unoccupied molecular orbital; MW, molecular weight; nCIC, number of rings; nHAcc, number of hydrogen bond acceptors; nHDon, 
number of hydrogen bond donors; PCA, principal component analysis; Qm, mean absolute charge; RBN, rotatable bond number; TPSA, topological polar surface area.

Supplementary materials

Figure S1 Cumulative variance from PCA analysis of active and inactive DPP4 inhibitors.
Abbreviation: PCA, principal component analysis.
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Table S2 Contribution value of each descriptor to principal component for active and inactive DPP4 inhibitors

Descriptor Active Inactive

PC1 PC2 PC3 PC1 PC2 PC3

MW 19.851 1.257 8.880 15.820 5.236 2.627
RBN 11.202 6.106 0.035 9.681 0.011 11.868
nCIC 2.421 1.914 30.046 5.246 15.672 0.308
nHDon 9.214 1.751 2.302 2.544 13.523 4.380
nHAcc 11.191 9.159 0.009 17.499 0.947 0.655
ALogP 0.101 2.341 17.513 0.589 24.441 2.160
TPSA(Tot) 13.235 2.371 3.139 14.558 6.069 0.466
Qm 5.461 5.526 16.146 7.933 8.633 1.091
Energy 1.612 19.254 0.569 9.382 2.579 2.876
Dipole 3.594 12.540 3.757 4.220 0.306 21.012
HOMO 3.585 13.378 7.945 0.974 4.565 25.521
LUMO 9.419 17.664 0.291 6.851 4.380 23.563
HOMO–LUMO 9.114 6.738 9.369 4.701 13.639 3.472

Note: The bold values show the highest loadings scores at the current PC, compared to other PCs. 
Abbreviations: ALogP, Ghose–Crippen octanol–water partition coefficient; HOMO, highest occupied molecular orbital; HOMO–LUMO, energy gap between the HOMO 
and LUMO states; LUMO, lowest unoccupied molecular orbital; MW, molecular weight; nCIC, number of rings; nHAcc, number of hydrogen bond acceptors; nHDon, 
number of hydrogen bond donors; PC, principal component; Qm, mean absolute charge; RBN, rotatable bond number; TPSA, topological polar surface area.

Figure S2 Heatmap of Tanimoto coefficient on five DPP4 datasets consisting of one internal set and four external validation sets. Tanimoto coefficient varies between 0 
(total lack of similarity) to 1 (a compound has an identical constitution to a reference).
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Figure S3 Important fingerprints of DPP4 inhibitors as ranked by the MDGI. The fingerprint with the largest MDGI value is deemed to be the most important.
Abbreviation: MDGI, mean decrease of Gini index.

Table S3 PCA loadings score for active I and active II DPP4 inhibitors

Descriptor Active I Active II

PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5

MW 0.834 0.241 0.412 -0.002 -0.047 0.338 0.750 -0.026 0.458 0.154
RBN 0.629 0.473 -0.001 -0.166 0.319 0.410 0.344 -0.493 0.266 -0.192
nCIC 0.281 -0.217 0.734 0.332 -0.267 -0.101 0.501 0.698 0.382 -0.066
nHDon 0.587 -0.148 -0.213 0.113 0.492 -0.388 0.506 -0.010 -0.257 0.673
nHAcc 0.675 0.463 0.007 -0.111 -0.487 0.796 0.253 -0.327 0.203 0.002
ALogP 0.112 0.230 0.619 -0.581 0.329 0.456 -0.551 -0.067 0.367 0.332
TPSA 0.698 0.257 -0.257 0.488 0.055 0.309 0.797 0.063 -0.322 -0.089
Qm 0.448 0.383 -0.540 0.243 0.023 0.449 0.460 -0.439 -0.472 -0.097
Energy -0.284 -0.743 0.104 0.389 0.184 -0.815 0.183 0.408 -0.076 -0.174
Dipole moment 0.515 -0.602 -0.285 -0.235 -0.101 -0.634 0.035 -0.443 0.182 -0.196
HOMO -0.428 0.634 0.362 0.427 0.136 0.699 0.078 0.594 -0.073 -0.073
LUMO -0.649 0.702 0.014 0.169 0.045 0.807 -0.155 0.488 -0.146 -0.046
HOMO–LUMO -0.565 0.378 -0.469 -0.284 -0.105 0.560 -0.555 -0.022 -0.215 0.037

Note: The bold values show the highest loadings scores at the current PC, compared to other PCs. 
Abbreviations: ALogP, Ghose–Crippen octanol–water partition coefficient; HOMO, highest occupied molecular orbital; HOMO–LUMO, energy gap between the HOMO 
and LUMO states; LUMO, lowest unoccupied molecular orbital; MW, molecular weight; nCIC, number of rings; nHAcc, number of hydrogen bond acceptors; nHDon, 
number of hydrogen bond donors; PCA, principal component analysis; Qm, mean absolute charge; RBN, rotatable bond number; TPSA, topological polar surface area.
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Table S4 Contribution value of each descriptor to principal components for active I and active II DPP4 inhibitors

Descriptor Active I Active II

PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5

MW 17.639 2.080 8.743 0.000 0.259 2.787 20.257 0.035 18.959 3.269
RBN 10.046 8.042 0.000 2.121 12.118 4.100 4.257 12.198 6.411 5.086
nCIC 2.000 1.688 27.810 8.507 8.443 0.247 9.049 24.428 13.157 0.612
nHDon 8.749 0.790 2.352 0.989 28.725 3.664 9.219 0.005 5.945 62.621
nHAcc 11.573 7.711 0.003 0.945 28.226 15.464 2.310 5.355 3.723 0.000
ALogP 0.316 1.898 19.748 26.044 12.864 5.070 10.926 0.225 12.185 15.284
TPSA 12.370 2.369 3.408 18.385 0.356 2.336 22.921 0.201 9.384 1.108
Qm 5.091 5.278 15.070 4.540 0.065 4.910 7.636 9.651 20.154 1.291
Energy 2.045 19.829 0.563 11.688 4.003 16.193 1.202 8.359 0.518 4.212
Dipole moment 6.731 13.051 4.200 4.271 1.203 9.800 0.044 9.868 2.981 5.291
HOMO 4.648 14.434 6.761 14.085 2.189 11.906 0.220 17.690 0.477 0.737
LUMO 10.690 17.698 0.010 2.190 0.243 15.875 0.863 11.962 1.929 0.296
HOMO–LUMO 8.103 5.131 11.332 6.234 1.308 7.647 11.096 0.023 4.179 0.193

Note: The bold values show the highest loadings scores at the current PC, compared to other PCs. 
Abbreviations: ALogP, Ghose–Crippen octanol–water partition coefficient; HOMO, highest occupied molecular orbital; HOMO–LUMO, energy gap between the HOMO 
and LUMO states; LUMO, lowest unoccupied molecular orbital; MW, molecular weight; nCIC, number of rings; nHAcc, number of hydrogen bond acceptors; nHDon, 
number of hydrogen bond donors; PC, principal component; Qm, mean absolute charge; RBN, rotatable bond number; TPSA, topological polar surface area.

