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Abstract: Lung-targeting drugs are thought to be potential therapies of refractory lung diseases 

by maximizing local drug concentrations in the lung to avoid systemic circulation. However, 

a major limitation in developing lung-targeted drugs is the acquirement of lung-specific ligands. 

Pulmonary surfactant protein A (SPA) is predominantly synthesized by type II alveolar epithelial 

cells, and may serve as a potential lung-targeting ligand. Here, we generated recombinant rat 

pulmonary SPA (rSPA) as an antigen and immunized an alpaca to produce two nanobodies  

(the smallest naturally occurring antibodies) specific for rSPA, designated Nb6 and Nb17.  

To assess these nanobodies’ potential for lung targeting, we evaluated their specificity to lung 

tissue and toxicity in mice. Using immunohistochemistry, we demonstrated that these anti-rSPA 

nanobodies selectively bound to rat lungs with high affinity. Furthermore, we intravenously 

injected fluorescein isothiocyanate-Nb17 in nude mice and observed its preferential accumulation 

in the lung to other tissues, suggesting high affinity of the nanobody for the lung. Studying acute 

and chronic toxicity of Nb17 revealed its safety in rats without causing apparent histological 

alterations. Collectively, we have generated and characterized lung-specific nanobodies, which 

may be applicable for lung drug delivery.

Keywords: nanobodies, rSPA, phage-nanobody library, V
HH

, lung-targeting drugs

Introduction
Development of lung-targeting ligands has been an important focus of drug delivery 

for the treatment of respiratory diseases to increase drug concentrations in the lung 

and minimizing toxicity. Currently, two major forms of lung-targeting drugs have 

been developed: 1) inhaled drugs, which are directly delivered to the respiratory tract, 

thereby improving pharmacological effects of therapy and minimizing unwanted 

systemic side effects (such as inhaled broncholytics, inhaled anti-inflammatory 

drugs, and inhaled vasodilators)1–3 and 2) passive lung-targeting drugs, which are 

likely localized in pulmonary capillary mechanical retention (eg, levofloxacin 

liposome).4–6 However, inhaled drugs have shown only limited efficacy against airway 

diseases, due to the barriers of respiratory structures and cooperation of patients.7 

Furthermore, clinical application of passive lung-targeting drugs is also hampered 

by the high retention of the reticuloendothelial system, such as the liver and spleen. 

Therefore, there is an urgent need to develop more effective lung-targeting drugs 

or delivery ligands.

An antibody may recognize its antigen in vivo with high affinity and specificity. 

Based on this principle, active targeting drugs that consist of antibody ligands and 

nanoparticles via chemical conjugation have increased drug concentrations in the 
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targeting tissue and decreased distribution in unrelated 

organs (especially in the liver and spleen) compared to their 

nontargeting counterparts.8–10 Because certain cancer cells 

overexpress growth-factor receptors or other molecules that 

can be easily targeted, recent studies have largely focused on 

tumor-targeting drugs.11–13 However, to date, the development 

of active lung-targeting drugs has been hampered by the lack 

of specific ligands for lung tissue.

Studies have shown that pulmonary surfactant protein 

A (SPA) is predominantly produced by alveolar epithelial 

type II cells and rarely expressed elsewhere.14 In recent 

years, SPA has become a commonly used marker of the 

lung for diagnosis of lung diseases.15,16 Therefore, SPA 

may serve as an attractive lung-targeting molecule for the 

development of active lung-targeting drugs. Particularly, 

targeting SPA by an antibody may be a viable approach. 

We have successfully developed dexamethasone lipo-

somes with active lung-targeting distribution by linking 

anti-SPA polyclonal antibodies (SPA-poly-ant) with a 

dexamethasone (DXM) nanoliposome (NLP) surface 

(SPA-DXM-NLP).17 The concentration of the SPA-DXM-

NLP complex in the lung is approximately fivefold greater 

than the free DXM control initially and reached 40-fold 

greater at 12 hours postinjection. Also, administration of 

SPA-DXM-NLP significantly attenuates lung injury in 

animal models. However, using full-size antibodies like 

anti-SPA-poly-ant for ligands is not ideal, because of their 

high molecular weight, strong immunogenicity, and low 

tissue penetration.18

To overcome this problem, recent studies have illustrated 

that the serum of Camelidae contains some special antibodies 

that are naturally devoid of light chains, termed heavy-chain 

antibodies (HcAbs).19 HcAbs can recognize their cognate 

antigens by a single variable-domain, referred to as V
HH

. 

Due to the nanometer-scale size of V
HH

, Ablynx (a company 

focusing on therapeutic applications of camelid antibodies) 

renamed V
HH

s Nanobodies® (Nbs).20,21 Nanobodies are the 

smallest naturally occurring intact antigen-binding domains 

of antibodies identified to date. In addition, benefiting from 

their small size, nanobodies are of higher affinity, more 

soluble, and more stable than other antibody fragments, such 

as F(ab’)
2
 or single-chain antibodies.22 Nanobodies also have 

better tissue penetration and less immunogenicity,23 which 

may be promising for application in the antitumor and anti-

infection fields.24–26

In this study, we report the development of novel anti-

rSPA nanobodies and the assessment of in vitro and in vivo 

targeting ability and toxicity.

Materials and methods
Materials
GenScript constructed the recombinant plasmid pGEX-4-

T-1-rSPA containing the rSPA gene sequence (Nanjing, 

People’s Republic of China [PRC]). The plasmid (pET-44a, 

pET-30a, pCANTAB5E), Escherichia coli BL21, Ex Taq 

deoxyribonucleic acid (DNA) polymerase, deoxynucleotide 

triphosphates (dNTPs), and DNA-purification kit were 

purchased from Tiangen Biotech (Beijing, PRC). A DNA 

ligation Kit, DNA markers, and restriction endonucleases 

were obtained from Takara Biotech (Dalian, PRC). Our 

laboratory prepared the rabbit antialpaca IgG antibody. 

Isopropyl-β-d-thiogalactoside (IPTG), horseradish per-

oxidase (HRP)-conjugated goat antirat IgG, and anti-His 

monoclonal antibody were provided by Beijing Biosynthesis 

Biotechnology (Beijing, PRC). Quartz crystal microbalance 

(QCM) measurements were performed using a Q-Sense D300 

instrument with 5 MHz quartz crystals deposited with gold 

electrodes (14 mm diameter) on a single side of the surface 

(Q-Sense, Gothenburg, Sweden). All other reagents were 

at least analytical grade for this study, and were purchased 

from Sigma-Aldrich (St Louis, MO, USA).

Animals
BALB/c-nu/nu female mice, approximately 4 weeks old and 

18–20 g, were housed in specific pathogen-free conditions. 

Female Sprague Dawley rats, approximately 4–5 weeks old 

and 100±10 g, were purchased from Shanghai SLAC Labo-

ratory Animal Co Ltd (laboratory animal production license 

SCXK [Hu]). The Institutional Animal Ethics Committee for 

Experimentation on Animals of Tongji University approved 

all animal experiments.

Preparation of rSPA antigen
A 245 bp fragment of the rSPA gene (verified via the National 

Center for Biotechnology Information website) was optimized 

based on E. coli codon usage, synthesized by GenScript, 

and subcloned into the pET-44a expression vector. Then, 

the recombinant plasmid pET-44a-rSPA was transformed 

into BL21(DE3) E. coli bacteria. The transformants were 

inoculated in Lysogeny broth medium containing 70 μg/mL  

ampicillin and incubated overnight at 37°C/250 rpm.  

Expression was induced with different concentrations of 

IPTG (0.5, 0.8, and 1 mM) in various induction times and 

temperatures (2, 4, and 8 hours and 25°C, 30°C, 37°C).  

The expressed protein was examined by 12% sodium dodecyl 

sulfate polyacrylamide gel electrophoresis gel and then purified 

by 1.0 mL nickel nitrilotriacetic acid resin (Qiagen, Valencia, 

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2015:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2859

SPA nanobody for lung targeting

CA, USA). Immunoblotting and enzyme-linked immunosor-

bent assay (ELISA) using anti-rSPA-poly-ant evaluated the 

purified protein, and GST protein was used as a control.

Immunization and construction of  
anti-rSPA-VHH libraries
Immunization and construction of anti-rSPA V

HH
 libraries 

have been described in detail elsewhere.27–29 Briefly, a 2-year-

old male alpaca was immunized weekly subcutaneously with 

at least 2 mg rSPA antigen for a period of 5 weeks. Nodular 

masses at the subcutaneous injection sites were observed after 

each immunization to ensure that the immunization procedure 

was performed appropriately. Blood was collected from the 

jugular vein prior to each injection, and the sera were used 

to monitor the immunization process, determined by indirect 

ELISA. The serum antibody titers were determined by the 

presence of a positive result at the highest possible dilution. 

