Back to Browse Journals » International Journal of Nanomedicine » Volume 7

Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite

Authors Chang BYS, Huang NM, An'amt MN, Marlinda AR, Norazriena Y, Muhamad MR, Harrison I, Lim HN, Chia CH

Published Date July 2012 Volume 2012:7 Pages 3379—3387

DOI http://dx.doi.org/10.2147/IJN.S28189

Received 12 November 2011, Accepted 15 January 2012, Published 5 July 2012

Betty Yea Sze Chang,1 Nay Ming Huang,1 Mohd Nor An' amt,2 Abdul Rahman Marlinda,1 Yusoff Norazriena,1 Muhamad Rasat Muhamad,3 Ian Harrison,4 Hong Ngee Lim,5 Chin Hua Chia6

1Low Dimensional Materials Research Center, Physics Department, University of Malaya, Kuala Lumpur; 2Faculty of Agro Industry and Natural Resources (FASA), Universiti Malaysia Kelantan, Kota Bharu, Kelantan; 3The Chancellery Building, Multimedia University, Persiaran Multimedia, Cyberjaya, Selangor; 4School of Chemical and Environmental Engineering, The University of Nottingham Malaysia Campus, Semenyih, Selangor; 5Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 6School of Applied Physics, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia

Abstract: A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte.

Keywords: graphene oxide, titanium oxide, hydrothermal, nanocomposite

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Other article by this author:

Simple room-temperature preparation of high-yield large-area graphene oxide

Huang NM, Lim HN, Chia CH, Yarmo MA, Muhamad MR

International Journal of Nanomedicine 2011, 6:3443-3448

Published Date: 19 December 2011

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies

Kaur R, Chitanda JM, Michel D, Maley J, Borondics F, Yang P, Verrall RE, Badea I

International Journal of Nanomedicine 2012, 7:3851-3866

Published Date: 19 July 2012

Corrigendum

Chen ZQ, Liu Y, Zhao JH, Wang L, Feng NP

International Journal of Nanomedicine 2012, 7:1709-1710

Published Date: 30 March 2012

Servant leadership: a case study of a Canadian health care innovator

Vanderpyl TH

Journal of Healthcare Leadership 2012, 4:9-16

Published Date: 16 February 2012

Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs

Rao S, Song Y, Peddie F, Evans AM

International Journal of Nanomedicine 2011, 6:1245-1251

Published Date: 20 June 2011

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010