Table S5 Summary of molecular framework generated from active DPP4 inhibitors

Number SMILES Member size

1 C(CCC1CCC2CCCC2C1)CC1CCCCC1 93
2 C(CCC1CCCCC1)CC1CCCC1CCCC1CCCCC1 87
3 C(CC1CCCC1)CC1CCC(CC1)C1CCCCC1 85
4 C1CCCC1 65
5 C(CC1CCC(CCC2CCCCC2)CC1)C1CCCC1 50
6 C(C1CCCC1)C1CCCC1 43
7 C(CCCC1CCCCC1)CCC1CCCC1 37
8 C(C1CCCC1)C1CCC(C1)C1CCC(CC1)C1CCCCC1 33
9 C(C1CCCC1)C1CCC(CC2CCCCC2)C1 32
10 C(CC1CCCC1)CC1CCC(C1)C1CCCCC1 32
11 C(C1CCCC1)C1CCC(CC2CCC(CC2)C2CCCC2)C1 31
12 C(CCC1CCCCCC1)CC1CCCCC1 31
13 C(C1CCCCC1)C1CCCCC1C1CCCCC1 30
14 C(CC1C2CC(CC12)C1CCCCC1)CC1CCCC1 29
15 C1C2CCCCC2C2CCC(CC12)C1CCCCC1 27
16 C(CC1CCCC1)CC1CCCCC1 27
17 C(CCC1CCC(CC2CCCCC2)CC1)CC1CCCCC1 27
18 C(CCC1CCCCC1)CC1CCCC1 25
19 C(CC1CCC(CC1)C1CCCCC1)C1CCCCC1 24
20 C(CCCC1CC1C1CCCCC1)CCCC1CCCC1 24
21 C(C1CCCC1)C1CCC(C1)C1CCCCC1 23
22 C1CCC(CC1)C1CCC2C(CCC3CCCCC23)C1 22
23 C(CCCC1CCCC1)CCCC1CCCCC1 22
24 C1CCC(CC1)C1CCCC2CCCCC12 21
25 C1CCC(CC1)C1CCCCC1 21
26 C(CC1CCCC1)CC1CCC(CC1)C1CCC2CCCC2C1 20
27 C1CCC(CC1)C1CCCC(C1)C1CCCCC1 20
28 C(C1C2CCCCC2CC1C1CCCCC1)C1CCCCC1 19
29 C(CC1CCCC1)CC1CC2CCCC2C1 18
30 C(C1CCC2CC(CC2C1)C1CCCCC1)C1CCCC2CCCCC12 18
31 C1CC2CCC(CC2C1)C1CCCCC1 18
32 C(CC1CCCC1)CC12CC3CC(CC(C3)C1)C2 17
33 C(CC1CCCC1)CC1CCC(CCC2CCCCC2)CC1 17
34 C(CC1CCCCC1)C1CCC(CC2CCCC2)C1 17
35 C(CCC1CCC2CCC(C2C1)C1CCCCC1)CC1CCCCC1 16
36 C(CC1CCC2CC(CC2C1)C1CCCCC1)C1CCCCC1 16
37 C(CC1CCC(CCC2CCCCC2)CC1)C1CCCCC1 16
38 C(C1CCCC1)C1CCC(CC2CC3CCCCC3C2)C1 15

(Continued)
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Table S5 (Continued)

Number SMILES Member size

39 C(CC1CCCC1)CC1CCC(CCCC2CCCCC2)CC1 15
40 C(CCC1CCCCC1)CC1CCCC1CCC1CCCCC1 15
41 C(CC1CCCCC1)C1CCCCC1 14
42 C(CC1CCCC1)CC1CCCC1 14
43 C(CCC1CCCCC1)CCC1(CCCCC1)C1CC2CCCCC2C1 14
44 C(C1CCCCC1)C1CC2CCCCC2CC1C1CCCCC1 13
45 C(CC1CCC(CCC2CCCCC2)C1)C1CCCC1 13
46 C(CCC1CCCC(CC2CCCCC2)CC1)CC1CCCCC1 13
47 C(CCC1CCCCC1)CC1CCCC1C1CCC(C1)C1CCCCC1 13
48 C(CCC1CCC2CCCC2C1CC1CCCCC1)CC1CCCCC1 13
49 C1CCC(CC1)C1CCC(CC1)C1CCCCC1 13
50 C(CC1CCCCC1)C1CCCC1 12
51 C(CCC1CCCC1)CCC1CCC(C1)C1CCCCC1 12
52 C(C1CCCC1)C1CCC(C1)C1CCC(CC1)C1CC2CCCCC2C1 11
53 C(CCC1CCCCC1)CC1CCCCC1 11
54 C1CC2CCC(CC2C1)C1CCC(CC1)C1CCCCC1 11
55 C(CCC1CCC2CC(CC2C1)C1CCCCC1)CC1CCCCC1 11
56 C(CCCCC1CCCCC1)CCCC1CCCC1 11
57 C(C(CC1CCCCC1)C1CCCC1CC1CCCC1)C1CCCCC1 10
58 C(C1CCC2CC(CC2C1)C1CCCCC1)C1CCC2CCCCC2C1 10
59 C(CCC1CCC(CCC2CCCC2)CC1)CC1CCCCC1 10
60 C(CCCC1CCCC1)CCC1CCCC1 10
61 C(CCC1CCCC1)CCC1CCC2CCCC2C1 10
62 C(CCC1CCCCC1CC1CCCCC1)CC1CCCCC1 10
63 C(CCCC1CCCC1)CCCC1CCC2CCCC2C1 10
64 C1CCC(CC1)C1CCC(CC1)C1CCC2CCCCC2C1 9
65 C(CCCCC1CCCC1)CCCCC1CCCCC1 9
66 C(CCC1CCCC1)CCC1CCCC1 9
67 C(CC1CCC(CCC2CCCC2)C1)CC1CCCCC1 8
68 C(C1CCCC1)C1CCC(CC2CCC3CCCCC3C2)C1 8
69 C(CC1CCCC1)CC1CCC(CC1)C1CCCC(C1)C1CCCC1 8
70 C(CCC1CCCCC1)CC1CCCC1CCCC1CC1 8
71 C(C1CCCC1)C1CCC(C1)C1CCC(CC1)C1CCCC2CCCCC12 8
72 C(CC1CCCCC1C1CCCCC1)C1CCCC1 8
73 C(CCCC1CCC2CCCCC2C1)CCC1CCCC1 8
74 C(CCC1CCC(CC1)C1CCCCC1)CC1CCCCC1 8
75 C(C1CCCCC1)C1CC2CCCC2CC1C1CCCCC1 8
76 C(CC1CCCC1)CC1CCC(CC2CCCCC2)CC1 8
77 C1CCC(C1)C1CCC2C(CCC3CCCCC23)C1 7
78 C(CCC1CCCC1)CCC1CCCCC1 7
79 C(C1CCC2CC(CC2C1)C1CCCCCC1)C1CCC2CCCCC2C1 7
80 C(CCC1CCCCCC1CC1CCCCC1)CC1CCCCC1 7
81 C(CCC1CCC2CCCCC2C1)CC1CCCC1 7
82 C(CC1CCCCC1)CC1CCCCC1C1CCCCC1 7
83 C(C1CCCC1)C1CCC(C1)C1CCC2CCCCC12 7
84 C1CC(CC1C1CCCCC1)C1CCCC(C1)C1CCCCC1 6
85 C(CCC1CCC(CCCC2CCCCC2)CC1CC1CCCCC1)CC1CCCCC1 6
86 C(CC1CCCCC1)CC1CCCC(CCC2CCCC2)C1 6
87 C(CCC1CCCCC1)CC1CCCC1C1CCC(C1)C1CC1 6
88 C(C1CCC2CC(CC2C1)C1CCCCCC1)C1CCCC2CCCCC12 6
89 C(CC1CCCC1CC1CCCC1)CC12CC3CC(CC(C3)C1)C2 6
90 C(CC1CCCC1)C(CC1CC1)C1CCC(C1)C1CCCCC1 6
91 C(CCC1CCC2CCC(C3CCCC3)C2C1)CC1CCCCC1 5
92 C(CCC1CCC2CC(CC3CCCCC3)CC2C1)CC1CCCCC1 5
93 C1CCC(C1)C1CCCC(C1)C1CCC(C1)C1CCCCC1 5
94 C1CC2CCCC2C1 5
95 C(CC1CCC(C1)C1CCCCC1)CC1CCCC2CCCCC12 5

