Back to Journals » International Journal of Nanomedicine » Volume 7

Controlled synthesis and characterization of hollow flower-like silver nanostructures

Authors Eid KA, Azzazy H

Received 7 October 2011

Accepted for publication 5 November 2011

Published 21 March 2012 Volume 2012:7 Pages 1543—1550

DOI https://doi.org/10.2147/IJN.S26524

Review by Single anonymous peer review

Peer reviewer comments 2



Kamel AM Eid, Hassan ME Azzazy
Novel Diagnostics and Therapeutics Group, Yousef Jameel Science and Technology Research Center, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt

Background: The synthesis of anisotropic silver nanoparticles is a time-consuming process and involves the use of expensive toxic chemicals and specialized laboratory equipment. The presence of toxic chemicals in the prepared anisotropic silver nanostructures hindered their medical application. The authors have developed a fast and inexpensive method for the synthesis of three-dimensional hollow flower-like silver nanostructures without the use of toxic chemicals.
Methods: In this method, silver nitrate was reduced using dextrose in presence of trisodium citrate as a capping agent. Sodium hydroxide was added to enhance reduction efficacy of dextrose and reduce time of synthesis. The effects of all four agents on the shape and size of silver nanostructures were investigated.
Results: Robust hollow flower-like silver nanostructures were successfully synthesized and ranged in size from 0.2 µm to 5.0 µm with surface area between 25–240 m2/g. Changing the concentration of silver nitrate, dextrose, sodium hydroxide, and trisodium citrate affected the size and shape of the synthesized structures, while changing temperature had no effect.
Conclusion: The proposed method is simple, safe, and allows controlled synthesis of anisotropic silver nanostructures, which may represent promising tools as effective antimicrobial agents and for in vitro diagnostics. The synthesized hollow nanostructures may be used for enhanced drug encapsulation and sustained release.

Keywords: silver nanoparticles, 3D hollow, flower-like, green synthesis

Creative Commons License © 2012 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.