Fourteen days after the last immunization, peripheral blood 

(200 mL) was collected and lymphocytes were isolated. Then, 

ribonucleic acid (RNA) was extracted using a Pure RNA 

Isolation Kit (Roche, Nutley, NJ, USA), and complementary 

DNA (cDNA) was synthesized via a Revert Aid First-Strand 

cDNA Synthesis Kit (Fermentas, Vilnius, Lithuania). Nested 

polymerase chain reaction was performed to amplify the V
HH

 

fragments by using primers specific for HcAbs, which were 

designed according to the constant region (C
H
2) of alpaca 

HcAbs.30 The amplified V
HH

 fragments were ligated into the 

phagemid vector pCANTAB5E after being digested with 

the SfiI restriction enzyme. Next, the ligated vector was 

subsequently transformed into TG1 E. coli cells. The V
HH

 

repertoire was expressed in phage particles after a rescue 

procedure with the helper phage M13K07.

Panning and screening of anti-rSPA-
specific nanobodies
The panning protocol was utilized as described elsewhere.27–29 

Three consecutive rounds of panning using immunotubes that 

were coated with rSPA antigen were used to enrich the anti-

rSPA-V
HH

 libraries. Individual colonies that were specific for 

rSPA after the third round of panning were tested in a phage 

ELISA. Briefly, clones were grown in 2× YT medium with 

100 μg⋅mL−1 ampicillin and 0.1% glucose medium. They 

were then infected with M13K07 helper phage and incubated 

at 37°C for 30 minutes. Then, 50 μg⋅mL−1 kanamycin was 

added and the clones amplified overnight at 37°C with 

shaking. The cultured clones were next centrifuged, and 

100 μL of supernatant containing the recombinant phage 

particles was then added to rSPA precoated microtiter plate 

wells. After 2 hours’ incubation at 37°C, microtiter plate 

wells were washed three times with phosphate-buffered 

saline (PBS)-Tween 20 followed by the addition of anti-

M13 HRP conjugate (1/5,000). V
HH

 phages that were 

bound to rSPA were detected by adding 100 μL of HRP 

substrate (KPL, Gaithersburg, MD, USA). After 15 minutes  

of incubation, the reaction was stopped using 1 M H
3
PO

4
, 

and absorption at 405 nm was measured. The unique V
HH

 

genes of the clones that scored positive in phage ELISA were 

selected for sequencing analysis.

Expression and purification of nanobodies
After sequence confirmation, the clones with higher affinity 

were selected for prokaryotic expression. The production 

and purification of the selected clones was described earlier. 

Then, Western immunoblotting and ELISA confirmed the 

biological activity of the purified protein. As the expression 

vector contains His-tag, anti-His antibody was used as a 

secondary antibody. At the same time, the purified protein 

concentrations were measured by bicinchoninic acid assay.

Biophysical analyses of Nb17
First, Nb17 was adjusted to a concentration of 10 μg/mL 

in PBS. A goat anti-rSPA-poly-ant was used as control. 

Both were incubated at various temperatures (0°C, 10°C, 

30°C, 50°C, 70°C, and 100°C) and at various pH values  

(3.5, 6.5, 7.0, 7.3, 7.5, 8.0, and 8.5 for 2 hours). After incuba-

tion, Nb17 and rSPA-poly-ant were subsequently incubated 

for 30 minutes at room temperature. To test antibody binding, 

all samples were detected using the standard procedure as 

described in the following. Nb17 and rSPA-poly-ant were 

transferred to rSPA-coated microplates. After incubation for 

1 hour, microplates were blocked to reduce a specific binding 

with PBS containing 1% bovine serum albumin and 0.05% 

Tween 80. Then, Nb17 and rSPA-poly-ant was used as the 

second antibody. As the third step, goat antimouse conjugated 

with HRP was used.

Immunohistochemistry
In order to determine the binding activity of the purified anti-

rSPA nanobodies to SPA, we performed immunohistochem-

istry using the frozen sections of the lung, heart, liver, spleen, 

kidney, and muscle tissue of rats. A goat anti-rSPA-poly-ant 

was used as a positive control for the primary antibody. 

The anti-rSPA nanobodies (Nb6 and Nb17) were used for 

the experimental groups, while an unrelated nanobody was 

used as the negative-control group. The secondary antibody 

used in both the experimental and the negative-control 
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groups was mouse anti-His monoclonal antibody, and in the 

positive-control group, it was rabbit antigoat IgG.

Analysis of binding ability by QCM
The binding ability of Nb17 to rSPA antigen was further 

evaluated by QCM. The frequency change (∆f) is used to 

measure the ability of protein–protein binding. The formula 

of Sauerbrey - ∆f =-2.6×105 f
0
∆M/A - proved that for 

nanobodies with gold substrate antigen binding, the better 

the quality of the greater amount of change (∆M), the greater 

the frequency, and the stronger the effect of protein binding. 