(Continued)
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Table S5 (Continued)

Number SMILES Member size

96 C1C(CC2CCCCC12)C1CCCCC1 5
97 C(CCC1CCC2CC(CC2C1)C1CC1)CC1CCCCC1 5
98 C(CCC1CCCCC1)CC1CCCC1CC1CCCCC1 4
99 C(CC1CCCC1)CC1CCC(CC1)C1CCCC2CCCC12 4
100 C(CC1CCC(CC2CCCC2)C1)CC1CCCCC1 4
101 C1CC1C1CCCC2CCC(CC12)C1CCC(C1)C1CCCCC1 4
102 C(CCC1CCC2CCCC2C1CC1CCCC1)CC1CCCCC1 4
103 C(CC1CCC1)CC1CCC(CC1)C1CCCCC1 4
104 C(C1CCCCC1)C1CC(CCC1C1CCCCC1)C1CCCC1 4
105 C(CC1CCC(CC2CCCCC2)CC1)C1CCCCC1 4
106 C(CC1CCCC1)CC1C2CC3CC(C2)CC1C3 4
107 C(C1CCCCC1)C1CC(CCC1C1CCCCC1)C1CCCCC1 4
108 C(CCC1CCC2C(CCC2C2CCCCC2)C1)CC1CCCCC1 4
109 C(CCC1CCC(CC2CC3CCCCC3C2)CC1)CC1CCCCC1 4
110 C(CCCC1CCCCC1)CCC1CCCCC1 4
111 C(CC1CCC2CC(C(CC3CCCCC3)C2C1)C1CCCCC1)C1CCCCC1 4
112 C1CCC(CC1)C1CCC2CCCC(C3CCCCC3)C2C1 4
113 C(CC1CCC(CCC2CCCC2)C1)CC1CCCC2CCCCC12 4
114 C(CC1CCCCC1)CC1CCC(CCC2CCCC2)CC1 4
115 C(CCC1CCCC1)CCC1CC2CCCCC2C1 4
116 C(CC1CCC(C(CC2CCCCC2)C1)C1CCCCC1)C1CCCCC1 3
117 C(CCC1CC2CCCCC2C1)CC1CCCC1 3
118 C(C1CCC1)C1CCC(C1)C1CCC(CC1)C1CCCCC1 3
119 C(CCC1CCC(CC2CCC3CCCCC3C2)CC1)CC1CCCCC1 3
120 C1CC2CC(CC2C1)C1CCCCC1 3
121 C(CCC1CCCC1)CCC1CCC2CCCCC2C1 3
122 C(CCC1CCCCC1)CCC1(CCCCC1)C1CCCCC1 3
123 C(CCC1CCCCC1)CC1CCCC1C1CCCC1 3
124 C(C1CCCCC1)C1CCC2CC(CC2C1)C1CCCCC1 3
125 C(CC1CCCCC1)CC1CCC(CC1)C1CCCCC1 3
126 C(CCC1CCCCC1)CC1CCCC1C1CCC(C1)C1CCC1 3
127 C(CC1CCCC1)CC12CC3CC(C1)CC(CCCC1CCCCC1)(C3)C2 3
128 C(CC1CCCC1)C1CCCC1 3
129 C(CC1CC1)CC1CCCC1 3
130 C(CC1CCC(CCC2CCCC3CCCCC23)CC1)C1CCCC1 3
131 C(CC1CCC(CCC2CCC3CCCCC3C2)CC1)C1CCCC1 3
132 C 3
133 C(CC1CCC1)CC1CCCC1 3
134 C(CC1CCCC1)CC1CCCCCCC1 3
135 C(CCCC1CC2CCCCC2C1)CCC1CCCC1 3
136 C(C1CCCC1)C1CCCC(C1)C1CCCCC1 2
137 C(CCC1CCCC(CC1)C1CCCCC1)CC1CCCCC1 2
138 C(C1CC1)C1CCCC(C1)C1CCC(C1)C1CCCCC1 2
139 C(CCCC1CCCC1)CCCC1CCC2CC(CC2C1)C1CCCCC1 2
140 C(CC1CCCC(C1)C1CCCCC1)C1CC1 2
141 C(CCC1CCCC(CC1)C1CC1)CC1CCCCC1 2
142 C(CC1C2CC(CC12)C1CC2CCCCC2C1)CC1CCCC1 2
143 C(CC1CCC(C1)C1CCCCC1)CC1CCCCC1 2
144 C1CCC(C1)C1CCC2CCCC(C3CCCCC3)C2C1 2
145 C(CCCC1CCCC1)CCCC1CCCC1 2
146 C(CCCCCC1CCCCC1)CCCCC1CCCC1 2
147 C(CC1CCCC1)CC1(CCC2CCCCC2)CCCC1 2
148 C(CC1CCC(CCC2CCCC3CCCCC23)C1)C1CCCC1 2
149 C(CCC1CCC(CC2CCC(CC2)C2CCCCC2)CC1)CC1CCCCC1 2
150 C(CCC1CCCC1)CC1CCCC1 2
151 C(CC1CCCC1)CC1CCCCC1C1CCCCC1 2
152 C(CCC1CCCCC1)CC1CCCC1CCCC1CCCC1 2 (Continued)
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Table S5 (Continued)

