Back to Browse Journals » International Journal of Nanomedicine » Volume 7

Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation

Authors Wang HW, Cheng CW, Li CW, Chang HW, Wu PH, Wang GJ

Published Date April 2012 Volume 2012:7 Pages 1865—1873

DOI http://dx.doi.org/10.2147/IJN.S29969

Received 16 January 2012, Accepted 15 February 2012, Published 10 April 2012

Hsiao-Wei Wang1, Chung-Wei Cheng2, Ching-Wen Li3, Han-Wei Chang4, Ping-Han Wu2, Gou-Jen Wang
 
1Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan, 2Laser Application Technology Center, Industrial Technology Research Institute, Tainan County, Taiwan, 3Department of Mechanical Engineering, 4Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, People’s Republic of China

Abstract: One of the persistent challenges confronting tissue engineering is the lack of intrinsic microvessels for the transportation of nutrients and metabolites. An artificial microvascular system could be a feasible solution to this problem. In this study, the femtosecond laser ablation technique was implemented for the fabrication of pillared microvessel scaffolds of polylactic-co-glycolic acid (PLGA). This novel scaffold facilitates implementation of the conventional cell seeding process. The progress of cell growth can be observed in vitro by optical microscopy. The problems of becoming milky or completely opaque with the conventional PLGA scaffold after cell seeding can be resolved. In this study, PLGA microvessel scaffolds consisting of 47 µm × 80 µm pillared branches were produced. Results of cell culturing of bovine endothelial cells demonstrate that the cells adhere well and grow to surround each branch of the proposed pillared microvessel networks.

Keywords: femtosecond laser ablation, pillared microvessel scaffold, polylactic-co-glycolic acid, bovine endothelial cells

A Letter to the Editor has been published for this article.

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Other articles by this author:

Electrochemical impedimetric biosensor based on a nanostructured polycarbonate substrate

Chen YS, Wu CC, Tsai JJ, Wang GJ

International Journal of Nanomedicine 2012, 7:133-140

Published Date: 6 January 2012

A novel nanostructured biosensor for the detection of the dust mite antigen Der p2

Tsai JJ, Bau IJ, Chen HT, Lin YT, Wang GJ

International Journal of Nanomedicine 2011, 6:1201-1208

Published Date: 13 June 2011

Readers of this article also read: