Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Development and characterization of dilutable self-microemulsifying premicroemulsion systems (SMEPMS) as templates for preparation of nanosized particulates

Authors Lin S, Chen Y, Ho H , Huang W, Sheu M , Liu D, Chiu C

Received 16 May 2013

Accepted for publication 30 June 2013

Published 11 September 2013 Volume 2013:8(1) Pages 3455—3466

DOI https://doi.org/10.2147/IJN.S48465

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 5



Shen-Fu Lin,1 Ying-Chen Chen,2 Hsiu-O Ho,2 Wei-Yu Huang,2 Ming-Thau Sheu,2,3 Der-Zen Liu1,4

1Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, 2School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; 3Clinical Research Center and Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan; 4Center for General Education, Hsuan Chuang University, Hsinchu, Taiwan

Abstract: The utilization of self-microemulsifying premicroemulsion systems (SMEPMS) as templates for preparing poorly water-soluble compounds in the nanosized range represents a promising strategy. Fenofibrate was formulated with n-butyl L-lactate, Tween 80, and a number of cosurfactants (ethanol, 1-propanol, and PEG 600), diluted with the water phase (either water or saccharide solution) and then subjected to a freeze-drying (FD) process to obtain SMEPMS nanosized particulates. Results demonstrated that the particle size after resuspension of these FD SMEPMS nanosized particulates in water was too large, so the addition of saccharide solutions (lactose, mannitol, glucose, sucrose, and trehalose) as the solid carrier to prevent particles from aggregating seemed to be necessary and workable due to steric hindrance and repulsion. However, instability of these resuspended FD nanosized particulates after 30–90 minutes still occurred, and the addition of 0.5% sodium lauryl sulfate in the resuspending medium was able to retard the aggregation and maintain the particle size within the nano-range. Evaluation by scanning electron microscopy and X-ray powder diffraction also confirmed the results. It was concluded that using an SMEPMS formulation with PEG 600 as the cosurfactant, and in the presence of a suitable saccharide as an anticaking agent and FD process were able to produce fenofibrate nanoparticles.

Keywords: fenofibrate, saccharides, freeze-drying, nanoparticles

Creative Commons License © 2013 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.