Number SMILES Member size

153 C(C1CC2CCCC2C1)C1CCCCC1 2
154 C1CC2CCCCCCCCCCCCCCC3CCCC(C3)CCC2C1 2
155 C(CC1CCCC1)CC1CC2CCCCC2C1 2
156 C(CC1CC1)CC1CCC(CCCC2CCCC2)CC1 2
157 C(CC1CCCC1)CC1CCC(CCCC2CCCC2)CC1 2
158 C(CC1CCCC1)CC1CC2CC(CC3CCCCC3)CC2C1 2
159 C1CCC2CCCCC2C1 2
160 C(CC1CCC(CC1)C1CCC2CCCC2C1)C1CCCCC1 2
161 C(CC1CCC(CC1)C1CCCC1)C1CCCCC1 2
162 C1CC2CCC(CC2C1)C1CCCC(C1)C1CCC(C1)C1CCCCC1 2
163 C(CC1CCC(CCC2CCC(CC2)C2CCCC2)CC1)C1CCCCC1 2
164 C(CC1CCCC1)CC1CCCCCC1 2
165 C(C1CCCCC1)C1CCCC(C1)C1CCCCC1 2
166 C(CC1CCCC1)CC1CC2CCC1C2 2
167 C(CCC1CCCCC1)CC1CCCC1CCCC1CCC2CCCC2C1 2
168 C(CCC1CCCCC1)CC1CCCC1CCCC1CCC2CCCCC2C1 2
169 C(C1CCCC1)C1CCCCC1 2
170 C(C1CCCC1)C1CCC(C1)C1CCCC2CCCCC12 2
171 C(CCC1CCC2CCCC2C1CC1CC1)CC1CCCCC1 2
172 C(C1CCCC1)C1CCC(CC2CCCC2)C1 2
173 C(CCC1CCCC1CC1CCCC1)CCC1CCCCC1 2
174 C(C1CCC1)C1CCC(CC2CCCC2)C1 2
175 C(CCCC1CCCC1)CCCC1CCC2CCCCC2C1 2
176 C(CCC1CCC2C(CCC2C2CC2)C1)CC1CCCCC1 2
177 C(C1CCC2CCCC2C1)C1CCC2CCCCC2C1 2
178 C(C1CCC2CC(CC2C1)C1CCCCC1)C1CC2CCCCC2CC2CCCCC12 2
179 C1C(CC2CCCCC12)C1CCC(CC1)C1CCCCC1 2
180 C(C(CC1CCCCC1)C1CCC(CC2CCCC2)C1)C1CCCCC1 2
181 C(C1C2CC(CC3CCCC4CCCCC34)CCC2CC1C1CCCCC1)C1CCCCC1 2
182 C(CC1CCCC1)CC1CCC(CC1)C1CCCC(C1)C1CCCCC1 1
183 C(C1CCC1)C1CCCC1 1
184 C(C1CCCCC1)C1CC2CC(CC2CC1C1CCCCC1)C1CCCCC1 1
185 C(CC1CCC(CC1)C1CCC(CC1)C1CCC(CC1)C1CCCCC1)C1CCCCC1 1
186 C(C1CCCCC1)C1CCCCC1CC1CCCCCC1 1
187 C(C1CCCC1)C1CCCCC1C1CCCCC1 1
188 C(CC1CCC(CC2CCCCC2)C1)C1CCCC1 1
189 C(CC1CCCC1)CC1CCC(CCC2CC2)CC1 1
190 C(C1CCCCC1)C1CC2CCC(CC2CC1C1CCCCC1)C1CCCCC1 1
191 C(C1CCCCC1)C1CCC(CC1C1CCCCC1)C1CCCCC1 1
192 C(CCCC1CCCCCC1)CCC1CCCC1 1
193 C(CCCC1C2CCC1CC2)CCC1CCCC1 1
194 C(CCC1CCC(CC2CCCC(C2)C2CCCCC2)CC1)CC1CCCCC1 1
195 C(CCCC1CCCC1)CCC1CC1C1CCCCC1 1
196 C(CCC1CCC(CC1)C(C1CCCCC1)C1CCCCC1)CC1CCCCC1 1
197 C(CC1CCCC1)CC1CCC(CCCC2CCC3CCCCC3C2)CC1 1
198 C(CCC1CCC(CC1)C1CCCCC1C1CCCCC1)CC1CCCCC1 1
199 C(CC1CCCC1)CC1CCC(CCCC2CC3CCCCC3C2)CC1 1
200 C(CC1CCCC1)CC1CC2CC(CC3CCCC3)CC2C1 1
201 C1CC2CCCCCCCCCCCCCCCCCCCCC3CCCC(C3)CCC2C1 1
202 C(CCCC1CCC(CC1)C1CCCCC1)CCC1CCCC1 1
203 C(C1CCCC1)C1CCC(C1)C1CCC(CC1)C1CCC2CCCCC2C1 1
204 C(CCC1CCC(CC2CCCC2)CC1)CC1CCCCC1 1
205 C(CC1CCCC1)CC1CC2CC(CCCC3CCCCC3)CC2C1 1
206 C(CCCC1CCC(CC1)C1CC2CCCCC2C1)CCC1CCCC1 1
207 C(CCC1CCCCC1)CCC1CCC(CC(CC2CCC(CCCCCC3CCCCC3)CC2)

