Back to Journals » International Journal of Nanomedicine » Volume 7

Catalytically active bovine serum amine oxidase bound to fluorescent and magnetically drivable nanoparticles

Authors Sinigaglia, Magro, Miotto, Cardillo, Agostinelli, Zbořil R, Bidollari, Vianello F

Received 14 November 2011

Accepted for publication 6 December 2011

Published 3 May 2012 Volume 2012:7 Pages 2249—2259

DOI https://doi.org/10.2147/IJN.S28237

Review by Single anonymous peer review

Peer reviewer comments 2



Giulietta Sinigaglia1, Massimiliano Magro1, Giovanni Miotto1, Sara Cardillo1, Enzo Agostinelli2,3, Radek Zboril4, Eris Bidollari2,3, Fabio Vianello1

1Department of Biological Chemistry, University of Padua, Padua, Italy; 2Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", SAPIENZA University of Rome, Rome, Italy; 3CNR, Institute Biology and Molecular Pathology, Rome, Italy; 4Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, Olomouc, Czech Republic

Abstract: Novel superparamagnetic surface-active maghemite nanoparticles (SAMNs) characterized by a diameter of 10 ± 2 nm were modified with bovine serum amine oxidase, which used rhodamine B isothiocyanate (RITC) adduct as a fluorescent spacer-arm. A fluorescent and magnetically drivable adduct comprised of bovine serum copper-containing amine oxidase (SAMN–RITC–BSAO) that immobilized on the surface of specifically functionalized magnetic nanoparticles was developed. The multifunctional nanomaterial was characterized using transmission electron microscopy, infrared spectroscopy, mass spectrometry, and activity measurements. The results of this study demonstrated that bare magnetic nanoparticles form stable colloidal suspensions in aqueous solutions. The maximum binding capacity of bovine serum amine oxidase was approximately 6.4 mg g-1 nanoparticles. The immobilization procedure reduced the catalytic activity of the native enzyme to 30% ± 10% and the Michaelis constant was increased by a factor of 2. We suggest that the SAMN–RITC–BSAO complex, characterized by a specific activity of 0.81 IU g-1, could be used in the presence of polyamines to create a fluorescent magnetically drivable H2O2 and aldehydes-producing system. Selective tumor cell destruction is suggested as a potential future application of this system.

Keywords: amine oxidase, hydrogen peroxide production, superparamagnetic nanoparticles, rhodamine isothiocyanate, fluorescent nanoparticles, fluorescent nanocatalyst

Creative Commons License © 2012 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.