Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment

Authors Madani S , Shabani F, Dwek M, Seifalian A

Received 1 August 2012

Accepted for publication 9 September 2012

Published 3 March 2013 Volume 2013:8(1) Pages 941—950

DOI https://doi.org/10.2147/IJN.S36416

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 4



Seyed Yazdan Madani,1 Farzad Shabani,3 Miriam V Dwek,2 Alexander M Seifalian1,3

1UCL Centre for Nanotechnology and Regenerative Medicine, University College, London, UK; 2Department of Molecular and Applied Biosciences, School of Life Sciences, University of Westminster, London, UK; 3Royal Free London NHS Foundation Trust Hospital, London, UK

Abstract: Cancer is one of the leading causes of death worldwide and early detection provides the best possible prognosis for cancer patients. Nanotechnology is the branch of engineering that deals with the manipulation of individual atoms and molecules. This area of science has the potential to help identify cancerous cells and to destroy them by various methods such as drug delivery or thermal treatment of cancer. Carbon nanotubes (CNT) and quantum dots (QDs) are the two nanoparticles, which have received considerable interest in view of their application for diagnosis and treatment of cancer. Fluorescent nanoparticles known as QDs are gaining momentum as imaging molecules with life science and clinical applications. Clinically they can be used for localization of cancer cells due to their nano size and ability to penetrate individual cancer cells and high-resolution imaging derived from their narrow emission bands compared with organic dyes. CNTs are of interest to the medical community due to their unique properties such as the ability to deliver drugs to a site of action or convert optical energy into thermal energy. By attaching antibodies that bind specifically to tumor cells, CNTs can navigate to malignant tumors. Once at the tumor site, the CNTs enter into the cancer cells by penetration or endocytosis, allowing drug release, and resulting in specific cancer cell death. Alternatively, CNTs can be exposed to near-infrared light in order to thermally destroy the cancer cells. The amphiphilic nature of CNTs allows them to penetrate the cell membrane and their large surface area (in the order of 2600 m2/g) allows drugs to be loaded into the tube and released once inside the cancer cell. Many research laboratories, including our own, are investigating the conjugation of QDs to CNTs to allow localization of the cancer cells in the patient, by imaging with QDs, and subsequent cell killing, via drug release or thermal treatment. This is an area of huge interest and future research and therapy will focus on the multimodality of nanoparticles. In this review, we seek to explore the biomedical applications of QDs conjugated to CNTs, with a particular emphasis on their use as therapeutic platforms in oncology.

Keywords: carbon nanotubes, quantum dots, cancer, photothermal therapy, drug delivery, cytotoxicity, near-infrared light

Creative Commons License © 2013 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.