C2CCCC2CC2CCCC2)CC1
1

208 C(CC1CC2CCCCC2C1)C1CCC(CC2CCCC2)C1 1
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Table S5 (Continued)

Number SMILES Member size

209 C(C1CC2CCCCC2C1)C1CCC2CC(CC2C1)C1CCCCC1 1
210 C(CC1CCCCC1)C1CCCC1CC1CCCC1 1
211 C(C1CCCC1)C1CCCC1CC1CC2CCCCC2C1 1

212 C(C1CCCC1)C1CCC(CC2CCC(CC2)C2CCC(C2)C2CCCCC2)C1 1
213 C(CCC1CCC(CC2CCC3CCCCC23)CC1)CC1CCCCC1 1
214 C(CC1CCCCC1)C1CCCC1CC1CC2CCCCC2C1 1
215 C(CCC1CCCC1CCC1CCCCC1)CC1CCCC1 1
216 C(CC1CCCCC1)C1CCC1CC1CCCC1 1
217 C(CC1CCCCC1)C1CCC1CC1CC2CCCCC2C1 1
218 C(CCC1CCC(CCC2CCCCC2)CC1)CC1CCCCC1 1
219 C(C1C2CC(CC3CCCC4CCCCC34)CCC2CC1C1CCCCCC1)C1CCCCC1 1
220 C(CC1CCC2CC(CC2C1)C1CCCCCC1)C1CCCCC1 1
221 C(CCCC1CCC(CC2CCCCC2)CC1)CCC1CCCC1 1
222 C(CCC1CCCCCC1CC1CCCC1)CC1CCCCC1 1
223 C(CC1CCCC1)CC1CCC(CC1)C1CCCC(CC2CC2)C1 1
224 C(C1CCCC1)C1CCC(CC2CCCC(CC2)C2CCCC2)C1 1
225 C(C1CC2CCCCC2C1)C1CCC2CC(CC2C1)C1CCCCCC1 1
226 C(CCC1CCCCC1CCC1CCCC1)CC1CCCCC1 1
227 C(CC1CCC(CCC2CCCCC2)CC1)C1CCC2CCCCC12 1
228 C(CC1CCC(CC1)C(CC1CCCC1)CC1CCCCC1)C1CCCCC1 1
229 C1C(CC2CC(CCC12)C1CCCCC1)C1CCCCC1 1
230 C1CCC(C1)C1CCC(C1)C1CCCC(C1)C1CCCCC1 1
231 C(C1CCCC1)C1CCC2CC(CCC2C1)C1CCCC(C1)C1CCCC1 1
232 C(CCC1CCCCC1)CC1CCCC1CCCC1CCC(CCCC2CCCCC2)CC1 1
233 C(C1CCC2CCC(CC12)C1CCCCC1)C1CCCCC1 1
234 C(CCC1CCCC2CCCC12)CC1CCCCC1 1
235 C(CC1CCC1)CC1CCC(CC1)C1CCC2CCCC2C1 1
236 C(CC1CCCC(C1)C1CCCCC1)C1CCCC1 1
237 C(C1CC2CCCCC2C1)C1CCCC1CC1CC2CCCCC2C1 1
238 C(CCC1CCCC1CCCC1CCCCC1)CC1CCCC1 1
239 C(CCC1CCCC1)CC(CCC1CCCC1)CC1CCCCC1 1
240 C(CC1CCCC1)C1CC1 1
241 C1CCC(C1)C1CCC(C1)C1CCCC(C1)C1CCC2CCCC2C1 1
242 C(C1CCCC1)C1CC2CCCCC2C1 1
243 C(CCC1CCCC(CCCCC2CCCCC2)CC1)CC1CCCCC1 1
244 C(CCCC1CCCC1CCCCC1CCCCC1)CCC1CCCC1 1
245 C(CCC1CCC(CC2CCCCC2)CC1)CC1CCCC1 1
246 C(C1CCCC1)C1CCC(CC2CCC3CCCC3C2)C1 1
247 C(CCC1CCCCC1CC1CCCC1)CC1CCCCC1 1
248 C(CCC1CCC(CC2CCCCC2)CC1CC1CCCCC1)CC1CCCCC1 1
249 C(CC12CC3CC(CC(C3)C1)C2)C1CCC2CC12 1
250 C(CCC1CCC(CC1)C1CCCCC1)CC1CCCC1 1
251 C(CCC(CC1CCCCC1)C1CCCCC1)CCC1CCCC1 1
252 C(CCC1CCC2CCCC2C1C1CC1)CC1CCCCC1 1
253 C(CCC1CCC2C(CC3CCCCC3)CCC2C1)CC1CCCCC1 1
254 C(CCC1CCC2CCC(CC3CCCCC3)C2C1)CC1CCCCC1 1
255 C(CC1CCCC1)C(CC1CCC1)C1CCC(CC1)C1CCCCC1 1
256 C(CCCC(C1CCCCC1)C1CCCCC1)CCCC1CCCC1 1
257 C(CC1CCCC1)C(CCC1CCCC1)C1CCC(CC1)C1CCCCC1 1
258 C(C1CCCC1)C1CCC(C1)C1CCC(CC1)C1CCC2CCCCC12 1
259 C(CCCC1CC1C1CCCC1)CCCC1CCCC1 1
260 C1CCC(C1)C1CCC2CCCCC12 1
261 C(C1CCCC1)C1CCC2CCCCC2C1 1
262 C(CCC1CCCCC1C1CCCCC1)CC1CCCCC1 1
263 C(CC1CCCC1)C(CC1CCCC1)C1CCC(CC1)C1CCCCC1 1
264 C1C2CCCCC2C2CCCC(C12)C1CCCCC1 1
265 C(CCC(CC1CCCCC1)CC1CCCCC1)CCC1CCCC1 1
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Table S5 (Continued)

Number SMILES Member size

266 C(C1CCCC1)C1CCC(C1)C1CCCC1 1
267 C(C1CCCC1)C1CCC(C1)C1CCC(CC1)C(C1CCCCC1)C1CCCCC1 1
268 C(C1CCCC1)C1CCC(C1)C1CCCC(CC1)C1CCCCC1 1
269 C(CC1CCCC1)CC1(CCC1)C1CCCCC1 1

