Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Cellular uptake and imaging studies of glycosylated silica nanoprobe (GSN) in human colon adenocarcinoma (HT 29 cell line)

Authors Mehravi B, Ahmadi M, Amanlou M , Mostaar A, Ardestani MS , Ghalandarlaki N

Received 5 March 2013

Accepted for publication 23 April 2013

Published 21 August 2013 Volume 2013:8(1) Pages 3209—3216

DOI https://doi.org/10.2147/IJN.S44815

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3



Bita Mehravi,1 Mohsen Ahmadi,1 Massoud Amanlou,2 Ahmad Mostaar,1 Mehdi Shafiee Ardestani,3 Negar Ghalandarlaki4

1Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 2Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran; 3Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 4Department of Biological Science, School of Science, Science and Research branch, Islamic Azad University, Tehran, Iran

Purpose: In recent years, molecular imaging by magnetic resonance imaging (MRI) has gained prominence in the detection of tumor cells. The scope of this study is on molecular imaging and on the cellular uptake study of a glycosylated silica nanoprobe (GSN).
Methods: In this study, intracellular uptake (HT 29 cell line) of GSN was analyzed quantitatively and qualitatively with inductively coupled plasma atomic emission spectroscopy, flow cytometry, and fluorescent microscopy. In vitro and in vivo relaxometry of this nanoparticle was determined using a 3 Tesla MRI; biodistribution of GSN and Magnevist® were measured in different tissues.
Results: Results suggest that the cellular uptake of GSN was about 70%. The r1 relaxivity of this nanoparticle in the cells was measured to be 12.9 ± 1.6 mM-1 s-1 and on a per lanthanide gadolinium (Gd3+) basis. Results also indicate an average cellular uptake of 0.7 ± 0.009 pg Gd3+ per cell. It should be noted that 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated that the cells were effectively labeled without cytotoxicity, and that using MRI for quantitative estimation of delivery and uptake of targeted contrast agents and early detection of human colon cancer cells using targeted contrast agents, is feasible.
Conclusion: These results showed that GSN provided a critical guideline in selecting these nanoparticles as an appropriate contrast agent for nanomedicine applications.

Keywords: cellular uptake, contrast agent, glucosamine, mesoporous silica nanospheres, molecular imaging, MRI

Creative Commons License © 2013 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.