Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Effects of Caryota mitis profilin-loaded PLGA nanoparticles in a murine model of allergic asthma

Authors Xiao X, Zeng X , Zhang X, Ma L, Liu X, Yu H, Mei L, Liu Z

Received 16 July 2013

Accepted for publication 28 August 2013

Published 25 November 2013 Volume 2013:8(1) Pages 4553—4562

DOI https://doi.org/10.2147/IJN.S51633

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3



Xiaojun Xiao,1,* Xiaowei Zeng,2,* Xinxin Zhang,3,* Li Ma,3 Xiaoyu Liu,1 Haiqiong Yu,1 Lin Mei,2 Zhigang Liu1

1Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, 2Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 3Faculty of Basic Medical Science, Nanchang University, Nanchang, People's Republic of China

*These authors contributed equally to this work

Background: Pollen allergy is the most common allergic disease. However, tropical pollens, such as those of Palmae, have seldom been investigated compared with the specific immunotherapy studies done on hyperallergenic birch, olive, and ragweed pollens. Although poly(lactic-co-glycolic acid) (PLGA) has been extensively applied as a biodegradable polymer in medical devices, it has rarely been utilized as a vaccine adjuvant to prevent and treat allergic disease. In this study, we investigated the immunotherapeutic effects of recombinant Caryota mitis profilin (rCmP)-loaded PLGA nanoparticles and the underlying mechanisms involved.
Methods: A mouse model of allergenic asthma was established for specific immunotherapy using rCmP-loaded PLGA nanoparticles as the adjuvant. The model was evaluated by determining airway hyperresponsiveness and levels of serum-specific antibodies (IgE, IgG, and IgG2a) and cytokines, and observing histologic sections of lung tissue.
Results: The rCmP-loaded PLGA nanoparticles effectively inhibited generation of specific IgE and secretion of the Th2 cytokine interleukin-4, facilitated generation of specific IgG2a and secretion of the Th1 cytokine interferon-gamma, converted the Th2 response to Th1, and evidently alleviated allergic symptoms.
Conclusion: PLGA functions more appropriately as a specific immunotherapy adjuvant for allergen vaccines than does conventional Al(OH)3 due to its superior efficacy, longer potency, and markedly fewer side effects. The rCmP-loaded PLGA nanoparticles developed herein offer a promising avenue for specific immunotherapy in allergic asthma.

Keywords: nanoparticles, Caryota mitis profilin, PLGA, allergic asthma, adjuvant

Creative Commons License © 2013 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.