270 C(C1CCCC1)C1CCC(C1)C1CCC(CC2CCCCC2)CC1 1
271 C(CCC1CCC2CCCCC2C1)CC1CCCCC1 1
272 C(CCCC1CCCC1)CCCC1CCC(CC1)C1CCCCC1 1
273 C(C1CCCC1)C1CCC(C1)C1CC2CCCCC2C1 1
274 C(C1CCCC1)C1CCC(C1)C1C2CC3CC(C2)CC1C3 1
275 C(C1CCCC1)C1CCC(CC2CCCCCCC2)C1 1
276 C(C1CCCC1)C1CCC(CC2CCCCCC2)C1 1
277 C1CC(C2CC(CCC12)C1CCC(CC1)C1CCCCC1)C1CCCCC1 1
278 C(CC1CCCC1)CC1CCCCCCCCC1 1
279 C1CC1C1CCCC2CCC(CC12)C1CCC(CC1)C1CCCCC1 1
280 C(CCC1CCC2CCCCC2C1CC1CCCCC1)CC1CCCC1 1
281 C1CC1C1CC2CCC(CC2C1)C1CCC(CC1)C1CCCCC1 1
282 C(CC1CCCC1)CC12CCC(CC1)CC2 1
283 C1CCC2C(C1)CCC1CCCCC21 1
284 C(CC1CCCC1)CC1CCC(CC1)C1CCCC(C1)C1CCC(C1)C1CC1 1
285 C(CC1CCCC1)CC12CC3CC1CC(C2)C3 1
286 C(CC1CCCC1)CC1CC2CC1CCC2 1
287 C1CC1C1CCC2CC(CC2C1)C1CCC(CC1)C1CCCCC1 1
288 C(CC1CC1)C(CCC1CCCC1)C1CCC(CC1)C1CCCCC1 1
289 C(CC1CCCCC1)C1CC2CCCC2C1 1
290 C1CCC(C1)C1CC2CCCC2C1 1
291 C(CC1CCCC1)C(C1CCCC1)C1CCC(CC1)C1CCCCC1 1
292 C(CCC1CCCCC1)CC1CCCC1CCCC1CCC1 1
293 C(CCC1CCCCC1)CC1CCCC1CCC1CC1 1
294 C(CC1CCCC1)CC1CC2CC(C2)C1 1
295 C(CC1CCC(CC2CCC3CCCCC23)CC1)C1CCCCC1 1
296 C(CC1CCCC1)CC1CCCCCCCCCCC1 1
297 C(CC1CCC(CC2CCC3CCCC3C2)CC1)C1CCCCC1 1
298 C(CC1CCC(CC2CCC3CCCCC3C2)CC1)C1CCCCC1 1
299 C(CCC1CC2CC(C2)C1)CC1CCCC1 1
300 C(CC1CCCC1)CC1CCC(CCCC23CC4CC(CC(C4)C2)C3)CC1 1
301 C1CC1C1CCCC(C1)C1CCC2C(CCC3CCCCC23)C1 1
302 C(CCC1CCCC1)CCC1CCC(CCCC2CCCC2)CC1 1
303 C(CC1CCCC1)CC1CCC(CCCC2CCC3CCCC3C2)CC1 1
304 C(CCC1CCC(CCCC2CCCC2)CC1)CC1CCCCC1 1
305 C1CCC2C(C1)CCC1CC(CCC21)C1CCCCCC1 1
306 C(CCC12CC3CC(CC(C3)C1)C2)CC1CCCC1 1
307 C(CC1CCCC1)CC1CCC(CC2CC3CCCCC3C2)CC1 1
308 C(CCC1CCCCC1)CC1CCCC1C1CCC(CC2CC2)C1 1
309 C(CC1CCCC1)CC1CCC(CC1)C1CC2CCCCC2C1 1
310 C(CCC1CCCCC1)CC1CCCC1C1CCC(C1)C1CCCC1 1
311 C(CCC1CCC2CCCCC2C1)CC1CCC(CCC2CCCC2)CC1 1
312 C(CCC1CCCC2CCCCC12)CC1CCC(CCC2CCCC2)CC1 1
313 C(CCC1CCCC1)CCC1CCC(CC1)C1CCCCC1 1
314 C(CCC1CCCC1)CCC1CCC2CC(CC2C1)C1CCCCC1 1
315 C(CCC(C1CCCCC1)C1CCCCC1)CCC1CCCC1 1
316 C(CCC1CCCC(CC2CCCC2)CC1)CC1CCCCC1 1
317 C(CC1C2CC(CC12)C1CCC2CCCCC2C1)CC1CCCC1 1
318 C(CC1C2CC(CC12)C1CCCC1)CC1CCCC1 1
319 C(CCC1CCCC(CC2CCC3CCCC3C2)CC1)CC1CCCCC1 1
320 C(CCC1CCCC(CCC2CCCCC2)CC1)CC1CCCCC1 1
321 C(CCC1CCCC(CCCC2CCCCC2)CC1)CC1CCCCC1 1
322 C(CCC1CCCC2CCCCC12)CC1CCCC1 1
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Table S5 (Continued)

Number SMILES Member size

323 C(CCC1CCCCC1)CCC1(CCCCC1)C1CCCC1 1
324 C(CCC1CCCCC1)CCC1(CCCCC1)C1CC2CCC(CCCC3CCCCC3)CC2C1 1
325 C(CC1CCC2CC(CC2C1 )C1CCC2CCCC12)C1CCCCC1 1
326 C(CC1CCCC1)C(C1 CCCCC1)C1CCCCC1 1

327 C(CCC1CCCCC1)CCC1(CCC(CC2CCCCC2)CC1)C1CCCCC1 1
328 C1CCCCCC1 1
329 C1CCCCC1 1
330 C(CC1CCC2CCCC2C1)C1CCCC1 1
331 C(C1CCCC1)C1CC2CCC1C2 1
332 C(CCC1CCCC1)CCC1CCC2CCCCC12 1

Abbreviation: SMILEs, simplified molecular-input line-entry system.

Table S6 Summary of molecular framework generated from inactive DPP4 inhibitors

Number SMILES Member size

1 C1CCCC1 43
2 C1CCCCC1 32
3 C(CCCC1CCCCC1)CCC1CCCCC1 29
4 C(CCC1CCCCC1)CC1CCCC1 24
5 C1C(CC2CCCCC12)C1CCCCC1 20
6 C(CC1CCCC1)CC1CCCCC1 20
7 C1CC2CCCCC2C1 18
8 C1CCC2CCCCC2C1 15
9 C1CCC(CC1)C1CCCC(C1)C1CCCCC1 14
10 C1CCC(CC1)C1CCCCC1 12
11 C(CC1CC2CCCCC2C1)C1CCC(CC2CCCC2)C1 12
12 C(CCC1CCC(CC1)C(C1CCCCC1)C1CCCCC1)CC1CC2CCCCC2C1 9
13 C(CCC1CCCC2CCCCC12)CC1CCCC1 9
14 C(CC1CCCCC1)CC1CCCCC1 8
15 C 8
16 C(CC1CCCC1)CC12CC3CC(CC(C3)C1)C2 8
17 C(CCC1CCCCC1)CC1CCCCC1 8
18 C(C(CC1CCCCC1)C1CCCC1)C1CCCCC1 7
19 C1CCC(CC1)C1CCCC2CCCCC12 7
20 C(C1CCCC1)C1CCCC1 6
21 C(CC1CCCCC1)C1CCCC1 6
22 C(C(CC1CCCCC1)C1CCC2CCCCC12)C1CCCCC1 6
23 C(CCC1CCCCC1)CCC1CCCCC1 6
24 C(CCC1CCCC1)CCC1CCCCC1 6
25 C(C1CCCCC1)C1CCCC(C1)C1CCCCC1 6
26 C(C1CCCC1)C1CCCC(C1)C1CCCCC1 6
27 C(CC1CCCCC1)C1CCCCC1 5
28 C1CCC(CC1)C1CCC2CCCCC2C1 5
29 C(CC1CCCC1)CC1CCCC1 4
30 C(C(CC1CCCCC1)C1CCCC1CC1CCCC1)C1CCCCC1 4
31 C(C1CCCCC1)C1CCCCC1 4
32 C(CCC1CCC2CCCC2C1)CC1CCCCC1 4
33 C(CC1CCC(CC1)C1CCCCC1)C1CCC(CC2CCCC2)C1 3
34 C(CC1CCCCC1)CC1CCCC(C1)C(CCC1CCCCC1)C1CCCCC1 3
35 C(CCC1CCC(CC2CCCCC2)CC1)CC1CC2CCCCC2C1 3
36 C(CCCC1CCCCC1)CCC1CCCC1 3
37 C1CCCCCC1 3
38 C(CC1CCCCC1)C(C1CCCCC1)C1CCCCC1CCC1CCCCC1 3
39 C(CCC1CCC(CCCC2CCCCC2)CC1CC1CCCCC1)CC1CCCCC1 3
40 C(CC1CCCC(C1)C1CCCCC1)C1CC1 3
41 C1CCC1 3
42 C(CC1CCC2CCCC2C1)C1CCC(CC2CCCC2)C1 3
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Table S6 (Continued)

