Back to Journals » International Journal of Nanomedicine » Volume 2 » Issue 2

Fibroblast response is enhanced by poly(L-lactic acid) nanotopography edge density and proximity

Authors Keith R Milner, Christopher A Siedlecki

Published 15 July 2007 Volume 2007:2(2) Pages 201—211



Keith R Milner1, Christopher A Siedlecki1,2

Departments of Surgery1 and Bioengineering2, Pennsylvania State University College of Medicine, Hershey, PA, USA

Abstract: The development of scaffolds for use in tissue engineering applications requires careful choice of macroscale properties, such as mechanical characteristics, porosity and biodegradation. The micro- and nano-scale properties of the scaffold surface are also an important design criterion as these influence cell adhesion, proliferation, and differentiation. The cellular response is known to be affected by surface topography but the mechanisms governing this remain unclear. Homogenous poly(L-lactic acid) was textured with surface nanotopographies by two-stage replication molding of heterogeneous demixed polymer films. Initial cell adhesion was improved on nanotextured surfaces compared with smooth controls, but subsequent cell density was significantly reduced on the roughest surfaces. Improvements in cell response were found to correlate with focal contact and actin microfilament development. Cell response was found to trend both with the surface density of topography edges and with inter-topography spacing, indicating possible roles for edges stimulating cell adhesion/proliferation or for spacing to modulate the ability of integrin-ligand bonds to cluster and form focal adhesions. This study furthers understanding of the geometric properties of surface nanotopographies that affect cellular response. It is hoped that identification of the mechanisms governing cell-topography interactions will allow rule-based design of biomaterial surface to engineer specific cellular responses.

Keywords: nanotopography, replication, biomaterials, cell adhesion, roughness