Back to Browse Journals » International Journal of High Throughput Screening » Volume 2

Drug discovery in Parkinson's disease: update and developments in the use of cellular models

Authors Skibinski G, Finkbeiner S

Published Date June 2011 Volume 2011:2 Pages 15—25

DOI http://dx.doi.org/10.2147/IJHTS.S8681

Published 30 June 2011

Gaia Skibinski, Steven Finkbeiner
Gladstone Institute of Neurological Disease, San Francisco, CA, USA

Abstract: Parkinson's disease is the second most common neurodegenerative disorder and is characterized by the degeneration of dopaminergic neurons within the substantia nigra. Dopamine replacement drugs remain the most effective treatment for Parkinson's disease but only provide temporary symptomatic relief. New therapies are urgently needed, but the search for a disease-modifying treatment and a definitive understanding of the underlying mechanisms of Parkinson's disease has been limited by the lack of physiologically relevant models that recapitulate the disease phenotype. The use of immortalized cell lines as in vitro model systems for drug discovery has met with limited success, because efficacy and safety too often fail to translate successfully in human clinical trials. Drug discoverers are shifting their focus to more physiologically relevant cellular models, including primary neurons and stem cells. The recent discovery of induced pluripotent stem cell technology presents an exciting opportunity to derive human dopaminergic neurons from patients with sporadic and familial forms of Parkinson's disease. We anticipate that these human dopaminergic models will recapitulate key features of the Parkinson's disease phenotype. In parallel, high-content screening platforms, which extract information on multiple cellular features within individual neurons, provide a network-based approach that can resolve temporal and spatial relationships underlying mechanisms of neurodegeneration and drug perturbations. These emerging technologies have the potential to establish highly predictive cellular models that could bring about a desperately needed revolution in Parkinson's disease drug discovery.

Keywords: Parkinson's disease, cellular models, drug delivery
Corrigendum

Download Article [PDF] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Other article by this author:

Corrigendum

Skibinski G, Finkbeiner S

International Journal of High Throughput Screening 2011, 2:27-28

Published Date: 22 September 2011

Readers of this article also read:

Binding of plasma proteins to titanium dioxide nanotubes with different diameters

Kulkarni M, Flašker A, Lokar M, Mrak-Poljšak K, Mazare A, Artenjak A, Čučnik S, Kralj S, Velikonja A, Schmuki P, Kralj-Iglič V, Sodin-Semrl S, Iglič A

International Journal of Nanomedicine 2015, 10:1359-1373

Published Date: 18 February 2015

Layer-by-layer paper-stacking nanofibrous membranes to deliver adipose-derived stem cells for bone regeneration

Wan W, Zhang S, Ge L, Li Q, Fang X, Yuan Q, Zhong W, Ouyang J, Xing M

International Journal of Nanomedicine 2015, 10:1273-1290

Published Date: 12 February 2015

Value of portal venous system radiological indices in predicting esophageal varices

Gaduputi V, Patel H, Sakam S, Neshangi S, Ahmed R, Lombino M, Chilimuri S

Clinical and Experimental Gastroenterology 2015, 8:89-93

Published Date: 9 February 2015

Fluorescent magnetic iron oxide nanoparticles for cardiac precursor cell selection from stromal vascular fraction and optimization for magnetic resonance imaging

Verma VK, Kamaraju SR, Kancherla R, Kona LK, Beevi SS, Debnath T, Usha SP, Vadapalli R, Arbab AS, Chelluri LK

International Journal of Nanomedicine 2015, 10:711-726

Published Date: 20 January 2015

Chloronychia: green nail syndrome caused by Pseudomonas aeruginosa in elderly persons

Chiriac A, Brzezinski P, Foia L, Marincu I

Clinical Interventions in Aging 2015, 10:265-267

Published Date: 14 January 2015

Codelivery of doxorubicin and curcumin with lipid nanoparticles results in improved efficacy of chemotherapy in liver cancer

Zhao XJ, Chen Q, Liu W, Li YS, Tang HB, Liu XH, Yang XL

International Journal of Nanomedicine 2015, 10:257-270

Published Date: 30 December 2014

Photothermal cancer therapy using graphitic carbon–coated magnetic particles prepared by one-pot synthesis

Lee HJ, Sanetuntikul J, Choi ES, Lee BR, Kim JH, Kim E, Shanmugam S

International Journal of Nanomedicine 2015, 10:271-282

Published Date: 30 December 2014

Using registries to identify type 2 diabetes patients

Thomsen RW, Sørensen HT

Clinical Epidemiology 2015, 7:1-3

Published Date: 18 December 2014

Evaluation of in vitro glistening formation in hydrophobic acrylic intraocular lenses

Thomes BE, Callaghan TA

Clinical Ophthalmology 2013, 7:1529-1534

Published Date: 25 July 2013