Number SMILES Member size

43 C(CC1CCCC1)CC1CCC(C1)C1CCCCC1 3
44 C(CCC1CCCCC1)CC1CCCC1CC1CCCC1 3
45 C(CCC1CCC2CCCC2C1)CC1CCCC1 3
46 C(CC1CCC2CCCCC2C1)C1CCCCC1 3
47 C(CCC1CCCC1)CC1CCCC1 2
48 C(CCC(C1CCCCC1)C1CCCCC1)CCC1CC2CCCCC2C1 2
49 C1C2CC(CCC2C2CCC3C(CCC4CCCCC34)C12)C1CCCCC1 2
50 C1CCC(CC1)C1CCC2C(CCC3CCCCC23)C1 2
51 C(CC1CCCCC1)C1CCC(CC2CC3CCCCC3C2)C1 2
52 C1CC2CCC(CC2C1)C1CCCCC1 2
53 C(CCCC1CCCCC1)CCC1CC2CCCCC2C1C(CC1CCCCC1)CC1CCCCC1 2
54 C(C1CCC(CC2CCC3CCCCC3C2)C1)C1CC2CCCCC2C1 2
55 C(CC1CCCC2CCCCC12)C1CCC(CC2CC3CCCCC3C2)C1 2
56 C(CCC1CCCC1)CCC1CCC(C1)C1CCCCC1 2
57 C(CC1CCCCC1)CC1CCC(CC2CCCCC2)CC1 2
58 C(CC1CCCC1CC1CCCC1)CC1CCCCC1 2
59 C(CCC1CCC2CCCCC2C1)CC1CC2CCCCC2C1 2
60 C(CC1CCCCC1)CC12CC3CC(CC(C3)C1)C2 2
61 C(CCC1CCCCC1)CC(CC1CCCCC1)CC1CCCCC1 2
62 C(CCC1CCC(CC2CCC3CCCCC3C2)CC1)CC1CC2CCCCC2C1 1
63 C(CCC1CCC(CC2CCC(CC2)C2CCCCC2)CC1)CC1CC2CCCCC2C1 1
64 C(CCC1CCC(CC2CCCC(C2)C2CCCCC2)CC1)CC1CC2CCCCC2C1 1
65 C(CCC1CC2CC1CC2C(C1CCCCC1)C1CCCCC1)CC1CC2CCCCC2C1 1
66 C(CCC1CCCC(CC1)C(C1CCCCC1)C1CCCCC1)CC1CC2CCCCC2C1 1
67 C(CCC1CCC(CC(C2CCCCC2)C2CCCCC2)CC1)CC1CC2CCCCC2C1 1
68 C(CC1CCCCC1)C1CC2CCCCC2C1 1
69 C(CCC1CCC(CC2C3CCCCC3C3CCCCC23)CC1)CC1CC2CCCCC2C1 1
70 C(CCC1CCC(CC1)C1CCCCC1)CC1CC2CCCCC2C1 1
71 C(CC1CCC2C1CCC1C2CCC2CCCCC12)CC1CCCCC1 1
72 C(CC1CCC(CC2CCCC2)C1)CC1CCCCC1 1
73 C(CC1CCCC1)CC1CCC(CC2CCCCC2)CC1 1
74 C(CC1CCCCC1)C1CCC(CC2CCCC2)C1 1
75 C(CC1CCCCC1)CC1CCC(CCCC2CCCCC2)CC1 1
76 C(CC1CCC(CC2CCCC2)C1)C1CCCC1 1
77 C1CC2CCC3C(CCC4CCCCC34)C2C1 1
78 C(CC1CCCCC1)C1CC2CCC3C(CCC4CCCCC34)C2C1 1
79 C(CCC1CCCC(C1)C1CCCCC1)CC1CCCCC1 1
80 C(CC1CCCCC1)CC1CCCC(C1)C1CCCCC1 1
81 C(CC1CCCC(C1)C1CCCCC1)C1CCCC1 1
82 C(CCC1CCC(CC1)C1CCCC1)CC1CCCC1 1
83 C(CCC1CCCC(C1)C1CCCCC1)CC1CCCC1 1
84 C(CCC1CCC2CCCCC2C1)CC1CCCC1 1
85 C(CCC1CCCC1)CCC1CCC(CC1)C(C1CCCCC1)C1CCCCC1 1
86 C(CCC1CCCC1)CCC1CCCC1 1
87 C(CCC1CCCC(CC2CCCC2)C1)CC1CCCC1 1
88 C(CCCC1CCCC1)CCCC1CCC(CC1)C(C1CCCCC1)C1CCCCC1 1
89 C1CCC(C1)C1CCCCC1 1
90 C(CCC1CCCC2CCCCC12)CC1CCCCC1 1
91 C(CCCCC1CCCC1)CCCCC1CCCCC1 1
92 C(CCCCC1CCCC1)CCCC(C1CCCCC1)C1CCCCC1 1
93 C(CCCC1CCCC1)CCCC1CCC(CC2CCCCC2)CC1 1
94 C(CC1CCC2CCCCC12)CC1CCC2CCCCC2C1 1
95 C(CCC1CCC(C1)C(C1CCCCC1)C1CCCCC1)CCC1CC2CCCCC2C1 1
96 C(C1CCCC1)C1CCC2CCCCC2C1 1
97 C(CCC1CC2CCCCC2C1)CCC1CCC(CC1)C(C1CCCCC1)C1CCCCC1 1
98 C(CCC1CCCC1CCC(C1CCCCC1)C1CCCCC1)CC1CC2CCCCC2C1 1
99 C(CCC1CC2CCCCC2C1)CCC1CCC(CC2CCCCC2)CC1 1
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Table S6 (Continued)

Number SMILES Member size

100 C1CC2CCC(CC2C1)C1CCCC(C1)C1CCCCC1 1
101 C(CC1CCC(CC1)C1CCC(CC1)C1CCCC1)C1CCCCC1 1
102 C(CCC1CCCC1)CC(C1CCCCC1)C1CCCCC1 1
103 C(CCC1CCCC1CC1CCC(CC1)C(C1CCCCC1)C1CCCCC1)CC1CC2C1CCCC2C1 1

