Back to Journals » International Journal of Nanomedicine » Volume 7

Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery

Authors Bennet D, Marimuthu M, Kim S, An

Received 10 April 2012

Accepted for publication 14 May 2012

Published 16 July 2012 Volume 2012:7 Pages 3399—3419

DOI https://doi.org/10.2147/IJN.S32800

Review by Single anonymous peer review

Peer reviewer comments 4



Devasier Bennet,1 Mohana Marimuthu,1 Sanghyo Kim,1 Jeongho An2

1Department of Bionanotechnology, Gachon University, Gyeonggi, Republic of Korea; 2Department of Polymer Science and Engineering, SunKyunKwan University, Gyeonggi, Republic of Korea

Abstract: Antioxidant (quercetin) and hypoglycemic (voglibose) drug-loaded poly-D,L-lactide-co-glycolide nanoparticles were successfully synthesized using the solvent evaporation method. The dual drug-loaded nanoparticles were incorporated into a scaffold film using a solvent casting method, creating a controlled transdermal drug-delivery system. Key features of the film formulation were achieved utilizing several ratios of excipients, including polyvinyl alcohol, polyethylene glycol, hyaluronic acid, xylitol, and alginate. The scaffold film showed superior encapsulation capability and swelling properties, with various potential applications, eg, the treatment of diabetes-associated complications. Structural and light scattering characterization confirmed a spherical shape and a mean particle size distribution of 41.3 nm for nanoparticles in the scaffold film. Spectroscopy revealed a stable polymer structure before and after encapsulation. The thermoresponsive swelling properties of the film were evaluated according to temperature and pH. Scaffold films incorporating dual drug-loaded nanoparticles showed remarkably high thermoresponsivity, cell compatibility, and ex vivo drug-release behavior. In addition, the hybrid film formulation showed enhanced cell adhesion and proliferation. These dual drug-loaded nanoparticles incorporated into a scaffold film may be promising for development into a transdermal drug-delivery system.

Keywords: quercetin, voglibose, biocompatible materials, encapsulation, transdermal

Creative Commons License © 2012 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.