In this formula, f
0
 means quartz-oscillator base frequency 

(MHz), ∆f is frequency quartz-oscillator frequency-shift 

value of the variable (Hz), ∆M is electrode material deposited 

on the mass of the variable (g), A is the area of the working 

electrode (cm2), and a negative number represents quality. 

The procedures included 1) 0.1% mercaptopropionic acid at 

electrode surfaces to produce a carboxylic acid-terminated 

monolayer, 2) activation by 5 mg/mL ethylene dichloride and 

10 mg/mL N-hydroxysuccinimide to generate a stable acyl 

amino ester intermediate for 1 hour, and 3) adding 1 mL Nb17 

and control nanobody to gold substrates. At 37°C 1-hour 

incubation under continuous monitoring, working ranges 

from 102 to 105 cells/mL with reproducibility 10% relative 

standard deviation were obtained. The frequency change (∆f) 

indicated the ability of protein–protein binding.

Analysis of targeting efficiency in vivo
Since there was a high degree of homology (95%) in the 

amino acid sequence of SPA between the Sprague Dawley 

rats and BALB/c-nu/nu female mice and it is much easier 

to image mice, we next used nude mice (six for each group) 

for in vivo imaging. The nude mice were randomly divided 

to an experimental group (receiving Nb17) and a control 

group (receiving a goat anti-rSPA-poly-ant), which were 

labeled with fluorescein isothiocyanate (FITC). The free 

FITC group were also assigned as controls. The experimental 

group was intravenously injected with 10 μL FITC-Nb17 

(1 mg/kg), and the control group with the same amount of 

anti-rSPA-poly-ant, followed by imaging at multiple time 

points (0 and 15 minutes, and 1, 2, 3, and 6 hours) using a 

Xenogen small-animal in vivo imaging system (PerkinElmer, 

Waltham, MA, USA). For the imaging experiments, all the 

mice were first anesthetized with urethane.

Acute and chronic toxicity tests
Twenty Sprague Dawley female rats were randomly divided 

into four groups: 1) the acute toxicity group, 2) the acute 

toxicity control group, 3) the chronic toxicity group, and 

4) the chronic toxicity control group. The acute toxicity 

group was intravenously injected with 10 mg/kg Nb17 and 

monitored for 1 week. The acute-negative control group 

was treated with the same volume of sterile normal saline. 

The chronic toxicity group was intravenously injected 

with Nb17 at a dose of 0.1 mg/kg Nb17 once daily for  

3 months. The chronic-negative control group was treated 

with the same volume of saline daily for 3 months. Liver 

and kidney functions were then analyzed. Tissue injury 

of rat lung, liver, spleen, and kidney tissues stained with 

hematoxylin and eosin was investigated at the indicated 

time points.

Statistical analysis
All experimental data were statistically analyzed using 

SPSS 16.0 software. Continuous variables are expressed as 

mean ± standard deviation. Experimental data were ana-

lyzed by one-way analysis of variance, followed by least 

significant difference t-tests, when significant differences 

existed among groups. P-values of less than 0.05 were con-

sidered statistically significant.

Results
Preparation of antigen
The recombinant vector pET-44a-rSPA containing a 245-

amino acid fragment of SPA was created as described in the 

Materials and methods section and transformed into BL21  

E. coli. The optimum expression condition of the recombinant 

protein was found to be 0.8 mM IPTG at 37°C for 6 hours.  

The molecular weight of the expressed protein was esti-

mated to be approximately 27 kDa, suggesting a correct 

size of typical rSPA protein. Immunoblotting analysis dem-

onstrated that the expressed protein specifically bound to 

anti-rSPA polyclonal antibody at 27 kDa, whereas no band 

was seen in a control GST protein (Figure 1A). ELISA also 

showed robust binding activity between rSPA and goat anti-

rSPA-poly-ant compared to the control protein (Figure 1B).  

Overall data suggest that we successfully constructed, 

produced, and purified rSPA.

Alpaca immunization, generation, and 
screening of anti-rSPA nanobody library
An alpaca was immunized with the recombinant rSPA, 

and blood serum was separated before each immunization. 

Rabbit anti-alpaca IgG labeled with HRP was prepared as a 

second antibody. Our results showed that the antibody titer 

gradually increased with increasing immunization times, 
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and reached an effective concentration of 1:12,000 after the 

fourth immunization (Table 1).

Lymphocytes were purified from 200 mL peripheral 

blood of the rSPA-immunized alpaca and total messenger 

RNA from 2.9×109 lymphocytes was extracted using Trizol 

reagent to obtain cDNA. The V
HH

 fragments with a size 

of 500 bp were generated by polymerase chain-reaction 

amplification. A V
HH

 library with 5.93×105 fragments 

was obtained. After three consecutive rounds of in vitro 

panning using the rSPA antigen, phage particles, which 

bound specifically to rSPA, were successfully enriched 

(Table 2). A total of 31 random clones with high affinity for 

rSPA were identified by phage ELISA. DNA-sequencing 

analysis revealed that six clones among them were IgG
2a

 

subtype, and 25 clones were IgG
3
 subtype (Figure 2A 

and B). Cluster analysis showed that 31 individual clones 

contained 16 different sequences, among which Nb17,  

2, and 4 contained significant repeats (identical sequences), 

and Nb12, 18, 8, and 20 and Nb6, 16, 25, and 7 contained 

another two types of repeats, which indicated significant 

enrichment of these three isotypes (Figure 2C). After 

initial testing of binding specificity for the antigen, we 

designated two of them (Nb17, Nb6) and performed further 

characterization.

Production and binding specificity of  
anti-rSPA nanobodies
Two clones, Nb6 and Nb17, were chosen for further char-

acterization. Expression conditions of both sequences were 

analyzed using various temperatures and IPTG concentra-

tions. Optimal expression levels were attained at 25°C for  

4 hours with 0.8 mM IPTG. The molecular weights of these 

proteins were approximately 19 kDa and were soluble. The 

concentration of the purified proteins was approximately  

25 mg/mL. With immunoblotting, rSPA reacted well with puri-

fied Nb6 and Nb17 with a single band of 19 kDa (Figure 3A).  

ELISA also showed that the purified Nb6 and Nb17 had 

positive reactivity to rSPA (Figure 3B).

M

27 kDa

1 2 2.5

BA

2.0

1.5

O
D

45
0

Binding activity

1.0

0.5

0
1 2

*

Figure 1 Detection of rSPA by Western immunoblot and ELISA.
Notes: (A) Western immunoblot showed the expressed rSPA (lane 2) can bind to a goat anti-rSPA polyclonal antibody compared to the negative control group (lane 1) at 27 
kDa. (B) ELISA analysis showed a high binding activity of the expressed rSPA (lane 2) to anti-rSPA polyclonal antibody compared to the negative control (lane 1). *P0.05.
Abbreviations: rSPA, rat surfactant protein A; ELISA, enzyme-linked immunosorbent assay; OD, optical density.

Table 1 Alpaca immune antibody titer

Immune frequency Antibody titer

1:100 1:500 1:1,000 1:2,000 1:4,000 1:8,000 1:10,000 1:12,000

1 - - - - - - - -
2 + + + - - - - -
3 + + + + + + - -
4 + + + + + + + +
5 + + + + + + + +
Notes: + is the ratio of antibody optical density value to the negative control, optical density value greater than or equal to 2.1, and - is less than 2.1.
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To investigate further the binding ability of Nb6 and 

Nb17 to naturally occurring rSPA, immunohistochemistry 

was performed on cryosections of rat lung, heart, liver, 

spleen, kidney, and muscle. Our results showed that both Nb6 

and Nb17 preferentially bound to rat lung tissue (Figure 4,  

brown staining), but did not show binding to the heart, 

liver, spleen, kidney, or muscle, and the same-degree reac-

tion with the lung tissues by anti-SPA-poly-ant (positive 

control) was also detected. However, the binding ability of 

Nb6 was weaker than that of Nb17 and anti-SPA-poly-ant 

(Figure 4). No significant binding reaction was observed in 

the negative-control group.

Since Nb17 showed a higher binding ability to rSPA in 

immunohistochemistry than Nb6, we chose Nb17 to evaluate 

its targeting ability further. In order to investigate the biophysi-

cal feature of Nb17, a standard antigen-specific ELISA was 

performed to test whether binding could be observed at various 

temperatures and various pH values. As shown in Figure 5, 

contrary to conventional rSPA-poly-ant, Nb17 was found to 

be far more stable. In more detail, for Nb17, it is clearly shown 

that it specifically bound to rSPA even at temperatures of 

90°C and pH values of 3.5 or at 8.0. However, rSPA-poly-ant 

showed almost no antigen binding when the temperature was 

above 70°C and acid or alkaline conditions were extreme.

We next performed QCM based on the frequency change 

of quartz crystal resonance, which has been widely used to 

characterize protein features, including protein–protein inter-

action. To confirm the specific binding of Nb17 to rSPA, an 

irrelevant nanobody that did not recognize rSPA was gener-

ated and used as a negative control. As Figure 6A shows, 

the frequency change of Nb17 (∆f
17

) was significantly higher 

than that of the control nanobody (∆f
CTR

) by the passage of 

time, indicating the high binding ability between Nb17 and 

rSPA. These results suggest that our Nb17 possesses high 

specificity for rSPA.

