Back to Journals » Journal of Experimental Pharmacology » Volume 3

Comparison of the effects of the oral anticancer platinum(IV) complexes oxoplatin and metabolite cis-diammine-tetrachlorido-platinum(IV) on global gene expression of NCI-H526 cells

Authors Olszewski, Ulsperger, Geissler, Hamilton G

Published 4 April 2011 Volume 2011:3 Pages 43—50

DOI https://doi.org/10.2147/JEP.S13630

Review by Single anonymous peer review

Peer reviewer comments 2



Ulrike Olszewski, Ernst Ulsperger, Klaus Geissler, Gerhard Hamilton
Ludwig Boltzmann Institute of Clinical Oncology and Photodynamic Therapy, Ludwig Boltzmann Cluster of Translational Oncology, Vienna, Austria

Abstract: Platinum(IV) coordination complexes like oxoplatin (cis,cis,trans-diammine-dichlorido-dihydroxido-platinum[IV]) show high stability and therefore can be utilized orally for outpatient care. Although oxoplatin is capable of binding directly to DNA after prolonged incubation, platinum(IV) agents are considered to be largely inert prodrugs that are converted to highly cytotoxic platinum(II) compounds by reducing substances, enzymes, or microenvironmental conditions. Reaction of oxoplatin with 0.1 M hydrogen chloride mimicking gastric acid yields cis-diammine-tetrachlorido-platinum(IV) (DATCP[IV]), which exhibits two-fold increased activity. The presence of chlorides as ligands in the axial position results in a high reduction potential that favors transformation to platinum(II) complexes. In this study, the intracellular effect of the highly reactive tetrachlorido derivative was investigated in comparison with an equipotent dose of cisplatin. Genome-wide expression profiling of NCI-H526 small cell lung cancer cells treated with these platinum species revealed clear differences in the expression pattern of affected genes and concerned cellular pathways between DATCP(IV) and cisplatin. Application of DATCP(IV) resulted in extensive downregulation of protein and ATP synthesis, cell cycle regulation, and glycolysis, in contrast to cisplatin, which preferentially targeted glutathione conjugation, pyruvate metabolism, citric acid cycle, and the metabolism of amino acids and a range of carbohydrates. Thus, the oxoplatin metabolite DATCP(IV) constitutes a potent cytotoxic derivative that may be produced by gastric acid or acidic areas prevailing in larger solid tumors, depending on the respective pharmaceutical formulation of oxoplatin. Furthermore, DATCP(IV) exhibits intracellular effects that are clearly different from the expected reduced product cisplatin(II). In conclusion, activation of the platinum(IV) complex oxoplatin seems to involve the generation of a cytotoxic six-coordinate species, dependent on prevailing conditions, and its effects need to be considered in addition to the effects of the potential final platinum(II) product.

Keywords: platinum, oxoplatin, metabolites, small cell lung cancer, cell line, gene expression, microarray

Creative Commons License © 2011 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.