104 C(CCC1CC2CCCCC2C1)CCC12CC3CC(CC(C3)C1)C2 1
105 C(C1CCCC1)C1CCCC1CC1CC2CCCCC2C1 1
106 C(CC1CCC1)CC12CC3CC(CC(C3)C1)C2 1
107 C(CC1CCCC1)CC1CCCC1C(CC1CCCCC1)CC1CCCCC1 1
108 C(CC1CCCCC1)C(C1CCCCC1)C1CCC(CCC2CCCCC2)CC1 1
109 C(CC1CCCCC1)C(C1CCCCC1)C1CCC2CC(CCC2C1)C1CCCCC1 1
110 C(CC1CCCC1)CC1CC2CCCCC2C1 1
111 C(CCCC1CCCC1)CCCC1CCCCC1 1
112 C(C1CCCCC1)C1CCC2CCC(CC2C1)C1CCCCC1 1
113 C(CCCCCC1CCCCC1)CCCCC1CC2CCCCC2C1 1
114 C(CC1CCCC1C(CC1CCCCC1)CC1CCCCC1)CC1CCCCC1 1
115 C(C(CC1CCCCC1)C1CCCCC1)C1CCCC1 1
116 C(CC1CCC2CCCCC2C1)CC12CC3CC(CC(C3)C1)C2 1
117 C(CCC1CCCC1)CC(C(CC1CCCCC1)CC1CCCCC1)C1CCCCC1 1
118 C(CC1CCCCC1)CC1CCC(CCCC2CCCCC2)C(CC2CCCCC2)C1 1
119 C(CC1CCCC1)CC1CCCC1C1CCCCC1 1
120 C(CCCCC1CCCCC1)CCCC1CCCCC1 1
121 C(CCCC1CCCCC1CCC1CCCCC1)CCC1CCCCC1 1
122 C(CCCC1CCC2CCCCC2C1)CCC1CCCCC1 1
123 C1CC2CCCC2C1 1
124 C(CCCC1CCCCC1)CCCC1CCCCC1 1
125 C(CCCC1CCC(CCC2CCCCC2)CC1)CCC1CCCCC1 1
126 C(CCCC1CCCC2CCCCC12)CCC1CCCCC1 1
127 C1CCC(CC1)C(C1CCCCC1)C1CCCCC1 1
128 C(C1CCCCC1)C1CCC(CC1)C1CCCCC1 1
129 C(CCCCC1CCCCC1)CCCC1CC2CCCCC2C1 1
130 C(CC1CCCC(CC2CC3CCCCC3CC2C2CCCCC2)C1)C1CCCCC1 1
131 C(C1CCCC1)C1CC2CCCC2C1 1
132 C(CC1CCC2CCCCC2C1)C1CCCC1 1
133 C(CC1CC2CCCCC2C1)CC1CCC2CCCCC2C1 1
134 C(CCC1CCCCC1)CC1CC2CCCCC2C1 1
135 C(CC1CC2CCCC2C1)CC1CCCCC1 1
136 C(CC1CCC2CCCCC2C1)C1CCC(CC2CCCC2)C1 1
137 C(CCC1CCCCCC1)CC1CCCCC1 1
138 C(CC1CCCCC1)C1CCC(C1C1CCCCC1)C1CCCCC1 1
139 C1CCC(C1)C1CCC2C(CCC3CCCCC23)C1 1
140 C(CC1CCCC1)CC1CCC(CCCC2CCCCC2)CC1 1
141 C(CC1C2CC(CC12)C1CCCCC1)CC1CCCC1 1
142 C(CC1CCCCC1C1CCCCC1)C1CCCC1CC1CCCC1 1
143 C(C1CCCC1)C1CCCC1C1CC2CCCCC2C2CCCCC2C1 1
144 C(CCCC1CC2CCCCC2C1)CCC(C1CCC2CCCCC2C1)C1CCC2CCCC1C2C1 1
145 C(CCCC1CC2CCCCC2C1)CCC(CC1CCCCC1)CC1CCCCC1 1
146 C(CCCC1CC2CCCCC2C1)CCCC1CCC2CCCCC2C1 1
147 C(C1CCCC1)C1CC2CCCCC2C1 1
148 C(CCCCC(CCCCC1CCCCC1)CC1CCCC1)CCCCC1CCCCC1 1
149 C(CCCCCC1CCCC2CCCCC12)CCCCC1CCCCC1 1
150 C(CCCCCC1CCCCC1)CCCCC1CCCC1 1
151 C(C(CC1CCCCC1)C1CCC(CC2CC3CCCCC3C2)C1)C1CCCCC1 1
152 C(CC1CCCC1)CC1CCC2CCCCC12 1

Abbreviation: SMILEs, simplified molecular-input line-entry system.
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Table S7 Summary of important structural fingerprints ranked by the MDGI

Rank Fingerprint Structure Fingerprint occurrence MDGI

Actives Inactives

1 KRFP4541 98 43 9.197

2 KRFP2428 84 56 3.610

3 KRFP3668 15 2 2.312

4 KRFP0610 362 1,685 2.227

5 KRFP3616 16 10 1.813

6 KRFP3405 31 332 1.563

7 KRFP0223 3 134 1.400

8 KRFP2650 5 0 1.119

9 KRFP1945 9 1 1.021

10 KRFP0018 7 29 0.727

11 KRFP0605 284 1,182 0.588

(Continued)
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Table S7 (Continued)

Rank Fingerprint Structure Fingerprint occurrence MDGI

Actives Inactives

12 KRFP1144 5 80 0.587

13 KRFP0566 55 84 0.581

14 KRFP0344 301 935 0.572

15 KRFP3025 458 1,874 0.511

16 KRFP3561 2 58 0.407

17 KRFP3713 29 247 0.391

18 KRFP0496 0 49 0.382

19 KRFP2200 2 0 0.381

20 KRFP0621 246 776 0.341

21 KRFP3152 1 62 0.320

22 KRFP3966 7 13 0.302

23 KRFP3081 0 70 0.278

24 KRFP3920 5 9 0.214

(Continued)
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Table S8 Applying Lipinski’s rule of five on investigated data sets

Data sets Total Actives Inactives

DPP4-TRN 2,339/2,609 (89.651%) 1,961/2,075 (94.506%) 478/534 (89.513%)
DPP4-TEST1 222/325 (68.308%)
DPP4-TEST2 215/325 (66.154%)
DPP4-TEST3 301/325 (92.615%)

Note: Values shown are for compounds passing the Lipinski’s rule of five/in relation to the total number of compounds (values in parentheses are percentages passing the 
Lipinski’s rule of five).

Table S7 (Continued)

Rank Fingerprint Structure Fingerprint occurrence MDGI

Actives Inactives

25 KRFP4261 3 73 0.185

26 KRFP3369 189 789 0.161

27 KRFP0677 236 1,026 0.155

28 KRFP0508 1 1 0.137

29 KRFP2264 85 167 0.131

30 KRFP3602 4 52 0.123

Abbreviation: MDGI, mean decrease of Gini index.

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com/drug-design-development-and-therapy-journal
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 4: 
	Nimber of times reviewed 2: 