Analysis of the targeting ability of Nb17  
in mice
We chose a mouse model for in vivo imaging to detect the 

lung-targeting ability of Nb17, as rats have a high homology 

(95%) to the mouse SPA amino acid sequence. As shown in 

Figure 6B, we injected FITC-labeled Nb17 (FITC-Nb17) or 

FITC-SPA-poly-ant (control). FITC-Nb17 began to accumu-

late in mouse lungs at 15 minutes after tail-vein injection, and 

was almost completely cleared from the bladder at 6 hours 

after injection. However, no concentrated FITC was detected 

in any other organs. SPA-poly-ant also began to enter mouse 

lungs at 15 minutes after intravenous injection, but its bind-

ing to rat lungs was much lower than that of the Nb17-FITC. 

We labeled the protein according to the reaction between the 

R-amino group on lysine of protein and carbon–sulfur bond 

amine on fluorescence to form a FITC-protein conjugate 

(fluorescence antibody). A whole IgG antibody has 86 lysine 

residues, and 15–20 of them can be used for the reaction.  

As a nanobody, Nb17’s size is only 10% of an IgG antibody, 

so the overall fluorescence that can bind is much less than that 

of a whole IgG antibody. FITC-SPA-poly-ant were also seen 

in other organs at high concentration besides lungs, and almost 

completely removed from the lungs and bladder of rats at  

6 hours after injection. The free FITC group failed to show 

organ-specific accumulation, and was completely cleared 

from the kidney and the bladder of rats (data not shown).

Analysis of acute and chronic toxicity
Serum alanine transaminase, aspartate transaminase, blood 

urea nitrogen, and serum creatinine were determined to assess 

the acute (1-week) and chronic (3-month) toxicity in rats as 

detailed earlier. No statistically significant differences were 

found between any of the four groups by multiple-comparison 

analysis (P0.05, Table 3). Therefore, overall data indicated 

that Nb17 had not induced significant toxicity. We further 

analyzed the histological alterations caused by Nb17 using 

cryosections of the lung, liver, spleen, and kidney in acute 

toxicity, chronic toxicity, and control groups. Our results 

showed that there were no apparent histological alterations by 

morphological assessment in tissues of the lung, liver, spleen, 

or kidney of rats between the Nb17 groups and controls using 

hematoxylin and eosin staining (Figure 7).

Discussion
Active targeting drugs are believed to have favorable 

properties, such as concentrated drugs at the site of the 

Table 2 Enrichment after three rounds of panning

Panning  
round

Amount of coated  
antigen (μg/mL)

Input number  
of phages (cfu)

Output number  
of phages (cfu)

Recovery  
rate (%)

1 100 7.8×1014 4.3×105 5.5×10-7

2 50 5.3×1012 2.5×106 4.7×10-4

3 25 6.9×1012 2.1×107 3.0×10-3
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A

B

No1 (0.0925)

No29 (–0.0015)
No38 (0.0015)

No46 (0.3898)
No47 (0.2452)

No22 (0.0589)
No36 (0.0329)

No45 (0.1015)
No27 (0.0655)

No19 (0.0057)
No9 (0.0003)

No13 (0.2048)
No41 (0.1344)

No34 (0.1589)
No11 (0.0295)

No17 (0.0000)
No2 (0.0000)
No4 (0.0000)

No3 (0.0369)
No12 (0.0000)
No18 (0.0000)

No6 (0.0062)
No16 (0.0000)
No25 (0.0000)
No7 (0.0000)

No8 (0.0000)
No20 (0.0058)

No43 (0.0817)
No28 (0.0875)

No48 (0.1347)
No32 (0.1390)

C

Section 1

Section 2

Figure 2 Nanobody sequencing analysis.
Notes: (A, B) The amino acid sequences encoded by phagemid clones. All 31 sequences were VHH sequences, in which five clones (Nb1, 43, 28, 48, 32) were an IgG2a subtype 
and the remaining clones were an IgG3 subtype. Section 1 includes 1–96 amino acid sequences of all 31 sequences; section 2 includes 97–183 amino acid sequences of all 31 
sequences. (C) Cluster analysis of amino acid sequences. The 31 individual clones contained 16 different sequences. Among them, Nb17, 2, and 4 were repeats (with many 
identical sequences), Nb12, 18, 8, and 20 were repeats, and Nb6, 16, 25, and 7 were repeats as well. Identification of these repeats indicated the enrichment of these three 
antibody isotypes.
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Figure 3 Analysis of the binding specificity of Nb6 and Nb17 to rSPA.
Notes: (A) Western blot showed that Nb6 (lane 1) and Nb17 (lane 2) bound to rSPA at 19 kDa, lane 3 are mark. (B) ELISA showed excellent binding activity of Nb6 (lane 1) 
and Nb17 (lane 2)to rSPA compared to the negative control (lane 3). *P0.05.
Abbreviations: rSPA, rat surfactant protein A; ELISA, enzyme-linked immunosorbent assay; OD, optical density.
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Figure 4 Immunohistochemistry in vitro.
Notes: Immunohistochemistry with frozen sections of rat lungs and other organs showed that both Nb6 and Nb17 bound to the rat lung (brown coloration), but did not 
bind to the heart, liver, spleen, kidney, or muscle. The positive-control group also stained well (magnification ×200, scale bar 50 μm).
Abbreviation: SPA-poly-ant, surfactant protein A polyclonal antibody.
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Figure 5 Biophysical analyses of Nb17.
Notes: Antigen-specific ELISA was performed to test the binding ability of Nb17, SPA-poly-ant at various temperatures (A) and at various pH (B).
Abbreviations: ELISA, enzyme-linked immunosorbent assay; SPA-poly-ant, surfactant protein A polyclonal antibody.

disease, enhanced therapeutic effects, reduced systemic side 

effects, and lowered costs. However, development of active 

lung-targeting drugs has been impeded by the difficulty in 

identifying specific lung targets and their appropriate ligands. 

Thus far, studies on lung targeting have been largely depen-

dent on the mechanical retention of pulmonary capillary and 

airway inhalation, in which both have intrinsic limitations.  

To explore a new way for lung targeting, peptide targeting 

to the pulmonary vasculature was developed by screening 

phage-peptide libraries in vivo after intravenous injection into 

the lungs of mice, due to the differences in vascular endothe-

lial cells from different organs.31–33 However, this method has 

met limited success in clinical application, in part because of 

the increased risk of thrombosis. Therefore, it is necessary to 

explore a more effective lung-targeting strategy.

rSPA is one of the most abundant pulmonary surfactant 

proteins (SPs), and is expressed on alveolar epithelial type II 

cells and Clara cells. In addition, rSPA messenger RNA can 

also be detected in the epithelial cells of the middle ear, jeju-

num, colon, and serosa mesothelium, but in much lower pro-

tein levels.14 In our previous work, we also showed that rSPA 

can serve as a lung-targeting molecule. However, natural SPA 

cannot meet experimental requirements, since it is primarily 

extracted from bronchoalveolar lavage fluid, and this proce-

dure is associated with very complicated steps and a low yield.  

In this study, we generated recombinant rSPA by a prokary-

otic expression system, and successfully used the rSPA as an 

immunogen to produce lung-targeting nanobodies.

Ligands for ideal lung targeting require not only a high 

affinity to the target but also unique characteristics, including 

low molecular weight, low immunogenicity, and high tissue 

penetration. As the binding between antigen and antibody has 

high affinity and stability, anti-SPA antibody may be suitable 

for lung-targeting ligands. However, conventional antibodies 

(such as a polyclonal and monoclonal antibodies) consisting 

of two heavy and two light chains suffer from a number of 

drawbacks, such as high molecular weight (150 kDa), high 

immunogenicity, low tissue penetration, and high costs in 

production. Recent technical advances have allowed the 

transformation of those conventional antibody molecules into 

small antibody molecules (eg, Fab and single-chain variable 

fragments) through genetic engineering technology, but these 

molecules are not satisfactory for specific ligands because of 

their decreased stability and affinity to their antigens. Inter-

estingly, these drawbacks of conventional antibodies may 

be solved by using single-chain antibody fragments (V
HH

s or 

nanobodies). A nanobody is the smallest antibody molecule, 

with intact antigen-binding capability, strong stability, and 

tissue penetration. Nanobodies have been applied in multiple 

fields of medicine as a novel antibody drug.34–36 However, 

there have been no reports of any anti-rSPA nanobodies for 

lung-targeting ligands.

The ability to isolate a specific nanobody from immunized 

phage libraries has been used by several groups.27–29 In the 

present study, we successfully immunized an alpaca using 

our recombinant rSPA, and constructed a size of 5.93×105 

cfu immunized library. Fortunately, 31 clones with high 

affinity for rSPA were successfully screened using a phage 

ELISA. After DNA sequencing, 16 different V
HH

 sequences 

were obtained. Nanobodies are highly expressed in a vari-

ety of microorganisms, since they are encoded by a single 

gene, small molecular weight, and simple structure.37–40  
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Table 3 Liver- and kidney-function test

Group ALT (IU/L) AST (IU/L) BUN (mmol/L) Cr (μmol/L)

Acute 66.30±15.34 190.05±30.06 5.10±1.07 18.97±4.06
Acute-negative 63.40±18.94 185.32±24.38 6.16±1.52 19.78±5.73
Chronic 64.30±14.14 178.05±23.12 5.78±2.03 19.07±3.82
Chronic-negative 65.40±13.77 188.05±24.25 6.02±1.82 20.08±4.62

Note: All values showed in the table are in mean ± SD.
Abbreviations: ALT, alanine transaminase; AST, aspartate transaminase; BUN, blood urea nitrogen; Cr, creatinine.

∆

Figure 6 Analysis of binding affinity and toxicity in the lung.
Notes: (A) Binding-ability analysis of Nb17 by quartz crystal microbalance. The maximum frequency change of Nb17 (∆f17 =190 HZ) was significantly higher than the control 
(CTR) (∆fCTR =30 HZ). This indicated that the binding specificity of Nb17 to rSPA was significantly higher than that of the control nanobody. (B) Lung-targeted analysis of 
Nb17 in vivo in nude mice. The experiments were performed independently three times, and showed similar results.
Abbreviations: FITC, fluorescein isothiocyanate; rSPA, rat surfactant protein A; poly-ant, polyclonal antibody.
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Figure 7 Histological analysis of rat lungs, liver, spleen, kidneys by hematoxylin and eosin staining.
Notes: Different reagents (Nb17 or control antibodies) were administered to rats for acute (1 week) or chronic (3 months) toxicity study. Then, the lung, liver, spleen, and 
kidney tissues were processed for hematoxylin and eosin staining.
Abbreviation: Neg, negative.

The methods for preparation of nanobodies are straightfor-

ward compared to the procedures for genetic engineering 

antibody preparation. The two nanobodies (Nb6 and Nb17) 

in our current study also can be routinely prepared under 

normal culture conditions, establishing a simple and efficient 

approach for nanobody preparation.

The binding ability of the nanobodies (Nb6 and Nb17) 

with rSPA was assessed and validated by immunoblotting 

and ELISA. Our data indicated that both Nb6 and Nb17 

can specifically bind to naturally occurring rSPA. Using 

immunohistochemistry, the binding ability of Nb17 was 

as strong as the positive-control group (a commercial anti-

SPA-poly-ant), while Nb6 was relatively weak. One possible 

explanation for this phenomenon is that in spite of the high 

degree of similarity between the sequences of Nb17 and Nb6, 

a tiny difference in variable region contributes enormously 

to binding strengths.

When antibodies were tested for functional binding at 

various temperatures and at various pH conditions to their 

antigen, major differences were observed between the Nb17 

and rSPA-poly-ant. It is possible that the extreme conditions 

resulted in dissociation of the polyantibody structure, thereby 

exposing the hydrophobic interfaces on both heavy and light 

chains. The exposed hydrophobic interfaces subsequently 

aggregated and precipitated, resulting in nonfunctional 

molecules. However, contrary to conventional antibodies, 

because of the efficient refolding after chemical or thermal 

denaturation of nanobodies and an additional disulfide bond 

between complementary determining regions CDR1 and 

CDR3, improved protein stability can be obtained.41,42

To determine further the lung-targeting ability of the 

recombinant nanobody, we performed in vivo imaging by 

labeling Nb17 with FITC (FITC-Nb17). FITC-Nb17 began 

to accumulate in the lung at 15 minutes after intravenous 

injection, but was completely metabolized by the kidney 

and bladder at 6 hours after injection. Compared to SPA- 

poly-ant, FITC-Nb17 had much higher accumulation and 

longer retention in the lung. Importantly, no obvious accu-

mulation of free FITC (a negative control) was detected in 

any organs. This finding strongly suggests not only strong 
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lung-targeting capability for Nb17 but also limited retention 

in the liver and spleen. Although it is impossible to have 

no cross-reactivity, background retention in those organs 

appeared to be minimal.

In addition to analyzing in vivo biodistribution, we also 

carried out acute and chronic toxicity tests with the anti-rSPA 

nanobodies. Our results confirmed the safety of the nanobod-

ies in rats, which is consistent with previous reports.43 In fact, 

the nanobodies had small molecular weights with only one 

domain and without an Fc domain of a traditional antibody, 

thus avoiding complement activation caused by the Fc domain. 

Additionally, the nanobodies bore a high degree of homology 

with the human V
H
 gene-family sequence, which may contrib-

ute to their low immunogenicity and high safety profile in the 

context of using nanobodies in future clinical therapeutics.
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